第1讲 等差数列与等比数列
第1讲 等差数列与等比数列

第1讲等差数列与等比数列高考定位 1.等差、等比数列基本运算和性质的考查是高考热点,经常以选择题、填空题的形式出现;2.数列的通项也是高考热点,常在解答题中的第(1)问出现,难度中档以下.1.(2021·北京卷)已知{a n}和{b n}是两个等差数列,且a kb k(1≤k≤5)是常值,若a1=288,a5=96,b1=192,则b3的值为()A.64B.100C.128D.132答案C解析由题意可得a1b1=a5b5,则b5=64,故b3=b1+b52=2.(2021·全国甲卷)记S n为等比数列{a n}的前n项和.若S2=4,S4=6,则S6=()A.7B.8C.9D.10答案A解析法一因为S2=4,S4=6,且易知公比q≠±1,所以由等比数列的前n项和公式,得2=a1(1-q2)1-q=a1(1+q)=4,4=a1(1-q4)1-q=a1(1+q)(1+q2)=6,两式相除,得q2=12,所以1=4(2-2),=221=4(2+2),=-22,所以S6=a1(1-q6)1-q=7.故选A.法二易知S2,S4-S2,S6-S4构成等比数列,由等比中项得S2(S6-S4)=(S4-S2)2,即4(S6-6)=22,所以S6=7.故选A.3.(2020·全国Ⅱ卷)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215-25,则k=()A.2B.3C.4D.5答案C解析∵a1=2,a m+n=a m a n,令m=1,则a n+1=a1a n=2a n,∴{a n}是以a1=2为首项,2为公比的等比数列,∴a n=2×2n-1=2n.又∵a k+1+a k+2+…+a k+10=215-25,∴2k+1(1-210)1-2=215-25,即2k+1(210-1)=25(210-1),∴2k+1=25,∴k+1=5,∴k=4.4.(2021·全国乙卷)设S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n }是等差数列;(2)求{a n }的通项公式.(1)证明因为b n 是数列{S n }的前n 项积,所以n ≥2时,S n =b nb n -1,代入2S n +1b n =2可得,2b n -1b n+1b n =2,整理可得2b n -1+1=2b n ,即b n -b n -1=12(n ≥2).又2S 1+1b 1=3b 1=2,所以b 1=32,故{b n }是以32为首项,12为公差的等差数列.(2)解由(1)可知,b n =32+12(n -1)=n +22,则2S n +2n +2=2,所以S n =n +2n +1,当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1n (n +1).故a n n =1,-1n (n +1),n ≥2.1.等差数列(1)通项公式:a n =a 1+(n -1)d ;(2)求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;(3)常用性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ;②a n =a m +(n -m )d ;③S m,S2m-S m,S3m-S2m,…成等差数列.2.等比数列(1)通项公式:a n=a1q n-1(q≠0);(2)求和公式:q=1,S n=na1;q≠1,S n=a1(1-q n)1-q=a1-a n q1-q;(3)常用性质:①若m,n,p,q∈N*,且m+n=p+q,则a m·a n=a p·a q;②a n=a m·q n-m;③S m,S2m-S m,S3m-S2m,…(S m≠0)成等比数列.温馨提醒应用公式a n=S n-S n-1时一定注意条件n≥2,n∈N*.热点一等差、等比数列的基本运算【例1】设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.解(1)设{a n}的公差为d.因为a1=-10,所以a2=-10+d,a3=-10+2d,a4=-10+3d.因为a2+10,a3+8,a4+6成等比数列,所以(a3+8)2=(a2+10)(a4+6).所以(-2+2d)2=d(-4+3d).解得d=2.所以a n=a1+(n-1)d=2n-12.(2)法一由(1)知,a n=2n-12.则当n≥7时,a n>0;当n=6时,a n=0;当n<6时,a n<0;所以S n的最小值为S5=S6=-30.法二由(1)知,S n =n2(a 1+a n )=n (n -11)-1214,又n ∈N *,所以当n =5或n =6时,S n 的最小值为S 5=S 6=-30.探究提高1.等差(比)数列基本运算的解题途径:(1)设基本量a 1和公差d (公比q ).(2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.2.第(2)题求出基本量a 1与公差d ,进而由等差数列前n 项和公式将结论表示成关于“n ”的函数,求出最小值.【训练1】(2021·济南联考)已知各项均为正数的等差数列{a n }满足a 1a 5=33,a 22=25.(1)求数列{a n }的通项公式;(2)设b n =4n -2+3a n ,若a n ∈N ,求{b n }的前n 项和T n .解(1)设各项均为正数的等差数列的公差为d .由a 1a 5=33,且a 22=25.1(a 1+4d )=33,2=a 1+d =5,1=3,=21=113,=43.故a n =3+2(n -1)=2n +1或a n =113+43(n -1)=4n +73.(2)由于a n ∈N ,所以a n =2n +1.所以b n =4n -2+3a n =4n -2+6n +3.根据等差数列、等比数列的前n 项和公式,得T n =14(1-4n )1-4+12(9+6n +3)n =112(4n -1)+3n 2+6n .热点二等差(比)数列的性质【例2】(1)在等差数列{a n }中,a 1=-9,a 5=-1.记T n =a 1a 2…a n (n =1,2,…),则数列{T n}()A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项(2)已知数列{a n}的各项都为正数,对任意的m,n∈N*,a m·a n=a m+n恒成立,且a3·a5+a4=72,则log2a1+log2a2+…+log2a7=________.(3)(多选)已知S n是等差数列{a n}(n∈N*)的前n项和,且S5>S6>S4.下列四个结论正确的是()A.数列{S n}中的最大项为S10B.数列{a n}的公差d<0C.S10>0D.S11<0答案(1)B(2)21(3)BCD解析(1)由题意可知,等差数列的公差d=a5-a15-1=-1+95-1=2,则其通项公式为a n=a1+(n-1)d=-9+(n-1)×2=2n-11,注意到a1<a2<a3<a4<a5<0<a6=1<a7<…,且由T5<0可知T i<0(i≥6,i∈N),由T i T i-1=a i>1(i≥7,i∈N)可知数列{T n}不存在最小项,由于a1=-9,a2=-7,a3=-5,a4=-3,a5=-1,a6=1,故数列{T n}中的正项只有有限项:T2=63,T4=945.故数列{T n}中存在最大项,为T4.故选B.(2)因为对任意的m,n∈N*,a m·a n=a m+n恒成立,令m=1,则a1·a n=a1+n,即a n+1a n=a1对任意的n∈N*恒成立,所以数列{a n}为等比数列,公比为a1.由等比数列的性质有a3a5=a24,所以a3·a5+a4=a24+a4=72,又a 4>0,解得a 4=8,所以log 2a 1+log 2a 2+…+log 2a 7=log 2(a 1a 7)(a 2a 6)(a 3a 5)a 4=log 2a 74=log 287=21.(3)因为S 5>S 6>S 4,所以a 6<0,a 5>0且a 5+a 6>0,所以数列{S n }中的最大项为S 5,A 错误;数列{a n }的公差d <0,B 正确;S 10=(a 1+a 10)×102=5(a 5+a 6)>0,C正确;S 11=(a 1+a 11)×112=11a 6<0,D 正确.故选BCD.探究提高1.利用等差(比)性质求解的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.2.活用函数性质:数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.【训练2】(1)(2021·江南十校联考)已知等差数列{a n }的前n 项和为S n ,且S 8<S 10<S 9,则满足S n >0的正整数n 的最大值为()A.16B.17C.18D.19(2)(多选)(2021·八省八校一联)已知等比数列{a n }的首项a 1>1,公比为q ,前n 项和为S n ,前n 项积为T n ,函数f (x )=x (x +a 1)(x +a 2)…(x +a 7),若f ′(0)=1,则()A.{lg a n }为递增的等差数列B.0<q <1n D.使得T n >1成立的n 的最大值为6答案(1)C(2)BCD解析(1)由S 8<S 10<S 9,得a 10<0且a 9+a 10>0,所以等差数列{a n }的公差d <0,且a 9>0.从而S17=17(a1+a17)2=17a9>0,S18=18(a1+a18)2=9(a9+a10)>0,S19=19(a1+a19)2=19a10<0.故满足S n>0的正整数n的最大值为18.(2)令g(x)=(x+a1)(x+a2)…(x+a7),则f(x)=xg(x),∴f′(x)=g(x)+xg′(x),∴f′(0)=g(0)=a1a2…a7=1.∵{a n}是等比数列,∴a1a2…a7=a74=1,即a4=1=a1q3.又a1>1,∴0<q<1,B正确;∵lg a n=lg(a1q n-1)=lg a1+(n-1)lg q,又lg q<0,∴{lg a n}是公差为lg q的递减的等差数列,A错误;∵S n-a11-q=a11-q(1-q n-1)=a1qq-1·q n-1,n a1qq-1<0,公比为q的递增的等比数列,C正确;∵a1>1,0<q<1,a4=1,∴当n≤3时,a n>1,当n≥5时,0<a n<1,∴当n≤4时,T n>1.∵T7=a1a2…a7=a74=1,∴当n≥8时,T n=T7a8a9…a n<T7=1.又T5=T7a6a7>1,T6=T7a7>1,∴使得T n>1成立的n的最大值为6,D正确.故选BCD.热点三等差(比)数列的判断与证明【例3】(2021·广东重点中学联考)在数列{a n}中,a1=5,a n=2a n-1+2n-1(n≥2,n∈N*).(1)求a2,a3的值;(2)是否存在实数λ,求出λ的值;若不存在,请说理理由.解(1)因为a1=5,且a n=2a n-1+2n-1(n≥2),所以a2=2a1+22-1=13,a3=2a2+23-1=33.(2)假设存在实数λ.设b n=a n+λ2n,由{b n}为等差数列,得2b2=b1+b3,所以2×a2+λ22=a1+λ2+a3+λ23,即13+λ2=5+λ2+33+λ8,解得λ=-1.而当λ=-1时,有b n+1-b n=a n+1-12n+1-a n-12n=12n+1[(a n+1-2a n)+1]=12n+1[(2n+1-1)+1]=1,b1=a1-12=5-12=2,则{b n}是首项为2,公差为1的等差数列.所以存在实数λ=-12,公差是1的等差数列.探究提高 1.判定等差(比)数列的主要方法:(1)定义法:对于任意n≥1,n∈N*,验证a n+1-a n n无关的一常数;(2)中项公式法,一定注意,a2n=a n-1a n+1(n≥2,n∈N*)是{a n}为等比数列的必要不充分条件,也就是判断一个数列是等比数列时,要注意各项不为0.2.第(2)问,假设存在实数λ列,求得λ的值后,一定要验证数列{b n }是等差数列.【训练3】(2021·全国甲卷)已知数列{a n }的各项为正数,记S n 为{a n }的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n }是等差数列;②数列{S n }是等差数列;③a 2=3a 1.(注:如果选择多个条件分别解答,那么按第一个解答计分.)解①③⇒②.已知{a n }是等差数列,a 2=3a 1.设数列{a n }的公差为d ,则a 2=3a 1=a 1+d ,得d =2a 1,所以S n =na 1+n (n -1)2d =n 2a 1.因为数列{a n }的各项均为正数,所以S n =n a 1,所以S n +1-S n =(n +1)a 1-n a 1=a 1(常数),所以数列{S n }是等差数列.①②⇒③.已知{a n }是等差数列,{S n }是等差数列.设数列{a n }的公差为d ,则S n =na 1+n (n -1)2d =12n 2d 1.因为数列{S n }是等差数列,所以数列{S n }的通项公式是关于n 的一次函数,则a 1-d2=0,即d =2a 1,所以a 2=a 1+d =3a 1.②③⇒①.已知数列{S n }是等差数列,a 2=3a 1,所以S 1=a 1,S 2=a 1+a 2=4a 1.设数列{S n }的公差为d ,d >0,则S 2-S 1=4a 1-a 1=d ,得a 1=d 2,所以S n =S 1+(n -1)d =nd ,所以S n =n 2d 2,所以n≥2时,a n=S n-S n-1=n2d2-(n-1)2d2=2d2n-d2,对n=1也适合,所以a n=2d2n-d2,所以a n+1-a n=2d2(n+1)-d2-(2d2n-d2)=2d2(常数),所以数列{a n}是等差数列.