实验-石油组分和物理性质
石油化学与组分分析

第一章1. 石油资源在国民经济中的地位为经济发展供应能源,支撑材料工业发展,促进农业发展,为工业部门提供动力,是重要的支柱产业。
石油和天然气出发,生产出一系列石油产品及石油化工中间体。
塑料、合成纤维、合成橡胶、合成洗涤剂、溶剂,涂药,农药,染料、医药等与国际民生密切相关的重要产品。
2. 了解石油化学组成有何实际意义?因为原油虽在表观特征上与烃类相似,然而在利用原油和加工原油的角度看,各种原油在性质上的差异是很明显的。
有的原油通过蒸馏就可以得到产率较高的合格汽油,有的却只能得到很低产率的低质汽油。
有的原油常温下要凝固,有的在0℃仍能流动。
有的原油很容易获得沥青,有的却非常困难。
原油及其加工后产品的性质都是由它们的化学组成所决定的,包括烃类的组成和非烃类的组成。
因此,在确定一种原油的加工方案前,首先要了解它的性质和组成。
3. 石油的定义石油又称原油,是一种粘稠的、深褐色液体。
地壳上层部分地区有石油储存。
主要成分是各种烷烃、环烷烃、芳香烃的混合物。
它是古代海洋或湖泊中的生物经过漫长的演化形成,属于化石燃料。
石油主要被用来作为燃油和汽油,也是许多化学工业产品如溶液、化肥、杀虫剂和塑料等的原料。
4. 常规石油是指哪些石油资源?常规石油就是指油气田可以用传统的技术(自喷、人工举升、注水气)采油等进行开发。
主要是各种烷烃,环烷烃,芳香烃的混合物。
5. 非常规石油指哪些石油资源?目前,对非常规油气资源尚无明确定义,人们采用约定俗成的叫法将其分为非常规石油资源及非常规天然气资源两大类。
前者主要指重(稠)油、超重油、深层石油等,后者主要指低渗透气压气、煤层气、天然气水合物、深层天然气及无气成因油气。
此外,油页岩通过相应的化学处理后产出的可燃气和石油,也属于非常规油气资源。
6. 世界石油资源的大致情况原油的分布从总体上来看极端不平衡;从东西半球来看,约3/4的石油资源集中在东半球,西半球占1/4;从南北半球看,石油资源主要集中于北半球,从纬度分布看,主要集中于北纬20°—40°和50°—70°两个纬度带内,波斯湾及墨西哥湾两大油区和北非油田均处于北纬20°—40°内,该带集中了51.3%的世界石油储量。
石油地质学-2. 油气组成和性质

2)运动粘度:
动力粘度与密度之比称运动粘度 单位为㎡/s,二次方米/每秒,其常用Vt表示
Clq 2019/10/18
3)相对粘度:
又称思氏粘度,是在思氏粘度计中200ml原 油与20℃时同体积的蒸馏水流出时间的比,用Et 表示。
实验室测定的Et,通过置换算表,获得运动 粘度,运动粘度与密度之积即得动力粘度。
含硫量
V/Ni
δ13C
海相石油
陆相石油
25-70%
60-90%
25-60%
10-20%
陆相石油大于海相石油含蜡量。普遍大于5%。
一般海相石油大于陆相石油的含硫量,
>1
<1
>-27‰
<-29‰
Clq 2019/10/18
第二节 天然气的组成与性质
一、天然气的概念和产出类型
石油天然气地质学中所研究 的主要是狭义的天然气
>0.90 称为重质石油 <0.90 称为轻质石油 世界平均比重的原油,1吨按7.3桶计算。
Clq 2019/10/18
3.石油的粘度
粘度值代表石油流动时分子之间 相对运动所引起的内摩擦力大小。
粘度又分为:动力粘度 运动粘度 相对粘度
Clq 2019/10/18
1)动力粘度(绝对粘度):
单位为帕斯卡·秒(Pa·s)。它表示1牛顿力作用下, 两个液层面积各为1平方米,相距1米,彼此间相对移动 速度为1米/S 时,液体流动所产生的阻力。
吸附
轻馏分
烃用
物
类硅
原 蒸馏
油
用 乙
可+
溶胶 的质
胶、 有 机 溶