热点四等差数列与等比数列的综合问题【例4】设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(1)求S n和T n;(2)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.解(1)设等比数列{b n}的公比为q(q>0).由b1=1,b3=b2+2,可得q2-q-2=0.因为q>0,可得q=2,故b n=2n-1.所以,T n=1-2n1-2=2n-1.设等差数列{a n}的公差为d.由b4=a3+a5,可得a1+3d=4.由b5=a4+2a6,可得3a1+13d=16,从而a1=1,d=1,故a n=n.所以,S n=n(n+1)2.(2)由(1),有T1+T2+…+T n=(21+22+…+2n)-n=2×(1-2n)1-2-n=2n+1-n-2.由S n+(T1+T2+…+T n)=a n+4b n得n(n+1)2+2n+1-n-2=n+2n+1,整理得n2-3n-4=0,解得n=-1(舍)或n=4.所以n的值为4.探究提高 1.等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.2.数列的通项或前n项和可以看作关于n的函数,然后利用函数的性质求解数列问题.【训练4】(2021·衡水中学联考)已知等差数列{a n}的前n项和为S n,且S4=S5=-20.(1)求数列{a n}的通项公式;(2)已知数列{b n}是以4为首项,4为公比的等比数列,若数列{a n}与{b n}的公共项为a m,记m由小到大构成数列{c n},求{c n}的前n项和T n.解(1)设等差数列{a n}的公差为d,由S4=S5=-20,得4a1+6d=5a1+10d=-20,解得a1=-8,d=2,则a n=-8+2(n-1)=2n-10.(2)数列{b n}是以4为首项,4为公比的等比数列,∴b n=4·4n-1=4n(n∈N*).又依题意2m-10=4n,∴m=10+4n2=5+22n-1,则T n=5n+2(1-4n)1-4=5n+22n+1-23.一、选择题1.(2021·福州一诊)正项等差数列{a n}的前n项和为S n,已知a2+a8-a25+8=0,则S9=()A.35B.36C.45D.54答案B解析由等差数列的性质得a2+a8=2a5,∴a2+a8-a25+8=0,可化为a25-2a5-8=0.又a5>0,解得a5=4.∴S9=9(a1+a9)2=9a5=36.2.在等比数列{a n}中,a4=2,a5=5,则数列{lg a n}的前8项和S8为()A.4B.2C.3D.5答案B解析因为{a n}为等比数列,且a4=2,a5=5,所以a4a5=2·5=10.则数列{lg a n}的前8项和S8=lg a1+lg a2+…+lg a8=lg a1·a2·…·a8=lg(a1·a8)(a2·a7)(a3·a6)(a4·a5)=lg(10)4=4lg10=2.3.(2021·全国甲卷)等比数列{a n}的公比为q,前n项和为S n.设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案B解析当a1<0,q>1时,a n=a1q n-1<0,此时数列{S n}递减,所以甲不是乙的充分条件.当数列{S n}递增时,有S n+1-S n=a n+1=a1q n>0,若a1>0,则q n>0(n∈N*),即q>0;若a1<0,则q n<0(n∈N*),不存在,所以甲是乙的必要条件.综上,甲是乙的必要条件但不是充分条件.4.(2021·日照校际联考)对于数列{a n},若存在正整数k(k≥2),使得a k<a k-1,a k<a k +1,则称a k是数列{a n}的“谷值”,k是数列{a n}的“谷值点”.在数列{a n}中,若a n=|n+9n-8|,则数列{a n}的“谷值点”为()A.2B.7C.2,7D.2,3,7答案C解析因为a n=|n+9n-8|,所以a1=2,a2=32,a3=2,a4=74,a5=65,a6=12,a7=27,a8=9 8.当n≥7,n∈N*时,n+9n-8>0,所以a n=|n+9n-8|=n+9n-8,此时数列{a n}递增.又a2<a1,a2<a3,a7<a6,a7<a8,所以数列{a n}的“谷值点”为2,7.5.(多选)(2021·湖北重点中学调研)设等比数列{a n}的公比为q,前n项和为S n,前n项积为T n,并满足条件a1>1,a2021·a2022>1,(a2021-1)·(a2022-1)<0,则下列结论中正确的有()A.q>1B.S2022>S2021C.a2021·a2023<1D.T2021是数列{T n}中的最大项答案BCD解析由{a n}为等比数列,a1>1,a2021·a2022>1及(a2021-1)·(a2022-1)<0,2021>1,a2022<1a2021<1,2022>1(舍去).∴公比0<q=a2022a2021<1,则A错误;S2022=S2021+a2022>S2021,故B正确;由等比数列性质知a2021·a2023=a22022<1,所以C正确;因为a1>1,a2>1,…,a2021>1,0<a2022<1,0<a2023<1,…,所以(T n)max=T2021,D正确.故选BCD.6.已知数列{a n}满足a n+2+a n=2a n+1+1,且a1=1,a2=5,则a18=()A.69B.105C.204D.205答案D解析由a n+2+a n=2a n+1+1,得a n+2-a n+1=a n+1-a n+1,则(a n+2-a n+1)-(a n+1-a n)=1,∵a2-a1=5-1=4,∴数列{a n+1-a n}是以4为首项,1为公差的等差数列,a n+1-a n=4+1×(n-1)=n+3,则a1=1,a2-a1=4,a3-a2=5,…,a n-a n-1=n+2,各项相加,得a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=1+4+5+…+(n+2)=1+(n-1)·(4+n+2)2=(n-1)(n+6)2+1,∴a18=(18-1)×(18+6)2+1=205.二、填空题7.(2021·上海卷)已知等差数列{a n}的首项为3,公差为2,则a10=________.答案21解析由题意,得a10=3+(10-1)×2=21.8.已知S n 是数列{a n }的前n 项和,S n =2-2a n +1,若a 2=12,则S 5=________.答案3116解析由题意可知,S 1=2-2a 2=1,且S n =2-2(S n +1-S n ),整理可得,S n +1-2=12(S n -2),由于S 1-2=-1,所以{S n -2}是首项为-1,公比为12的等比数列,故S 5-2=(-1)=-116,∴S 5=3116.9.(2021·济南模拟)已知等比数列{a n }的前n 项的乘积为T n ,若T 2=T 9=512,则T 8=________.答案4096解析设等比数列{a n }的公比为q ,由T 2=T 9,得a 76=1,故a 6=1.∴a 1q 5=1.①又T 2=a 1a 2=a 21q =512,②由①②联立,得q 9=1512,则q =12.所以T 8=T 9a 9=T9a 6q 3=212=4096.三、解答题10.(2021·广州质检)已知{a n }是等差数列,{b n }是等比数列,且{b n }的前n 项和为S n ,2a 1=b 1=2,a 5=5(a 4-a 3),________.在①b 5=4(b 4-b 3),②b n +1=S n +2这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答.(1)求数列{a n }和{b n }的通项公式;(2)求数列{a n -b n }的前n 项和T n .(注:如果选择多个条件分别解答,那么按第一个解答计分.)解(1)若选条件①,b 5=4(b 4-b 3).设等差数列{a n}的公差为d,∵2a1=2,a5=5(a4-a3),∴a1+4d=5(a1+3d-a1-2d),∴a1=d=1.∴a n=1+(n-1)×1=n.设等比数列{b n}的公比为q.由b1=2,且b5=4(b4-b3),得b1q4=4(b1q3-b1q2).∴q2-4q+4=0,解得q=2.所以{b n}是首项为2,公比为2的等比数列.故b n=2×2n-1=2n(n∈N*).若选条件②,b n+1=S n+2.令n=1,得b2=S1+2=b1+2=4.∴公比q=b2b1=2.∴数列{b n}是首项为2,公比为2的等比数列.从而b n=2×2n-1=2n(n∈N*).(2)由(1)知a n-b n=n-2n,∴T n=(1+2+3+…+n)-(21+22+23+…+2n),∴T n=n(1+n)2-2(1-2n)1-2,∴T n=2-2n+1+n22+n2.11.(2021·新高考Ⅱ卷)记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(1)求数列{a n}的通项公式a n;(2)求使S n>a n成立的n的最小值.解(1)由等差数列的性质可得:S5=5a3,则a3=5a3,∴a3=0.设等差数列的公差为d,从而有a2a4=(a3-d)(a3+d)=-d2,S4=a1+a2+a3+a4=(a3-2d)+(a3-d)+a3+(a3+d)=-2d.∵a2a4=S4,∴-d2=-2d,由于公差不为零,故d=2,∴数列{a n}的通项公式为a n=a3+(n-3)d=2n-6.(2)由数列{a n}的通项公式可得:a1=2-6=-4,则S n=n×(-4)+n(n-1)2×2=n2-5n,则不等式S n>a n即n2-5n>2n-6,整理可得:(n-1)(n-6)>0,解得n<1或n>6,又n为正整数,故n的最小值为7.12.(多选)(2021·长沙联考)在“全面脱贫”行动中,贫困户小王2021年1月初向银行借了扶贫免息贷款10000元,用于自己开设的农产品土特产品加工厂的原材料进货,因产品质优价廉,上市后供不应求,据测算每月获得的利润是该月月初投入资金的20%,每月月底需缴纳房租600元和水电费400元,余款作为资金全部用于再进货,如此继续.设第n月月底小王手中有现款为a n,则(参考数据:1.211≈7.5,1.212≈9),()A.a1=12000B.a n+1=1.2a n-1000C.2021年小王的年利润约为40000元D.两年后,小王手中现款约达41万答案BCD解析每月获得的利润是该月月初投入资金的20%,每月月底需缴纳房租600元和水电费400元,∴a1=(1+20%)×10000-(600+400)=11000(元),故A错误;由题意a n+1=1.2a n-1000,故B正确;由a n+1=1.2a n-1000,得a n+1-5000=1.2(a n-5000),∴数列{a n-5000}是首项为6000,公比为1.2的等比数列,∴a12-5000=6000×1.211,即a12=6000×1.211+5000≈50000,则2021年小王的年利润约为50000-10000=40000(元),故C正确;两年后,即a24=5000+6000×1.223≈5000+6000×921.2=410000,即41万,故D正确,故选BCD.13.(2021·江南十校联考)已知等比数列{a n}的前n项和为S n,且a n+1+λ=3S n,a3=12,则实数λ的值为________.答案-3 4解析等比数列{a n}满足a n+1+λ=3S n,①则a n+λ=3S n-1(n≥2,n∈N*),②①-②得a n+1-a n=3S n-3S n-1,则a n+1=4a n,所以等比数列{a n}的公比为4,又由a3=12,则a1=a3q2=34.若a n+1+λ=3S n,则a1q n+λ=3×a1(1-q n)1-q恒成立,∴λ=-a1=-3 4 .14.已知等差数列{a n}的公差为-1,且a2+a7+a12=-6.(1)求数列{a n}的通项公式a n与其前n项和S n;(2)将数列{a n}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前3项,记{b n}的前n项和为T n,若存在m∈N*,使得对任意n∈N*,总有S n<T m +λ恒成立,求实数λ的取值范围.解(1)由a2+a7+a12=-6,得a7=-2,∴a1=4,∴a n=5-n,从而S n=n(9-n)2(n∈N*).(2)由题意知b1=4,b2=2,b3=1,设等比数列{b n}的公比为q,则q=b2b1=12,∴T n1-1281随n的增大而减小,∴{T n}为递增数列,得4≤T n<8.又S n=n(9-n)2=--814,又n∈N*,故(S n)max=S4=S5=10.若存在m∈N*,使得对任意n∈N*,总有S n<T m+λ,则10<8+λ,得λ>2.故实数λ的取值范围为(2,+∞).。
高考数学大二轮复习第二部分专题2数列第1讲等差数列与等比数列课件理

答案:B
[题后悟通] 等差、等比数列性质问题的求解策略
抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰 抓关系
当的性质进行求解 数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等, 用性质 可利用函数的性质解题
第1讲 等差数列与等比数列
等差、等比数列的基本运算
考情调研
考向分析
以考查等差、等比数列的通项、前 n 项和
的运算为主,在高考中既可以以选择、填 1.等差(比)数列中 a1、n、d(q)、an、Sn 量的 空的形式进行考查,也可以以解答题的形 计算.
式进行考查.解答题往往与等差(比)数列、 2.等差、等比数列的交汇运算.
[题后悟通] 数列{an}是等差数列或等比数列的证明方法 (1)证明数列{an}是等差数列的两种基本方法 ①利用定义,证明 an+1-an(n∈N*)为一常数. ②利用等差中项,即证明 2an=an-1+an+1(n≥2). (2)证明{an}是等比数列的两种基本方法 ①利用定义,证明aan+n 1(n∈N*)为一常数. ②利用等比中项,即证明 a2n=an-1an+1(n≥2).
D. 2
解析:由题意,正项等比数列{an}中,a1a5+2a3a7+a5a9=16,可得 a23+2a3a7+a27= (a3+a7)2=16,即 a3+a7=4, a5 与 a9 的等差中项为 4,即 a5+a9=8, 设公比为 q,则 q2(a3+a7)=4q2=8, 则 q= 2(负的舍去),故选 D.
等差、等比数列的性质
考情调研
考向分析
以考查等差、等比数列的性质为主,在高考中既可以以
选择题、填空题的形式进行考查,也可以以解答题的形 1.等差、等比数列项的性质. 式进行考查.解答题往往与等差(比)数列、数列求和、 2.等差、等比数列和的性质. 不等式等问题综合考查.
新课标高考数学二轮复习专题二数列第1讲等差数列与等比数列课件文新人教A版

证明数列{an}是等差数列或等比数列的方法 (1)判断一个数列是等差(等比)数列,还有通项公式法及前 n 项和公式法,但不作为 证明方法. (2)若要判断一个数列不是等差(等比)数列,只需判断存在连续三项不成等差(等比) 数列即可. (3)a2n=an-1an+1(n≥2,n∈N*)是{an}为等比数列的必要不充分条件,也就是判断一个 数列是等比数列时,要注意各项不为 0.
等差、等比数列的判定与证明(综合型) [知识整合]
证明数列{an}是等差数列的两种基本方法 (1)利用定义,证明 an+1-an(n∈N*)为一常数. (2)利用等差中项,即证明 2an=an-1+an+1(n≥2 且 an≠0).
证明数列{an}是等比数列的两种基本方法 (1)利用定义,证明aan+n 1(n∈N*)为一非零常数. (2)利用等比中项,即证明 a2n=an-1an+1(n≥2 且 an≠0).
[知识整合] 等差数列的通项公式及前 n 项和公式 an=a1+(n-1)d;Sn=n(a12+an)=na1+n(n2-1)d(n∈N*). 等比数列的通项公式及前 n 项和公式 an=a1qn-1(q≠0);Sn=a1(11--qqn)=a11--aqnq(q≠1)(n∈N*).
[典型例题] (2019·高考全国卷Ⅰ)记 Sn 为等差数列{an}的前 n 项和.已知 S9=-a5. (1)若 a3=4,求{an}的通项公式; (2)若 a1>0,求使得 Sn≥an 的 n 的取值范围.
【解】 (1)设{an}的公差为 d. 由 S9=-a5 得 a1+4d=0. 由 a3=4 得 a1+2d=4. 于是 a1=8,d=-2. 因此{an}的通项公式为 an=10-2n. (2)由(1)得 a1=-4d,故 an=(n-5)d,Sn=n(n-2 9)d. 由 a1>0 知 d<0,故 Sn≥an 等价于 n2-11n+10≤0,解得 1≤n≤10. 所以 n 的取值范围是{n|1≤n≤10,n∈N}.
2020版高三数学二轮复习(全国理)讲义:专题四 第一讲等差数列、等比数列

(2)求Sn.并求Sn的最小值.
[解析](1)设等差数列{an}的公差为d.由题意得3a1+3d=-15.
由a1=-7得d=2.
所以{an}的通项公式为an=2n-9.
(2)由(1)得Sn=n2-8n=(n-4)2-16.
所以当n=4时.Sn取得最小值.最小值为-16.
例1 (1)已知等比数列{an}的前n项和为Sn.a1+a3=30.S4=120.设bn=1+log3an.那么数列{bn}的前15项和为( B )
6.(20xx·全国卷Ⅰ.14)记Sn为数列 的前n项和.若Sn=2an+1.则S6=-63..
[解析]依题意. 作差得an+1=2an.
所以数列{an}是公比为2的等比数列.
又因为a1=S1=2a1+1.
所以a1=-1.所以an=-2n-1.
所以S6= =-63.
7.(20xx·全国卷Ⅱ.16)记Sn为等差数列{an}的前n项和.已知a1=-7.S3=-15.
A.1B.2
C.4D.8
[解析]设{an}的公差为d.则由
得
解得d=4.
故选C.
4.(20xx·全国卷Ⅲ.9)等差数列{an}的首项为1.公差不为0.若a2.a3.a6成等比数列.则{an}的前6项和为( A )
A.-24B.-3
C.3D.8
[解析]由已知条件可得a1=1.d≠0.
由a =a2a6可得(1+2d)2=(1+d)(1+5d).
(3)注意整体思想.如在与等比数列前n项和有关的计算中.两式相除就是常用的计算方法.整体运算可以有效简化运算.
G
1.(20xx·邵阳模拟)等比数列{an}的前n项和为Sn.已知a2a3=2a1.且a4与2a7的等差中项为 .则S5=( B )
2019高考数学一本策略复习专题三数列第一讲等差数列、等比数列课件文

[全练——快速解答 ]
3.(2018·天津模拟)已知等比数列 {an}的前 n 项和为 Sn,且 8a2a4= a3a6,则Sa43=___78_____.
由 8a2a4 = a3a6 可 得 8a23=a3a6,故 a6=8a3, 设公比为 q,则 q3=8,
q
=
2
,
故
S3 a4
=
a11+a1qq3+q2=78.
2×2-1 2
×d
+
4a1
+
4×24-1×d,将 a1=2 代
入上式,解得 d=-3,
故 a5 = a1 + (5 - 1)d= 2 + 4×(-3)=-10.
故选 B.
[全练——快速解答 ]
2.(2017·高考全国卷Ⅲ)等差数列
{an}的首项为 1,公差不为 0.若 a2,
a3,a6 成等比数列,则{an}前 6 项
专题三 数列 第一讲 等差数列、等比数列
C目录 ONTENTS
考点一 考点二 考点三 4 课后训练 提升能力
年份 2018
卷别 Ⅰ卷
Ⅲ卷
考查角度 及命题位 置 等比数列 的判定及 通项求 法·T17
等比数列 的基本运 算及应 用·T17
命题分析及学科素养
命题分析 (1)高考主要考查两种基本数列(等差数列、等比数 列)、两种数列求和方法(裂项求和法、错位相减 法)、两类综合(与函数综合、与不等式综合),主 要突出数学思想的应用. (2)若以解答题形式考查,数列往往与解三角形在 17 题的位置上交替考查,试题难度中等;若以客 观题考查,难度中等的题目较多,但有时也出现 在第 12 题或 16 题位置上,难度偏大,复习时应 引起关注. 学科素养 主要是通过等差数列、等比数列的判定与证明及 基本运算考查逻辑推理与数学运算两大核心素养.
第一讲等差等比数列

第一讲 等差数列、等比数列一、等差数列1.定义:a n +1-a n =d (常数)(n ∈N *).2.通项公式:a n =a 1+(n -1)d ,a n =a m +(n -m )d .3.前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 4.a 、b 的等差中项A =a +b2证明{a n }为等差数列的方法:(1)用定义证明:a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列; (2)用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; (3)通项法:a n 为n 的一次函数⇔{a n }为等差数列;(4)前n 项和法:S n =An 2+Bn 或S n =n (a 1+a n )2.二、等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和.(1)若m 、n 、p 、q 、k 是正整数,且m +n =p +q =2k ,则a m +a n =a p +a q =2a k .(2)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为kd . (3)数列S m ,S 2m -S m ,S 3m -S 2m ,…,也是等差数列.等差数列的性质推广:(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1) ②S 2n -1=(2n -1)a n .③n 为偶数时,S 偶-S 奇=n2d ;n 为奇数时,S 奇-S 偶=a 中.等差数列的单调性单调递增d >0 当01<a 时,n S 有最小值 单调递减 d<0 当01>a 时,n S 有最大值常数数列d=0三、等比数列证明{a n }是等比数列的两种常用方法(1)定义法:若a na n -1=q (q 为非零常数且n ≥2且n ∈N *),则{a n }是等比数列.(2)中项公式法:在数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. 四、等比数列的性质1.对任意的正整数m 、n 、p 、q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k . 2.通项公式的推广:a n =a m q n -m (m ,n ∈N *)3.公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n仍成等比数列,其公比为q n ;当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.4.若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍是等比数列. 等比数列的单调性单调递增 a 1>0,q >1或者a 1<0,0<q <1 单调递减 a 1>0,0<q <1或者a 1<0,q >1常数数列 a 1≠0,q =1摆动数列 q <0基础自测1.(2013·课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是 a n =________.2.(2013·广东高考)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________.3.[2014·江苏卷] 在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.考点一 等差、等比数列的基本运算例1、[2014·重庆卷] 在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8 C .10 D .1 2、(2013新课标全国Ⅱ)等比数列{a n }的前n 项和为S n .已知S 3 = a 2 +10a 1 ,a 5=9,则a 1=( )A.13 B .-13 C.19 D .-19跟踪练习1.(2013安徽)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( )A .-6B .-4C .-2D .22.[2014·福建卷] 在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .考点二等差、等比数列的性质例 1.(2012·辽宁高考)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58B.88C.143D.1762.[2014·广东卷] 等比数列{a n}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=________.变式练习1、设等差数列{a n}的前n项和为S n,已知前6项和为36,最后6项的和为180,S n=324(n>6),求数列{a n}的项数及a9+a10.2、[2014·全国卷] 设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31 B.32 C.63 D.64考点三等差、等比数列的判断与证明要证明一个数列是等差(比)数列必须用定义法或等差(比)中项法.例1、[2014·全国卷] 数列{a n}满足a1=1,a2=2,a n+2=2a n+1-a n+2.(1)设b n=a n+1-a n,证明{b n}是等差数列;(2)求{a n}的通项公式.2、数列{a n }的前n 项和为S n ,若a n +S n =n ,c n =a n -1,求证:数列{c n }是等比数列,并求{a n }的通项公式.跟踪练习1、已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.①求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列;②求数列{a n }的通项公式.。
第1讲 等差数列与等比数列
所以 q=- 1 ,所以 S4=S3+a4= 3 - 1 = 5 .