油品检测基础知识

油品检测基础知识一、原油的组成原油的化学组成复杂,它是混合物,由多达几百种不同结构的烃类形式存在。
主要是C、H还含有少量的S、N、O的烃类衍生物及Na、Mg、Ca、Ni、V等金属化合物。
原油的烃类主要有:烷烃、环烷烃、芳香烃。
二、原油的物理性质1、颜色与气味多数是从棕色到黑色,但也有透明或黄色的,它的颜色主要取决于其胶质与沥青的含量。
胶质与沥青的含量越多,其颜色就越深。
它有很浓的气味,这是由于容易挥发的有机物的缘故。
若含S与N化合物时,就会散发很难闻的臭味;若含芳香烃多时,则有一种芳香气味;若含胶质和沥青多时,气味较浓;若含汽油等轻质馏分多时,有浓的汽油味。
2、密度(依据GB/T 1884-2000测定)密度与其组成有关,含胶质、沥青及烷烃越多,密度越大。
其密度一般波动在650~980㎏/m3,大于1000㎏/m3的原油很少见。
密度现有15℃、20℃、桶/吨及API(密度指数)等几种表示方式。
具体几种密度的换算见GB/T 1885-1998《石油计量表》。
原油密度换算表的几点说明(执行GB/T 1885-1998)(1)将测量的密度体积换算成20℃的密度体积。
(2)由计量单位换算表将视密度→标准密度(20℃)→→15℃的密度→吨桶比→计算出API(注API=141.5/15℃密度-131.5)(3)注意:再查看温度与密度时,温度用靠近法,密度用内查法。
如:38.8℃表中没有就靠38.75℃来查。
密度807没有就将808与806的一同查出相加÷2得出20℃的密度体积。
3、粘度(依据GB/T 1995-1998测定)粘度的大小随液体成分、温度、压力的不同而不同。
含烷烃多的粘度较小;含胶质、沥青多,粘度较大;馏分沸点越高,粘度越大;随着温度的增高而降低。
4、凝点(依据SY/T 0541-1994测定)原油中含有一些大分子的烷烃或环烷烃,俗称石蜡与地蜡。
它们在较低温度下易结晶成固体,是原油产生凝点的重要因素。
2.1石油及其产品的组成和性质

CA%=6÷20×100%=30% CN%=4÷20×100%=20% CP%=10÷20×100%=50% RT=2;RA=1;RN=1
注:
➢石油馏分的结构族组成是把一个馏分看作是一个平均分子,
所以环数有可能是小数;
➢CA%、CN%、CP%、RT 、RA 、RN是平均分子的结构参数
②石油馏分结构族组成的n-d-M法 ➢烃类的物性与其结构单元密切相关 ➢测定中间馏分或高沸点馏分的相对密度(d)、折射 率(n)和分子量(M),就可以用表2-9中的公式算出各 结构参数(CA%、CN%、CP%、RT 、RA 、RN)
11
12
3.直馏馏分:从原油直接分馏得到的馏分。它基本保 留了石油化学组成的本来面目,如:不含不饱和烃, 在化学组成中含有烷烃、环烷烃、芳香烃等
4.石油中含有的馏分,一般规定: ➢小于180℃的馏分为汽油馏分(也称为低沸点馏 分,轻油或石脑油馏分)
➢180~350℃的馏分为煤、柴油馏分(中间馏分, AGO) ➢350~500℃的馏分为减压馏分(也称高沸点馏 分,VGO) ➢大于500℃的馏分为减渣馏分(VR)
16
减压瓦斯油(vacuum gas oil;VGO)
简称VGO,指原油经减压蒸馏所得到的沸程范围约为350~ 500℃的馏分油的总称,是一种重质油。石油炼厂中减压瓦 斯油常作为制取润滑油的原料;也作为催化裂化、加氢裂化 及热裂化等过程的原料,以得到更多的轻质石油产品。随着 石油化工的发展,要求不断扩大裂解原料范畴,近年来,已 采用减压瓦斯油作为石油化工原料用于烃类裂解。一般硫含 量低的减压瓦斯油,例如低于0.5%(质量),可以不经预处 理,即可直接进行裂解制取乙烯。以减压瓦斯油为裂解原料 的乙烯收率较低,裂解技术较复杂。