2
4 88
答案: 5 8
4.(2019·全国Ⅰ卷)记
Sn
为等比数列{an}的前
n
项和.若
a1=
1 3
,
a42
=a6,则
S5=
.
解析:设等比数列{an}的公比为 q,由 a42 =a6 可得 a12 q6=a1q5,解得 a1q=1,
则 S9= 9a1 a9 = 9 4 =18.故选 A.
2
2
(2)(2019·南昌期中)已知 Sn 为等差数列{an}的前 n 项和,若 a2019 >-1 且 Sn 有最小 a2020
方法技巧
解等差数列、等比数列基本运算问题的基本思想是方程思想,即通过等差数列、 等比数列的通项公式及前n项和公式得出基本量(等差数列的首项和公差、等 比数列的首项和公比),然后再通过相关公式求得结果.
热点训练1:(1)(2019·湖南省长望浏宁四县高三3月调研)中国古代词中,有一 道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多 十七,要将第八数来言”.题意是:把996斤绵分给8个儿子做盘缠,按照年龄从 大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的 绵是( ) (A)174斤 (B)184斤 (C)191斤 (D)201斤
(1)证明:由题设得 4(an+1+bn+1)=2(an+bn),则 an+1+bn+1= 1 (an+bn). 2
又因为 a1+b1=1,所以{an+bn}是首项为 1,公比为 1 的等比数列. 2
专题4 第1讲 等差数列与等比数列
第1讲 等差数列与等比数列「考情研析」 1.从具体内容上,主要考查等差数列、等比数列的基本计算和基本性质及等差、等比数列中项的性质、判定与证明. 2.从高考特点上,难度以中、低档题为主,一般设置一道选择题和一道解答题.核心知识回顾1.等差数列(1)01a n =a 1+(n -1)d =a m +(n -m )d . (2)022a n =a n -1+a n +1(n ∈N *,n ≥2). (3)前n 03S n =n (a 1+a n )2=na 1+n (n -1)d2.2.等比数列(1)01a n =a 1q n -1=a m q n -m .(2)02a 2n =a n -1·a n +1(n ∈N *,n ≥2).(3)等比数列的前n 项和公式:03S n =⎩⎨⎧na 1(q =1),a 1-a n q 1-q =a 1(1-q n )1-q (q ≠1).3.等差数列的性质(n ,m ,l ,k ,p 均为正整数)(1)若m +n =l +k ,01a m +a n =a l +a k (反之不一定成立);特别地,当m +n =2p 02a m +a n =2a p .(2)若{a n },{b n }是等差数列,则{ka n +tb n }(k ,t 是非零常数)(3)等差数列“依次m 项的和”即S m …仍是等差数列.(4)等差数列{a n },当项数为2n 时,S 偶-S 奇,S 奇S 偶=a n +12n -1时,S 奇-S 偶,S 奇S 偶=n -1其中S 偶表示所有的偶数项之和,S 奇表示所有的奇数项之和)4.等比数列的性质(n ,m ,l ,k ,p 均为正整数)(1)若m +n =l +k 反之不一定成立);特别地,当m +n =2p(2)当n 为偶数时,S 偶S 奇=公比为q ).(其中S 偶表示所有的偶数项之和,S奇表示所有的奇数项之和)(3)等比数列“依次m 项的和”,即S m …(S m ≠0)成等比数列.热点考向探究考向1 等差数列、等比数列的运算例1 (1)(2020·山东省青岛市模拟)已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,S n 是{a n }的前n 项和,则S 9等于( )A .-8B .-6C .10D .0答案 D解析 ∵a 1,a 3,a 4成等比数列,∴a 23=a 1a 4,∴(a 1+2×2)2=a 1·(a 1+3×2),即2a 1=-16,解得a 1=-8.则S 9=-8×9+9×82×2=0,故选D.(2)(2020·山东省泰安市肥城一中模拟)公比不为1的等比数列{a n }的前n 项和为S n ,若a 1,a 3,a 2成等差数列,mS 2,S 3,S 4成等比数列,则m =( )A.78 B .85 C .1 D .95答案 D解析 设{a n }的公比为q (q ≠0且q ≠1), 根据a 1,a 3,a 2成等差数列, 得2a 3=a 1`+a 2,即2a 1q 2=a 1+a 1q ,因为a 1≠0,所以2q 2-1-q =0,即(q -1)(2q +1)=0. 因为q ≠1,所以q =-12, 则S 2=a 1(1-q 2)1-q =34·a 11-q ,S 3=a 1(1-q 3)1-q =98·a 11-q ,S 4=a 1(1-q 4)1-q =1516·a 11-q,因为mS 2,S 3,S 4成等比数列,所以S 23=mS 2·S 4, 即⎝ ⎛⎭⎪⎫98·a 11-q 2=m ·34·a 11-q ·1516·a 11-q ,因为a 1≠0,所以a 11-q ≠0,所以⎝ ⎛⎭⎪⎫982=m ×34×1516, 得m =95,故选D.利用等差数列、等比数列的通项公式、前n 项和公式,能够在已知三个元素的前提下求解另外两个元素,其中等差数列的首项和公差、等比数列的首项和公比为最基本的量,解题中首先要注意求解最基本的量.1.(多选)(2020·山东省青岛市模拟)已知等差数列{a n }的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( )A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20 答案 BCD解析 等差数列{a n }的前n 项和为S n ,公差d ≠0, 由S 6=90,可得6a 1+15d =90,即2a 1+5d =30, ①由a 7是a 3与a 9的等比中项,可得a 27=a 3a 9,即(a 1+6d )2=(a 1+2d )(a 1+8d ),化为a 1+10d =0, ② 由①②解得a 1=20,d =-2,则a n =20-2(n -1)=22-2n ,S n =12n (20+22-2n )=21n -n 2, 由S n =-⎝ ⎛⎭⎪⎫n -2122+4414,可得n =10或n =11时,S n 取得最大值110.由S n >0,可得0<n <21,即n 的最大值为20.故选BCD. 2.定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n =d (n ∈N *,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2022a 2020=( )A .4×20202-1B .4×20192-1C .4×20222-1D .4×20192答案 A解析 ∵a 1=a 2=1,a 3=3,∴a 3a 2-a 2a 1=2,∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +1a n 是以1为首项,2为公差的等差数列,∴a n +1a n=2n -1,∴a 2022a 2020=a 2022a 2021·a 2021a2020=(2×2021-1)×(2×2020-1)=4×20202-1.故选A.考向2 等差数列、等比数列的判定与证明例2 (1)设数列{a n }满足a 1=1,a n +1=44-a n (n ∈N *).求证:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -2是等差数列.证明 ∵a n +1=44-a n ,∴1a n +1-2-1a n -2=144-a n -2-1a n -2=4-a n 2a n -4-1a n -2=2-a n 2a n -4=-12为常数,又a 1=1, ∴1a 1-2=-1,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -2是以-1为首项,-12为公差的等差数列.(2)数列{a n }的前n 项和为S n ,且满足S n +a n =n -1n (n +1)+1,n =1,2,3,…,设b n =a n +1n (n +1),求证:数列{b n }是等比数列.证明 S n =1-a n +n -1n (n +1),∴S n +1=1-a n +1+n(n +1)(n +2),当n =1时,易知a 1=12,∴a n +1=S n +1-S n =n(n +1)(n +2)-a n +1-n -1n (n +1)+a n ,∴2a n +1=n +2-2(n +1)(n +2)-n -1n (n +1)+a n =1n +1-2(n +1)(n +2)-1n +1+1n (n +1)+a n ,∴2⎣⎢⎡⎦⎥⎤a n +1+1(n +1)(n +2)=a n +1n (n +1),b n =a n +1n (n +1),则b n +1=a n +1+1(n +1)(n +2),上式可化为2b n +1=b n ,∴数列{b n }是以b 1=1为首项,12为公比的等比数列,b n =⎝ ⎛⎭⎪⎫12n -1.(1)判断或者证明数列为等差数列、等比数列最基本的方法是用定义判断或证明,其他方法最后都会回到定义,如证明等差数列可以证明通项公式是n的一次函数,但最后还得使用定义才能说明其为等差数列.(2)证明数列{a n}为等比数列时,不能仅仅证明a n+1=qa n,还要说明a1≠0,才能递推得出数列中的各项均不为零,最后断定数列{a n}为等比数列.(3)证明等差、等比数列,还可利用等差、等比数列的中项公式.1.(多选)(2020·日照一中摸底考试)已知数列{a n}满足:a1=3,当n≥2时,a n=( a n-1+1+1)2-1,则关于数列{a n},下列说法正确的是()A.a2=8 B.数列{a n}为递增数列C.数列{a n}为周期数列D.a n=n2+2n答案ABD解析由a n=(a n-1+1+1)2-1得a n+1=(a n-1+1+1)2,∴a n+1=a n-1+1+1,即数列{a n+1}是首项为a1+1=2,公差为1的等差数列,∴a n+1=2+(n-1)×1=n+1.∴a n=n2+2n.所以易知A,B,D正确.2.已知正项数列{a n}满足a2n+1-6a2n=a n+1a n,若a1=2,则数列{a n}的前n 项和为________.答案3n-1解析∵a2n+1-6a2n=a n+1a n,∴(a n+1-3a n)(a n+1+2a n)=0,∵a n>0,∴a n+1=3a n,∴{a n}为等比数列,且首项为2,公比为3,∴S n=3n-1.考向3数列中a n与S n的关系问题例3(1)(2020·河南省高三阶段性测试)设正项数列{a n}的前n项和为S n,且4S n=(1+a n)2(n∈N*),则a5+a6+a7+a8=()A.24 B.48C.64 D.72答案 B解析 当n =1时,由S 1=a 1=(1+a 1)24,得a 1=1,当n ≥2时,⎩⎨⎧4S n =(1+a n )2,4S n -1=(1+a n -1)2,得4a n =(1+a n )2-(1+a n -1)2,∴a 2n -a 2n -1-2a n -2a n -1=0,(a n +a n -1)(a n -a n -1-2)=0.∵a n >0,∴a n -a n -1=2,∴{a n }是等差数列,∴a n =2n -1,∴a 5+a 6+a 7+a 8=2(a 6+a 7)=48.(2)(2020·山东省德州市二模)给出以下三个条件: ①数列{a n }是首项为 2,满足S n +1=4S n +2的数列; ②数列{a n }是首项为2,满足3S n =22n +1+λ(λ∈R )的数列; ③数列{a n }是首项为2,满足3S n =a n +1-2的数列. 请从这三个条件中任选一个将下面的题目补充完整,并求解. 设数列{a n }的前n 项和为S n ,a n 与S n 满足________.记数列b n =log 2a 1+log 2a 2+…+log 2a n ,c n =n 2+n b n b n +1,求数列{c n }的前n 项和T n .解 选①,由已知S n +1=4S n +2, (*) 当n ≥2时,S n =4S n -1+2, (**) (*)-(**),得a n +1=4(S n -S n -1)=4a n , 即a n +1=4a n .当n =1时,S 2=4S 1+2,即2+a 2=4×2+2,所以a 2=8,满足a 2=4a 1, 故{a n }是以2为首项,4为公比的等比数列, 所以a n =22n -1.b n =log 2a 1+log 2a 2+…+log 2a n =1+3+…+(2n -1)=n 2,c n =n 2+n b n b n +1=n (n +1)n 2(n +1)2=1n (n +1)=1n -1n +1.所以T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.选②,由已知3S n =22n +1+λ, (*) 当n ≥2时,3S n -1=22n -1+λ, (**) (*)-(**),得3a n =22n +1-22n -1=3·22n -1, 即a n =22n -1.