油藏流体的物理性质

两相体积系数:
油藏压力低于泡点压力时,在给定压力下地层原 油和其释放出气体的总体积(两相体积)与它在地面脱气 后的体积(地面原油体积)之比。
因为:
Bt
=
V f + V fg Vs
( ) Vfg = Rsi − Rs VsBg
( ) 所以: Bt = Bo + Rsi − Rs Bg
第五节 天然气的高压物性
压缩因子 体积系数 压缩系数 粘度
一、天然气的压缩因子方程
理想气体状态方程: PV=nRT
理想气体的假设条件: ①气体分子无体积,是个质点; ②气体分子间无作用力; ③气体分子间是弹性碰撞;
天然气处于高温、高压状态多组分混合物,不 是理想气体
压缩 因子
压缩因子:
一定温度和压力条件下,一定质量气体实际占 有的体积与在相同条件下理想气体占有的体积之比。
– 高压下:气体密度变大,气体分子间的相互作用 力起主要作用,分子间作用力以结合力的形式表 现出来,气体层间产生单位速度梯度所需的层面 剪切应力很大。具有液体粘度的特点。
• T ↗,μg ↘ • 分子量 ↗, μg ↗ • P↗,μg ↗ 。
第六节 地层水的高压物性
地层水 油层水(与油同层)和外部水(与油不同层)的总称
★ 石蜡族低分子饱和烷烃(主要) CH4 70~98% C2H6 C3H8 C4H10 >C5
★ 非烃气体(少量) H2S 有机硫 CO2 CO N2 H2O 惰性气体He、Ar等
★ 天然气组成的表示方法
摩尔组成 质量组成
yi
=
ni
∑ ni
× 100 %
wi
=
mi
∑ mi
油气田开发地质基础 第1章 油 气 水性质-xie

(2)含氮化合物 石油中的含氮量一般在万分之几至千分之几。 我国大多数原油含氮量均低于千分之五。 石油中的含氮化合物包括碱性和非碱性两类。
碱性含氮化物多为吡啶、喹啉等及其同系物, 非碱性含氮化物主要是吡咯、卟啉、吲哚和咔
唑及其同系物。其中以金属卟啉化合物最为重 要。
9
金属卟啉化合物
在石油中钒、镍等重金属都与卟啉分子中的氮呈络合状态 存在,形成钒卟啉和镍卟啉 指相原油中卟啉类型与沉积环境有密切关系,海相石油富含钒 卟啉,陆相石油富含镍卟啉。我国原油一般以镍卟啉为主, V/Ni比值都小于1。 有机成因动物血红素 和植物叶绿素都属卟啉 化合物,前者为铁的络 合物,后者是镁的络合 物。它们同石油中这类 化合物的结构相同,所 以,在石油中发现卟啉 化合物,可作为石油有 机成因重要证据之一 石油低温生成卟啉的稳定性较差,在高温(>250℃)或氧化条 件下,卟啉可以发生开环裂解反应而被破坏。说明石油是在相对 10 低温的条件下生成。
23
6.溶解性 石油主要由各种烃类化合物组成,由于烃类难溶于水, 因此,石油在水中的溶解度很低。 若以碳数相同的分子进行比较,溶解度烷烃<环烷烃<芳香 烃。 除甲烷外,各族烃类在水中的溶解度均随分子量增大而减 小。 外界条件对石油在水中的溶解度有不同影响: (1)温度由150℃降低到25℃,石油的溶解度会降低 78~95%; (2)除烷烃中的气态馏分外,压力对烃类的溶解度影响 甚微; (3)水中无机组分含量和含盐量增加时,烃类的溶解度 会降低。 石油尽管难溶于水,但却易溶于许多有机溶剂,例如氯 仿、四氯化碳、苯、石油醚、醇等等。根据石油在有机溶剂 中的溶解性,有助于鉴定岩石中的石油含量及性质。
馏分 温度℃ 轻馏分 石油气 汽油 <35 煤油 中馏分 重馏分 柴油 重瓦斯油 润滑油 渣油 >530
油层物理 第七章(油层液体物理性质)
时纯水单位体积的重量比,用
d
20 4
表示
。在欧美各国
则以
latm、60℉石
油与纯水单位体积的重量比,用 ro 表示。
在商业上常以API度(America Petroleum Institute——美国石 油学会)相对密度表示。它与60℉石油相对密度的关系,可用下式换 算:
API度 141 .5 131 .5 ro
50.0
1.15
13.0
96.7
1.28
21.8
216.7
1.68
40.5
506.0
2.62
61.9
45 1.09-1.15 8.3-13.0
地层石油溶解的天然气量越多,体积系就越大。
2、压力的影响
当压力小于饱和压力时, 随着压力的增加,溶解于石 油中的气量也随之增加,故 地层石油的体积系数随压力 的增高而增大。
Vo ——油层石油的体积(L)。
油层石油由于溶解有大量的天然气,因而其密度与地面
脱气石油密度相比有很大差别,通常要低百分之几到百
分之十几,有时还更低。
获取方法
•实验室测定(多数情况下) •计算 •查图
应用石油等温压缩系数计算高于饱和压力时的石油密度
分二步进行
第一步:先算出饱和压力下的石油密度 第二步:由压缩系数表达式求取
§2 油层石油的压缩系数
2、与地层温度的关系 某井平均石油压缩系数与温度关系 (据杨普华,1980)
地层温度 平均压缩系数(×10-5 1/ata)
20
9.1
105
24.7
126
28.9
随温度增加,压缩系数是增加的。
§2 油层石油的压缩系数
原油分类和理化性质
原油分类和理化性质按组成分类:石蜡基原油、环烷基原油和中间基原油三类;按硫含量分类:超低硫原油、低硫原油、含硫原油和高硫原油四类;按比重分类:轻质原油、中质原油、重质原油以三类。
原油的性质包含物理性质和化学性质两个方面。
物理性质包括颜色、密度、粘度、凝固点、溶解性、杂质含量等;化学性质包括化学组成、氧化、燃烧等。
颜色:原油的色泽按产地和成分不同,一般有褐色、黄褐色、深棕色和黑色。
通常颜色越深则比重越大,同时含沸点成分就越少,反之亦然。
然而原油中纯粹烃类为无色物质,原油的颜色是由石油中含有的其它物质所形成的。
密度:原油相对密度一般在0.75~0.95之间,少数大于0.95或小于0.75,相对密度在0.9~1.0的称为重质原油,小于0.9的称为轻质原油。
粘度:原油粘度是指原油在流动时所引起的内部摩擦阻力,原油粘度大小取决于温度、压力、溶解气量及其化学组成。
温度增高其粘度降低,压力增高其粘度增大,溶解气量增加其粘度降低,轻质油组分增加,粘度降低。
原油粘度变化较大,一般在1~100mPa•s之间,粘度大的原油俗称稠油,稠油由于流动性差而开发难度增大。
一般来说,粘度大的原油密度也较大。
凝固点:原油冷却到由液体变为固体时的温度称为凝固点。
原油的凝固点大约在-50℃~35℃之间。
凝固点的高低与石油中的组分含量有关,轻质组分含量高,凝固点低,重质组分含量高,尤其是石蜡含量高,凝固点就高。
溶解性:原油很难溶于水中,但却能溶于普通的有机溶剂,如苯、氯仿、酒精、乙醚、四氯化碳等。
虽然原油几乎完全不能和水相溶解,但仍有少量水分会“包溶”于原油中,一定条件下可自然析出。
含蜡量:含蜡量是指在常温常压条件下原油中所含石蜡和地蜡的百分比。
石蜡是一种白色或淡黄色固体,由高级烷烃组成,熔点为37℃~76℃。
石蜡在地下以胶体状溶于石油中,当压力和温度降低时,可从石油中析出。
地层原油中的石蜡开始结晶析出的温度叫析蜡温度,含蜡量越高,析蜡温度越高。
石油实验总结报告范文(3篇)
第1篇 一、实验背景 石油作为一种重要的能源资源,在全球能源结构中占据着举足轻重的地位。为了提高石油开采效率、降低生产成本、保障能源安全,我国石油行业对石油勘探、开发、加工等方面的技术进行了深入研究。本次实验旨在通过实验室模拟实验,探究石油开采、加工过程中的一些关键问题,为我国石油工业的发展提供理论依据和技术支持。