当n =1时,a 1=2满足a n =22n -1,所以a n =22n -1, 下同选①.选③,由已知3S n =a n +1-2, (*) 则n ≥2时,3S n -1=a n -2, (**) (*)-(**),得3a n =a n +1-a n ,即a n +1=4a n .当n =1时,3a 1=a 2-2,而a 1=2,得a 2=8,满足a 2=4a 1, 故{a n }是以2为首项,4为公比的等比数列, 所以a n =22n -1, 下同选①.由a n 与S n 的关系求通项公式的注意点(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1成立的前提是n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一表示(“合写”). (3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎨⎧S 1(n =1),S n-S n -1(n ≥2).已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S 2n2S n -1(n ≥2,n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)证明:13S 1+15S 2+17S 3+…+12n +1S n <12.证明 (1)当n ≥2时,S n -S n -1=2S 2n2S n -1,S n -1-S n =2S n ·S n -1,1S n -1S n -1=2,所以数列⎩⎨⎧⎭⎬⎫1S n 是以1为首项,2为公差的等差数列.(2)由(1)可知,1S n =1S 1+(n -1)·2=2n -1,所以S n =12n -1.13S 1+15S 2+17S 3+…+12n +1S n =11×3+13×5+15×7+…+1(2n -1)(2n +1) =12×⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1=12×⎝ ⎛⎭⎪⎫1-12n +1<12.真题押题『真题检验』1.(2020·全国卷Ⅰ)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=( )A .12B .24C .30D .32答案 D解析 设等比数列{a n }的公比为q ,则a 1+a 2+a 3=a 1(1+q +q 2)=1,a 2+a 3+a 4=a 1q +a 1q 2+a 1q 3=a 1q (1+q +q 2)=q =2,因此,a 6+a 7+a 8=a 1q 5+a 1q 6+a 1q 7=a 1q 5(1+q +q 2)=q 5=32.故选D.2.(2020·全国卷Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S na n=( )A .2n -1B .2-21-nC .2-2n -1D .21-n -1答案 B解析 设等比数列{a n }的公比为q ,由a 5-a 3=12,a 6-a 4=24可得⎩⎨⎧ a 1q 4-a 1q 2=12,a 1q 5-a 1q 3=24,解得⎩⎨⎧q =2,a 1=1,所以a n =a 1q n -1=2n -1,S n =a 1(1-q n )1-q =1-2n1-2=2n -1.因此S na n =2n-12n -1=2-21-n .故选B.3.(2020·新高考卷Ⅰ)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.答案 3n 2-2n解析 因为数列{2n -1}是以1为首项,以2为公差的等差数列,数列{3n -2}是以1为首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{a n }是以1为首项,以6为公差的等差数列,所以{a n }的前n 项和为n ·1+n (n -1)2·6=3n 2-2n . 4.(2020·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=________.答案 25解析 设等差数列{a n }的公差为d ,由a 1=-2,a 2+a 6=2,可得a 1+d +a 1+5d =2,即-2+d +(-2)+5d =2,解得d =1.所以S 10=10×(-2)+10×(10-1)2×1=-20+45=25.5.(2020·江苏高考)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是________.答案 4解析 等差数列{a n }的前n 项和公式为P n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,等比数列{b n }的前n 项和公式为Q n =b 1(1-q n )1-q =-b 11-q q n +b 11-q ,依题意S n =P n+Q n ,即n 2-n +2n -1=d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n -b 11-q q n +b 11-q,通过对比系数可知⎩⎪⎨⎪⎧d2=1,a 1-d 2=-1,q =2,b11-q =-1,得⎩⎪⎨⎪⎧d =2,a 1=0,q =2,b 1=1,故d +q =4.6.(2020·新高考卷Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100.解 (1)设等比数列{a n }的首项为a 1,公比为q , 依题意有⎩⎨⎧a 1q +a 1q 3=20,a 1q 2=8,解得a 1=2,q =2或a 1=32,q =12(舍去), 所以a n =2n ,所以数列{a n }的通项公式为a n =2n . (2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128, b 1对应的区间为(0,1],则b 1=0;b 2,b 3对应的区间分别为(0,2],(0,3],则b 2=b 3=1,即有2个1; b 4,b 5,b 6,b 7对应的区间分别为(0,4],(0,5],(0,6],(0,7], 则b 4=b 5=b 6=b 7=2,即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15], 则b 8=b 9=…=b 15=3,即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31], 则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63], 则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100], 则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480. 7.(2020·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m . 解 (1)设等比数列{a n }的公比为q ,根据题意,有 ⎩⎨⎧ a 1+a 1q =4,a 1q 2-a 1=8,解得⎩⎨⎧a 1=1,q =3, 所以a n =3n -1.(2)令b n =log 3a n =log 33n -1=n -1, 则S n =n (0+n -1)2=n (n -1)2,根据S m +S m +1=S m +3,可得 m (m -1)2+m (m +1)2=(m +2)(m +3)2, 整理得m 2-5m -6=0,因为m >0,所以m =6.『金版押题』8.已知数列{a n }满足na n -28a n +1=n -1(n ∈N *),a 1+a 2+a 3=75,记S n =a 1a 2a 3+a 2a 3a 4+a 3a 4a 5+…+a n a n +1·a n +2,则a 2=________,使得S n 取得最大值的n 的值为________.答案 25 10解析 由na n -28a n +1=n -1(n ∈N *),可取n =1,即a 1-28=0,可得a 1=28,取n =2,可得2a 2-28a 3=1,即a 3=2a 2-28,又a 1+a 2+a 3=75,可得a 2=25,a 3=22,当n ≥2时,由na n -28a n +1=n -1可得a n +1n -a nn -1=-28n (n -1),可令c n =a n +1n ,则c n -1=a nn -1(n ≥2),c n -c n -1=28⎝ ⎛⎭⎪⎫1n -1n -1(n ≥2), 由c n =c 1+(c 2-c 1)+…+(c n -c n -1)=c 1+28⎝ ⎛⎭⎪⎫12-1+13-12+…+1n -1n -1, 可得c n =c 1+28⎝ ⎛⎭⎪⎫1n -1=a 2+28⎝ ⎛⎭⎪⎫1n -1,则a n +1=nc n =na 2+28(1-n )=28+n (a 2-28), 故a n +1=28-3n (n ≥2),所以a n =31-3n (n ≥3), 又a 1=28,a 2=25,也符合上式,所以a n =31-3n . 令b n =a n a n +1a n +2=(31-3n )(28-3n )(25-3n ), 由b n ≥0,可得(31-3n )(28-3n )(25-3n )≥0, 解得1≤n ≤8(n ∈N *)或n =10,又b 9=-8,b 10=10,所以n =10时,S n 取得最大值.9.记数列{a n }的前n 项和为S n ,已知2a n +1+n =4S n +2p ,a 3=7a 1=7. (1)求p ,S 4的值;(2)若b n =a n +1-a n ,求证:数列{b n }是等比数列. 解 (1)由a 3=7a 1=7知,a 3=7,a 1=1.当n =1时,由2a n +1+n =4S n +2p ,得a 2=32+p ,当n =2时,由2a n +1+n =4S n +2p ,得a 3=4+3p =7,所以p =1, 当n =3时,由2a n +1+n =4S n +2p ,得2a 4+3=4S 3+2,解得a 4=412.所以S 4=1+52+7+412=31.(2)证明:由(1)可得a n +1=2S n -12n +1, 则a n +2=2S n +1-12(n +1)+1. 两式作差得a n +2-a n +1=2a n +1-12, 即a n +2=3a n +1-12(n ∈N *). 由(1)得a 2=52,所以a 2=3a 1-12, 所以a n +1=3a n -12对n ∈N *恒成立, 由上式变形可得a n +1-14=3⎝ ⎛⎭⎪⎫a n -14.而a 1-14=34≠0,所以⎩⎨⎧⎭⎬⎫a n -14是首项为34,公比为3的等比数列,所以a n -14=34×3n -1=3n4,所以b n =a n +1-a n =a n +1-14-⎝ ⎛⎭⎪⎫a n -14=3n +14-3n 4=3n 2,所以b n +1=3n +12,b n +1b n=3.又b 1=32,所以数列{b n }是首项为32,公比为3的等比数列.专题作业一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2020·山东德州高三下学期联考)在等比数列{a n }中,a 1=1,a 5+a 7a 2+a 4=8,则a 6的值为( )A .4B .8C .16D .32答案 D解析 设等比数列{a n }的公比为q ,∵a 1=1,a 5+a 7a 2+a 4=8,∴a 1(q 4+q 6)a 1(q +q 3)=8,解得q =2,则a 6=25=32.故选D. 2.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n答案 A解析 设等差数列{a n }的首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎨⎧ a 1+4d =5,4a 1+6d =0,解得⎩⎨⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .故选A. 3.等差数列{a n }的公差为d ,若a 1+1,a 2+1,a 4+1成以d 为公比的等比数列,则d =( )A .2B .3C .4D .5答案 A解析 将a 1+1,a 2+1,a 4+1转化为a 1,d 的形式为a 1+1,a 1+1+d ,a 1+1+3d ,由于这三个数成以d 为公比的等比数列,故a 1+1+d a 1+1=a 1+1+3da 1+1+d =d ,化简得a 1+1=d ,代入a 1+1+d a 1+1=d ,得2dd =2=d ,故选A.4.(2020·河北省张家口市二模)已知正项等比数列{a n }的公比为q ,若a 1=q≠1,且a m=a1a2a3…a10,则m=()A.19 B.45C.55 D.100答案 C解析∵正项等比数列{a n}的公比为q,a1=q≠1,∴a n=q.q n-1=q n,∵a m=a1a2a3...a10,∴q m=q.q2.q3.....q10=q1+2+3+ (10)q55.∴m=55.故选C.5.(2020·河北省保定市一模)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有五人五钱,令上二人所得与下三人等,问各得几何?”其意思是:“现有甲、乙、丙、丁、戊,五人依次差值等额分五钱,要使甲、乙两人所得的钱数与丙、丁、戊三人所得的钱数相等,问每人各得多少钱?”请问上面的问题里,五人中所得的最少钱数为()A.76钱B.56钱C.13钱D.23钱答案 D解析依题意设甲、乙、丙、丁、戊所得钱数分别为a-2d,a-d,a,a+d,a+2d,又有a-2d+a-d=a+a+d+a+2d,得a=-6d,∵a-2d+a-d+a+a+d+a+2d=5a=5,∴a=1,则d=-16,∴a+2d=23.故选D.6.(2020·广州模拟)正项等比数列{a n}满足a2a4=1,S3=13,则其公比是()A.1 B.1 2C.13D.14答案 C解析设{a n}的公比为q,因为a2a4=1,且a2a4=a23,所以a23=1,易知q>0,所以a3=1.由S3=1+1q +1q2=13,得13q2=1+q+q2,即12q2-q-1=0,解得q=13.故选C.7.已知S n 为等比数列{a n }的前n 项和,若S 3,S 9,S 6成等差数列,则( ) A .S 6=-2S 3 B .S 6=-12S 3 C .S 6=12S 3 D .S 6=2S 3答案 C解析 设等比数列{a n }的公比为q (q ≠1),则S 6=(1+q 3)S 3,S 9=(1+q 3+q 6)S 3,因为S 3,S 9,S 6成等差数列,所以2(1+q 3+q 6)S 3=S 3+(1+q 3)S 3,易知S 3≠0,解得q 3=-12,故S 6=12S 3.8.已知函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),则{a n }的前21项和为( )A .0B .252 C .21 D .42 答案 C解析 函数y =f (x +1)的图象关于y 轴对称,平移可得y =f (x )的图象关于直线x =1对称,且函数f (x )在(1,+∞)上单调,由数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),可得a 4+a 18=2,所以a 1+a 21=a 4+a 18=2,可得数列{a n }的前21项和S 21=21(a 1+a 21)2=21.故选C.二、选择题:在每小题给出的选项中,有多项符合题目要求.9.已知无穷数列{a n }的前n 项和S n =an 2+bn +c ,其中a ,b ,c 为实数,则( )A .{a n }可能为等差数列B .{a n }可能为等比数列C .{a n }中一定存在连续的三项构成等差数列D .{a n }中一定存在连续的三项构成等比数列 答案 ABC解析解法一:因为S n=an2+bn+c,所以S n-1=a(n-1)2+b(n-1)+c(n≥2),所以a n=S n-S n-1=2na-a+b(n≥2),若数列{a n}为等差数列,则a1=a+b+c=a+b,c=0,验证知,当c=0时,{a n}为等差数列,所以A正确;在a n=2na-a +b(n≥2)中,当a=0,b≠0时,a n=b(n≥2),若数列{a n}为等比数列,则a1=b +c=b,c=0,验证知,当a=c=0,b≠0时,{a n}为等比数列,所以B正确;由a n=2na-a+b(n≥2)可知,{a n}中一定存在连续的三项构成等差数列,所以C 正确;假设a k,a k+1,a k+2(k≥2,且k∈N*)成等比数列,则[2(k+1)a-a+b]2=(2ka -a+b)·[2(k+2)a-a+b],整理得(k+1)2=k(k+2),即1=0(不成立),所以{a n}中不存在连续的三项构成等比数列,所以D错误.故选ABC.解法二:当c=0,a≠0时,数列{a n}为等差数列,所以A正确;当a=c=0,b≠0时,数列{a n}为常数列,也是等比数列,所以B正确;当n≥2时,a n=S n -S n-1=2na-a+b,则{a n}中一定存在连续的三项构成等差数列,所以C正确;假设a k,a k+1,a k+2(k≥2,且k∈N*)成等比数列,则[2(k+1)a-a+b]2=(2ka-a +b)·[2(k+2)a-a+b],整理得(k+1)2=k(k+2),即1=0(不成立),所以{a n}中不存在连续的三项构成等比数列,所以D错误.故选ABC.10.(2020·海南省海口市模拟)已知正项等比数列{a n}满足a1=2,a4=2a2+a3,若设其公比为q,前n项和为S n,则()A.q=2 B.a n=2nC.S10=2047 D.a n+a n+1<a n+2答案ABD解析根据题意,对于A,正项等比数列{a n}满足2q3=4q+2q2,变形可得q2-q-2=0,解得q=2或q=-1,又{a n}为正项等比数列,则q=2,故A正确;对于B,a n=2×2n-1=2n,B正确;对于C,S n=2×(1-2n)1-2=2n+1-2,所以S10=2046,C错误;对于D,a n+a n+1=2n+2n+1=3×2n=3a n,而a n+2=2n+2=4×2n =4a n>3a n,D正确.故选ABD.11.等差数列{a n}的前n项和记为S n,若a1>0,S10=S20,则()A.公差d<0 B.a16<0C .S n ≤S 15D .当且仅当S n <0时n ≥32答案 ABC解析 因为等差数列中,S 10=S 20,所以a 11+a 12+…+a 19+a 20=5(a 15+a 16)=0,又a 1>0,所以a 15>0,a 16<0,所以d <0,S n ≤S 15,故A ,B ,C 正确;因为S 31=31(a 1+a 31)2=31a 16<0,故D 错误.故选ABC.12.设正项等差数列{a n }满足(a 1+a 10)2=2a 2a 9+20,则( ) A .a 2a 9的最大值为10 B .a 2+a 9的最大值为210 C.1a 22+1a 29的最大值为15D .a 42+a 49的最小值为200答案 ABD解析 因为正项等差数列{a n }满足(a 1+a 10)2=2a 2a 9+20,所以(a 2+a 9)2=2a 2a 9+20,即a 22+a 29=20,则a 2a 9≤a 22+a 292=202=10,当且仅当a 2=a 9=10时等号成立,故A 正确;由于⎝ ⎛⎭⎪⎫a 2+a 922≤a 22+a 292=10,所以a 2+a 92≤10,a 2+a 9≤210,当且仅当a 2=a 9=10时等号成立,故B 正确;1a 22+1a 29=a 22+a 29a 22·a 29=20a 22·a 29≥20⎝ ⎛⎭⎪⎫a 22+a 2922=20102=15,当且仅当a 2=a 9=10时等号成立,所以1a 22+1a 29的最小值为15,故C 错误;a 42+a 49=(a 22+a 29)2-2a 22·a 29=400-2a 22·a 29≥400-2×102=200,当且仅当a 2=a 9=10时等号成立,故D 正确.故选ABD. 三、填空题13.已知数列{a n }的前n 项和为S n ,a 1=1,2S n =a n +1,则S n =________. 答案 3n -1解析 由2S n =a n +1得2S n =a n +1=S n +1-S n ,所以3S n =S n +1,即S n +1S n =3,所以数列{S n }是以S 1=a 1=1为首项,q =3为公比的等比数列,所以S n =3n -1.14.(2020·山东省聊城市三模)已知数列{a n }中,a 1=1,a n +1=a n +n ,则a 6=________.答案 16解析 由题意,得a 2=a 1+1=2,a 3=a 2+2=4,a 4=a 3+3=7,a 5=a 4+4=11,a 6=a 5+5=16.15.各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n+1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________. 答案 a n =n (n +1)2解析 由题设可得a n +1=b n b n +1,a n =b n b n -1,得2b n =a n +a n +1⇒2b n =b n b n -1+b n b n +1,即2b n =b n -1+b n +1,又a 1=1,a 2=3⇒2b 1=4⇒b 1=2,则{b n }是首项为2的等差数列.由已知得b 2=a 22b 1=92,则数列{b n }的公差d =b 2-b 1=322-2=22,所以b n =2+(n -1)·22=2(n +1)2,即b n =n +12.当n=1时,b 1=2,当n ≥2时,b n -1=n2,则a n =b n b n -1=n (n +1)2,a 1=1符合上式,所以数列{a n }的通项公式为a n =n (n +1)2.16.已知数列{a n }满足13a 1+132a 2+…+13n a n =3n +1,则a n =________,a 1+a 2+a 3+…+a n =________.答案 ⎩⎨⎧12,n =1,3n +1,n ≥2⎩⎨⎧12,n =1,3n +2-32,n ≥2解析 由题意可得,当n =1时,13a 1=4,解得a 1=12.当n ≥2时,13a 1+132a 2+…+13n -1a n -1=3n -2,所以13n a n =3,n ≥2,即a n =3n +1,n ≥2,又当n =1时,a n =3n +1不成立,所以a n =⎩⎨⎧12,n =1,3n +1,n ≥2.当n ≥2时,a 1+a 2+…+a n =12+33-3n +21-3=3n +2-32. 四、解答题17.(2020·江西省南昌市三模)已知数列{a n }中,a 1=2,a n a n +1=2pn +1(p 为常数) .(1)若-a 1,12a 2,a 4成等差数列,求p 的值;(2)是否存在p ,使得{a n }为等比数列?若存在,求{a n }的前n 项和S n ;若不存在,请说明理由.解 (1)令n =1,a 1a 2=2p +1⇒a 2=2p ,且a n +1a n +2=2pn +p +1,与已知条件相除得a n +2a n=2p ,故a 4=2p a 2=(2p )2, 而-a 1,12a 2,a 4成等差数列,则a 4-2=a 2,即(2p )2-2=2p ,解得2p =2,即p =1.(2)若{a n }是等比数列,则由a 1>0,a 2>0,知此数列首项和公比均为正数.设其公比为q ,则q =2p 2,故2p 2=a 2a 1=2p 2⇒p =2, 此时a 1=2,q =2⇒a n =2n ,故a n a n +1=22n +1, 而2pn +1=22n +1,因此p =2时,{a n }为等比数列,其前n 项和S n =2(1-2n )1-2=2n +1-2. 18.(2020·山东省威海二模)从条件①2S n =(n +1)a n ,② S n +S n -1=a n (n ≥2),③a n >0,a 2n +a n =2S n 中任选一个,补充到下面问题中,并给出解答.已知数列{a n }的前n 项和为S n ,a 1=1,________.若a 1,a k ,S k +2成等比数列,求k 的值.解 若选择①,∵2S n =(n +1)a n ,n ∈N *,∴2S n +1=(n +2)a n +1,n ∈N *.两项相减得2a n +1=(n +2)a n +1-(n +1)a n ,整理得na n +1=(n +1)a n .即a n +1n +1=a n n ,n ∈N *, ∴⎩⎨⎧⎭⎬⎫a n n 为常数列.a n n =a 11=1,∴a n =n . ⎝ ⎛⎭⎪⎫或由a n +1a n =n +1n ,利用相乘相消法,求得a n =n a k =k ,S k +2=(k +2)×1+(k +2)(k +1)2×1 =(k +2)(k +3)2. 又a 1,a k ,S k +2成等比数列,∴(k +2)(k +3)=2k 2, k 2-5k -6=0,解得k =6或k =-1(舍去). ∴k =6.若选择②, 由S n +S n -1=a n (n ≥2)变形得S n +S n -1=S n -S n -1, S n +S n -1=( S n +S n -1)( S n -S n -1), 易知S n >0,∴ S n -S n -1=1,{S n }为等差数列, 而S 1=a 1=1,∴ S n =n ,S n =n 2, ∴a n =S n -S n -1=2n -1(n ≥2),且n =1时也满足, ∴a n =2n -1.∵a 1,a k ,S k +2成等比数列,∴(k +2)2=(2k -1)2,∴k =3或k =-13,又k ∈N *,∴k =3.若选择③,∵a 2n +a n =2S n (n ∈N *),∴a 2n -1+a n -1=2S n -1(n ≥2).两式相减得a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n (n ≥2),整理得(a n -a n -1)(a n +a n -1)=a n +a n -1(n ≥2). ∵a n >0,∴a n -a n -1=1(n ≥2),∴{a n }是等差数列,∴a n =1+(n -1)×1=n ,S k +2=(k +2)×1+(k +2)(k +1)2×1=(k +2)(k +3)2. 又a 1,a k ,S k +2成等比数列,∴(k +2)(k +3)=2k 2,解得k =6或k =-1,又k ∈N *,∴k =6.19.设数列{a n }的前n 项和为S n ,且满足a n -12S n -1=0(n ∈N *).(1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列{S n +(n +2n )λ}为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)由a n -12S n -1=0(n ∈N *),可知当n =1时, a 1-12a 1-1=0,即a 1=2.又由a n -12S n -1=0(n ∈N *),可得a n +1-12S n +1-1=0,两式相减,得⎝ ⎛⎭⎪⎫a n +1-12S n +1-1-⎝ ⎛⎭⎪⎫a n -12S n -1=0, 即12a n +1-a n =0,即a n +1=2a n .所以数列{a n }是以2为首项,2为公比的等比数列, 故a n =2n (n ∈N *).(2)由(1)知,S n =a 1(1-q n )1-q=2(2n -1),所以S n+(n+2n)λ=2(2n-1)+(n+2n)λ.若数列{S n+(n+2n)λ}为等差数列,则S1+(1+2)λ,S2+(2+22)λ,S3+(3+23)λ成等差数列,即有2[S2+(2+22)λ]=[S1+(1+2)λ]+[S3+(3+23)λ],即2(6+6λ)=(2+3λ)+(14+11λ),解得λ=-2.经检验λ=-2时,{S n+(n+2n)λ}成等差数列,故λ的值为-2.。