二、实验目的 1. 了解石油开采、加工过程中的关键环节及原理; 2. 掌握石油实验的基本操作方法; 3. 分析实验数据,总结实验规律,为实际生产提供参考。 三、实验内容 1. 石油开采实验 (1)实验原理:通过模拟石油在地下储存、开采过程中的物理、化学变化,研究石油的物性参数、储层性质等;
(2)实验方法:采用岩心驱替实验、渗透率测试等方法,分析石油在岩石孔隙中的流动规律;
(3)实验过程:首先对实验样品进行预处理,然后进行驱替实验,最后对实验数据进行处理和分析。
2. 石油加工实验 (1)实验原理:研究石油在炼制过程中的化学反应,探究不同加工工艺对石油质量的影响;
(2)实验方法:采用催化裂化、加氢裂化等实验,模拟石油炼制过程; (3)实验过程:首先对实验样品进行预处理,然后进行催化裂化或加氢裂化实验,最后对实验数据进行处理和分析。
四、实验结果与分析 1. 石油开采实验结果与分析 (1)实验结果表明,石油在岩石孔隙中的流动规律与岩石孔隙结构、渗透率等因素密切相关;
(2)在实验过程中,不同驱替剂对石油的采收率影响较大,选择合适的驱替剂可以提高石油采收率;
(3)实验结果还表明,岩石孔隙结构对石油流动的影响较大,改善岩石孔隙结构可以提高石油采收率。
2. 石油加工实验结果与分析 (1)实验结果表明,催化裂化、加氢裂化等加工工艺对石油质量有显著影响; (2)在实验过程中,不同加工工艺对石油的产量、质量、环保等方面有较大差异; (3)实验结果还表明,优化加工工艺可以提高石油产量,降低生产成本,减少污染物排放。
石油炼制工程(第四版) 杨朝合
蒸汽压、 第一节 蒸汽压、沸程和平均沸点
石油和石油产品的蒸发性能是反映其汽化、 石油和石油产品的蒸发性能是反映其汽化、蒸发难易 的重要性质, 蒸汽压、沸程来描述。 的重要性质,用蒸汽压、沸程来描述。 来描述
一、 蒸汽压
定义: 定义:是在某一温度下一种物质液相与其上方的气相 呈平衡状态时,该蒸汽所产生的压力称为饱和蒸气压, 呈平衡状态时,该蒸汽所产生的压力称为饱和蒸气压,简 称蒸气压。蒸气压愈高的液体愈易于汽化。 称蒸气压。蒸气压愈高的液体愈易于汽化。 1. 纯烃的蒸汽压 对同族烃类,在同一温度下,相对分子质量较大的烃类的 对同族烃类,在同一温度下,相对分子质量较大的烃类的 蒸气压较小。对某一纯烃而言, 蒸气压较小。对某一纯烃而言,其蒸气压是随温度的升高 而增大。 而增大。
t me = (t m + tcu ) / 2
用途: 用于求油品氢含量、 、 、 用途:tme用于求油品氢含量、K、Pc、燃烧热和平均分子量 2011-6-14 14 石油加工工程
这五种平均沸点中,仅有体积平均沸点 体积平均沸点可由石油馏分的 这五种平均沸点中,仅有体积平均沸点可由石油馏分的 馏程测定数据直接算得,其它几种平均沸点可借助体积 馏程测定数据直接算得, 其它几种平均沸点可借助体积 平均沸点与蒸馏曲线斜率由 中查得; 平均沸点与蒸馏曲线斜率由图3-2中查得; 中查得 周佩正根据石油馏分的体积平均沸点tv及其馏程的斜率 周佩正根据石油馏分的体积平均沸点 及其馏程的斜率 , 根据石油馏分的体积平均沸点 及其馏程的斜率S, 将这五种平均沸点进行了关联 ; 这几种平均沸点各有其相应的应用场合,不能混淆, 这几种平均沸点各有其相应的应用场合,不能混淆,当 有其相应的应用场合 涉及沸点时须注意所指的是何种平均沸点; 涉及沸点时须注意所指的是何种平均沸点; 对于沸程小于 ℃ 窄馏分, 对于沸程 小于30℃的 窄馏分, 可以认为其各种平均沸点 小于 近似相等, 中沸点代替不会有很大误差。 近似相等,用中沸点代替不会有很大误差。 相等 代替不会有很大误差