第一讲 等差、等比数列
第一讲 等差、等比数列一、考情分析(1)等差、等比数列的基本运算。
此知识点是高考命题的重点内容,一般不单独命题,常与数列的概念、性质、前n 项和等相结合,多以选择题、填空题的方式进行考查。
(2)等差、等比数列的判定与证明及求法。
等差、等比数列的证明是高考命题的重点和热点,多为解答题的第一问。
一般用定义域法直接证明或通过计算21,a a 求出n a 。
(3)等差、等比数列的性质。
等差、等比数列的性质是高考的必考内容,以小题为主,十分灵活,多为选择题、填空题要主动发现题目的相关性质,使运算简捷。
二、基本概念与性质 1、等差数列(1)定义:d N n d a a n n ,(1*+∈=-为常数)(2)D C D cn d m n a d n a a m n ,()()1(1+=-+=-+=为常数,C,D 不同时为零) (3)B A Bn An d nn na a a n S n n ,(2)1(2)(211+=⋅-+=+=为常数,不同时为零) (4)等差中项)2,(211≥∈+=*+-n N n a a a n n n (5)若q p n m +=+则q p n m a a a a +=+若r q p n m ++=++ 则),,,,,,(*∈++=++N r q p n m a a a a a a r q p n m(6)等差数列的线性组合也是等差数列,即{}{}n n b a ,是等差数列,则{}n n b a 21λλ+也是等差数列(7)等差数列产生的几个特殊等差数列,若{}n a 是等差数列,公差为d ,前n 项和为n S ,则(Ⅰ)t n p t p t p p a a a a )1(2,,,-+++ 也是等差数列,公差为td (Ⅱ) ,,,232k k k k k S S S S S --为等差数列,公差为d k 2 (Ⅲ)ns s s s n ,3,2,1321也是等差数列,公差为2d(8)等差数列几个重要结论 (Ⅰ)0,===+n m m n a n a m a ,则 (Ⅱ))(,,n m S n S m S n m m n +-===+则 (Ⅲ)0,==+n m n m S S S 则(Ⅳ){}n a 和{}n b 为等差数列,且前n 项和为n n T S ,则1212--=m m m m T S b a 2、等比数列 (1)定义q N n q a a nn ,(1*+∈=为非零常数) (2)通项公式:n m n m n n Aq q a aq a ===--1(A 为常数)(3)前n 项和公式:11(1)(1)(1)((1)1n n nna q S a q B q B q q=⎧⎪=-⎨=-≠⎪-⎩为常数)其中 (4)等比中项)2,(112≥∈⋅=*+-n N n a a a n n n(5)若),,,(*∈⋅=⋅+=+N n m q p a a a a q p n m q p n m 则(6)等比数列中,n n n n n S S S S S q 232,,1---≠时,也成等比数列注意:① 11112,,+-+-⋅=n n n n n n a a a a a a 是成等比数列的必要不充分条件② 在等比数列前n 项和时,首项要判断公比q 是否为1时,要分1=q 与1≠q 两种情形讨论(7)设{}n a {}n b 是等比数列,则{}rmt n b a ⋅λ也是等比数列),(*∈N r t (8)等比数列{}n a 的单调性当⎩⎨⎧>>101q a 或⎩⎨⎧<<<1001q a 时{}n a 是增数列当⎩⎨⎧<<>1001q a 或⎩⎨⎧><11q a 时{}n a 是减数列3、等差数列与等比数列的转化(1){}n a 为正项等比数列,则{})1,0(log ≠>c c a n c 为等差数列 (2)若{}n a 是等差数列,则{})1,0(≠>c c c an 为等比数列 (3)若{}n a 既是等差数列又是等比数列{}n a ⇔是非零常数列三、高考题型再现1、(2013广东)在等差数列{}n a 中,已知1083=+a a ,则=+753a a 。
高考数学:专题三 第一讲 等差数列与等比数列课件
题型与方法
例 1
第一讲
已知等差数列{an}中,a3a7=-16,a4+a6=0,求{an}
的前 n 项和 Sn.
本 讲 栏 目 开 关
解 设{an}的首项为 a1,公差为 d, a +2da +6d=-16, 1 1 则 a1+3d+a1+5d=0,
a2+8da +12d2=-16, 1 1 即 a1=-4d, a =-8 a =8, 1 1 解得 或 d=2 d=-2,
第一讲
本 讲 栏 目 开 关
c1 而当 n=1 时, =a2,∴c1=3. b1 3,n=1, ∴cn= - 2×3n 1,n≥2.
∴c1+c2+…+c2 011=3+2×31+2×32+…+2×32 010 6-6×32 010 =3+ =3-3+32 011=32 011. 1-3
即 2a1+d=a1+2d, 1 又 a1=2,
1 所以 d=2,
故 a2=a1+d=1.
答案 1
题型与方法
第一讲
本 讲 栏 目 开 关
题型一 题型概述
等差数列的有关问题 等差数列是一个重要的数列类型, 高考命题主要考
查等差数列的概念、 基本量的运算及由概念推导出的一些重 要性质,灵活运用这些性质解题,可达到避繁就简的目的.
则 c5=2c3-c1=2×21-7=35.
答案 35
考点与考题
第一讲
1 5.(2012· 北京)已知{an}为等差数列, n 为其前 n 项和.若 a1= , S 2 S2=a3,则 a2=________.
本 讲 栏 目 开 关
解析
设{an}的公差为 d,
由 S2=a3 知,a1+a2=a3,
故 a7=0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[学生用书P38]第1讲等差数列与等比数列考点一等差、等比数列的基本运算[学生用书P39][典型例题](2020·高考全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m . 【解】 (1)设{a n }的公比为q ,则a n =a 1q n -1. 由已知得⎩⎨⎧a 1+a 1q =4,a 1q 2-a 1=8.解得a 1=1,q =3.所以{a n }的通项公式为a n =3n -1. (2)由(1)知log 3a n =n -1. 故S n =n (n -1)2.由S m +S m +1=S m +3得m (m -1)+(m +1)m =(m +3)·(m +2),即m 2-5m -6=0. 解得m =-1(舍去),m =6.等差、等比数列问题的求解策略(1)抓住基本量,首项a 1、公差d 或公比q ;(2)熟悉一些结构特征,如前n 项和为S n =an 2+bn (a ,b 是常数)形式的数列为等差数列,通项公式为a n =p ·q n -1(p ,q ≠0)形式的数列为等比数列;(3)由于等比数列的通项公式、前n 项和公式中变量n 在指数位置,所以常采用两式相除(即比值的方式)进行相关计算.[对点训练]1.(2020·深圳市统一测试)记S n 为等差数列{a n }的前n 项和,若a 2=3,a 5=9,则S 6=( ) A .36 B .32 C .28D .24解析:选A.设等差数列{a n }的公差为d ,由题意得⎩⎨⎧a 2=a 1+d =3,a 5=a 1+4d =9,解得d =2,a 1=1,故S 6=6+6×52×2=36,选A.2.(2020·湖北八校第一次联考)已知数列{a n }是等比数列,a 2=1,a 5=-18,若S k =-118,则k =________.解析:设等比数列{a n }的公比为q ,因为a 2=1,a 5=-18,所以q 3=-18,解得q =-12,所以a 1=-2,由S k=-2⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫-12k1-⎝⎛⎭⎪⎫-12=-118,解得k=5.答案:53.已知公差不为0的等差数列{a n}的前n项和为S n,S1+1,S3,S4成等差数列,且a1,a2,a5成等比数列.(1)求数列{a n}的通项公式;(2)若S4,S6,S n成等比数列,求n及此等比数列的公比.解:(1)设数列{a n}的公差为d,由题意,得⎩⎨⎧2S3=S1+1+S4,a22=a1a5,d≠0,整理得⎩⎨⎧a1=1,d=2,所以a n=2n-1.(2)由(1)知a n=2n-1,所以S n=n2,所以S4=16,S6=36,又S4S n=S26,所以n2=36216=81,所以n=9,此等比数列的公比q=S6S4=94.考点二等差、等比数列的性质[学生用书P39][典型例题](1)(一题多解)(2020·高考全国卷Ⅰ)设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30 D.32(2)在等比数列{a n}中,a3,a15是方程x2+6x+2=0的两个根,则a2a16a9的值为() A.-2+22B.- 2C. 2 D.-2或 2【解析】(1)方法一:设等比数列{a n}的公比为q,所以a2+a3+a4a1+a2+a3=(a1+a2+a3)qa1+a2+a3=q=2,由a1+a2+a3=a1(1+q+q2)=a1(1+2+22)=1,解得a1=17,所以a6+a7+a8=a1(q5+q6+q7)=17×(25+26+27)=17×25×(1+2+22)=32,故选D.方法二:令b n =a n +a n +1+a n +2(n ∈N *),则b n +1=a n +1+a n +2+a n +3.设数列{a n }的公比为q ,则b n +1bn =a n +1+a n +2+a n +3a n +a n +1+a n +2=(a n +a n +1+a n +2)q a n +a n +1+a n +2=q ,所以数列{b n }为等比数列,由题意知b 1=1,b 2=2,所以等比数列{b n }的公比q =2,所以b n =2n -1,所以b 6=a 6+a 7+a 8=25=32,故选D.(2)设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的两个根,所以a 3a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=- 2.【答案】 (1)D (2)B等差、等比数列性质问题的求解策略抓关系抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解用性质数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题[对点训练]1.(多选)(2020·山东莱州一中月考)已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,则下列选项正确的是( )A .a 10=0B .S 7=S 12C .S 10的值最小D .S 20=0解析:选AB.设等差数列{a n }的公差为d .由a 1+5a 3=S 8,得a 1+9d =0,即a 10=0,所以A 正确.因为S 12-S 7=a 8+a 9+a 10+a 11+a 12=5a 10=0,所以B 正确.由a 10=0可知,当d >0时,S 9或S 10的值最小,当d <0时,S 9或S 10的值最大,所以C 错误.因为S 19=19(a 1+a 19)2=19×2a 102=19a 10=0,又a 20≠0,所以S 20≠0,所以D 错误.故选AB.2.(一题多解)(2020·沈阳市教学质量监测(一))已知等差数列{a n }的前n 项和为S n ,且a 1+a 3=10,S 9=72,在数列{b n }中,b 1=2,b n b n +1=-2,则a 7b 2 020=________.解析:方法一:设数列{a n }的公差为d ,则由题意,得⎩⎨⎧a 1+a 1+2d =10,9a 1+36d =72,解得⎩⎨⎧a 1=4,d =1,所以a 7=a 1+6d =10.因为b 1=2,b n b n +1=-2,所以b 2=-1,b 3=2,…,由此可知数列{b n }是周期为2的数列,所以b 2 020=-1,所以a 7b 2 020=-10.方法二:因为a 1+a 3=2a 2=10,所以a 2=5.又S 9=9(a 1+a 9)2=9a 5=72,所以a 5=8,设数列{a n }的公差为d ,则d =a 5-a 23=1,所以a 7=a 5+2d =10.因为b 1=2,b n b n +1=-2,所以b 2=-1,b 3=2,…,由此可知数列{b n }是周期为2的数列,所以b 2 020=-1,所以a 7b 2 020=-10.答案:-10考点三 等差、等比数列的判定与证明[学生用书P40][典型例题]设S n 为数列{a n }的前n 项和,对任意的n ∈N *,都有S n =2-a n ,数列{b n }满足b 1=2a 1,b n=b n -11+b n -1(n ≥2,n ∈N *).(1)证明:数列{a n }是等比数列,并求{a n }的通项公式;(2)判断数列{1b n}是等差数列还是等比数列,并求数列{b n }的通项公式.【解】 (1)当n =1时,a 1=S 1=2-a 1,解得a 1=1;当n ≥2时,a n =S n -S n -1=a n -1-a n ,即a na n -1=12(n ≥2,n ∈N *).所以数列{a n }是首项为1,公比为12的等比数列, 故数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)因为a 1=1,所以b 1=2a 1=2. 因为b n =b n -11+b n -1,所以1b n =1b n -1+1,即1b n -1b n -1=1(n ≥2).所以数列{1b n}是首项为12,公差为1的等差数列. 所以1b n=12+(n -1)·1=2n -12,故数列{b n}的通项公式为b n=22n-1.数列{a n}是等差数列或等比数列的证明方法(1)证明数列{a n}是等差数列的两种基本方法①利用定义,证明a n+1-a n(n∈N*)为一常数;②利用等差中项,即证明2a n=a n-1+a n+1(n≥2).(2)证明数列{a n}是等比数列的两种基本方法①利用定义,证明a n+1a n(n∈N*)为一常数;②利用等比中项,即证明a2n=a n-1a n+1(n≥2).[对点训练]1.(2020·高考全国卷Ⅱ)数列{a n}中,a1=2,a m+n=a m a n,若a k+1+a k+2+…+a k+10=215-25,则k=()A.2B.3C.4 D.5解析:选C.令m=1,则由a m+n =a m a n,得a n+1=a1a n,即a n+1a n=a1=2,所以数列{a n}是首项为2、公比为2的等比数列,所以a n=2n,所以a k+1+a k+2+…+a k+10=a k(a1+a2+…+a10)=2k×2×(1-210)1-2=2k+1×(210-1)=215-25=25×(210-1),解得k=4,故选C.2.(2019·高考全国卷Ⅱ)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n-b n+4,4b n+1=3b n -a n-4.(1)证明:{a n+b n}是等比数列,{a n-b n}是等差数列;(2)求{a n}和{b n}的通项公式.解:(1)证明:由题设得4(a n+1+b n+1)=2(a n+b n),即a n+1+b n+1=12(a n+b n).又因为a1+b1=1,所以{a n+b n}是首项为1,公比为12的等比数列.由题设得4(a n+1-b n+1)=4(a n-b n)+8,即a n+1-b n+1=a n-b n+2.又因为a1-b1=1,所以{a n-b n}是首项为1,公差为2的等差数列.(2)由(1)知,a n+b n=12n-1,a n-b n=2n-1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12, b n =12[(a n +b n )-(a n -b n )]=12n -n +12考点四 数列与新定义相交汇问题[学生用书P41][典型例题](2020·高考江苏卷节选)已知数列{}a n (n ∈N *)的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有S 1k n +1-S 1k n =λa 1k n +1成立,则称此数列为“λ~k ”数列.(1)若等差数列{}a n 是“λ~1”数列,求λ的值;(2)若数列{}a n 是“33~2”数列,且a n >0,求数列{}a n 的通项公式.【解】 (1)因为等差数列{a n }是“λ~1”数列,则S n +1-S n =λa n +1,即a n +1=λa n +1,也即(λ-1)a n +1=0,此式对一切正整数n 均成立.若λ≠1,则a n +1=0恒成立,故a 3-a 2=0,而a 2-a 1=-1, 这与{a n }是等差数列矛盾.所以λ=1.(此时,任意首项为1的等差数列都是“1~1”数列) (2)因为数列{a n }(n ∈N *)是“33~2”数列,所以S n +1-S n =33a n +1,即S n +1-S n =33S n +1-S n , 因为a n >0,所以S n +1>S n >0,则S n +1S n -1=33S n +1S n -1.令S n +1S n =b n ,则b n -1=33b 2n -1,即(b n -1)2=13(b 2n -1)(b n >1). 解得b n =2,即S n +1S n =2,也即S n +1S n =4,所以数列{S n }是公比为4的等比数列. 因为S 1=a 1=1,所以S n =4n -1.则a n =⎩⎨⎧1(n =1),3×4n -2(n ≥2).数列新定义型创新题的一般解题思路(1)阅读审清“新定义”.(2)结合常规的等差数列、等比数列的相关知识,化归、转化到“新定义”的相关知识. (3)利用“新定义”及常规的数列知识,求解证明相关结论.[对点训练]1.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n ,则数列{a n }的前n 项和S n =( )A .2B .2nC .2n +1-2D .2n -1-2解析:选C.因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.2.对任一实数序列A =(a 1,a 2,a 3,…),定义新序列ΔA =(a 2-a 1,a 3-a 2,a 4-a 3,…),它的第n 项为a n +1-a n .假定序列Δ(ΔA )的所有项都是1,且a 12=a 22=0,则a 2=________.解析:令b n =a n +1-a n ,依题意知数列{b n }为等差数列,且公差为1,所以b n =b 1+(n -1)×1, a 1=a 1, a 2-a 1=b 1, a 3-a 2=b 2, …a n -a n -1=b n -1,累加得a n =a 1+b 1+…+b n -1=a 1+(n -1)b 1+(n -1)(n -2)2=(n -1)a 2-(n -2)a 1+(n -1)(n -2)2,分别令n =12,n =22, 得⎩⎨⎧11a 2-10a 1+55=0,21a 2-20a 1+210=0, 解得a 1=2312,a 2=100. 答案:100[学生用书(单独成册)P128]1.(2020·六校联盟第二次联考)设等差数列{a n }的前n 项和为S n ,若a 4+S 5=2,S 7=14,则a 10=( )A .18B .16C .14D .12解析:选C.设{a n }的公差为d ,由⎩⎪⎨⎪⎧a 1+3d +5a 1+5×42d =2,7a 1+7×62d =14,可得⎩⎨⎧6a 1+13d =2,a 1+3d =2,解得⎩⎨⎧a 1=-4,d =2,所以a 10=-4+9×2=14,选C.2.(一题多解)(2020·高考全国卷Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S na n=( )A .2n -1B .2-21-nC .2-2n -1D .21-n -1解析:选B.通解:设等比数列{a n }的公比为q ,则由⎩⎨⎧a 5-a 3=a 1q 4-a 1q 2=12,a 6-a 4=a 1q 5-a 1q 3=24解得⎩⎨⎧a 1=1,q =2,所以S n =a 1(1-q n )1-q =2n -1,a n =a 1q n -1=2n -1,所以S n a n=2n-12n -1=2-21-n ,故选B.优解:设等比数列{a n }的公比为q ,因为a 6-a 4a 5-a 3=a 4(1-q 2)a 3(1-q 2)=a 4a 3=2412=2,所以q =2,所以S n a n =a 1(1-q n )1-q a 1q n -1=2n -12n -1=2-21-n ,故选B. 3.(一题多解)已知等差数列{a n }的前n 项和为S n ,a 6+a 8=6,S 9-S 6=3,则S n 取得最大值时n 的值为( )A .5B .6C .7D .8解析:选D.方法一:设{a n }的公差为d ,则由题意得,⎩⎨⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎨⎧a 1=15,d =-2.所以a n =-2n +17,由于a 8>0,a 9<0,所以S n 取得最大值时n 的值是8,故选D.方法二:设{a n }的公差为d ,则由题意得,⎩⎨⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎨⎧a 1=15,d =-2.则S n =15n +n (n -1)2×(-2)=-(n -8)2+64,所以当n =8时,S n 取得最大值,故选D. 4.中国古代词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( )A .174斤B .184斤C .191斤D .201斤解析:选B.用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数, 由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996, 所以8a 1+8×72×17=996,解得a 1=65. 所以a 8=65+7×17=184.故选B.5.(多选)在数列{a n }中,a 1=1,a 2=2,a 3=3,a n +3+(-1)n a n +1=1(n ∈N *),数列{a n }的前n 项和为S n ,则下列结论正确的是( )A .数列{a n }为等差数列B .a 18=10C .a 17=3D .S 31=146解析:选BD.依题意得,当n 是奇数时,a n +3-a n +1=1,即数列{a n }中的偶数项构成以a 2=2为首项、1为公差的等差数列,所以a 18=2+(9-1)×1=10.当n 是偶数时,a n +3+a n +1=1,所以a n +5+a n +3=1,两式相减,得a n +5=a n +1,即数列{a n }中的奇数项从a 3开始,每间隔一项的两项相等,即数列{a n }的奇数项呈周期变化,所以a 17=a 4×3+5=a 5.在a n +3+a n +1=1中,令n =2,得a 5+a 3=1,因为a 3=3,所以a 5=-2,所以a 17=-2.对于数列{a n }的前31项,奇数项满足a 3+a 5=1,a 7+a 9=1,…,a 27+a 29=1,a 31=a 4×7+3=a 3=3,偶数项构成以a 2=2为首项、1为公差的等差数列,所以S 31=1+7+3+15×2+15×(15-1)2=146.故选BD.6.(多选)(2020·山东临沂实验中学期末)若数列{a n }满足:对于任意正整数n ,{a n +1-a n }为单调递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( )A .a n =3nB .a n =n 2+1C .a n =nD .a n =lnnn +1解析:选CD.对于A ,若a n =3n ,则a n +1-a n =3(n +1)-3n =3,所以{a n +1-a n }不是单调递减数列,故A 错误;对于B ,若a n =n 2+1,则a n +1-a n =(n +1)2+1-n 2-1=2n +1,所以{a n +1-a n }是单调递增数列,不是单调递减数列,故B 错误;对于C ,若a n =n ,则a n +1-a n =n +1-n =1n +1+n,所以{a n +1-a n }为单调递减数列,故C 正确;对于D ,若a n =lnn n +1,则a n +1-a n =ln n +1n +2-ln nn +1=ln ⎝ ⎛⎭⎪⎫n +1n +2·n +1n =ln ⎝ ⎛⎭⎪⎫1+1n 2+2n ,由函数y =ln ⎝ ⎛⎭⎪⎫1+1x 2+2x 在(0,+∞)上单调递减,可知数列{a n +1-a n }为单调递减数列,故D 正确.故选CD.7.(2020·河北九校第二次联考)已知正项等比数列{a n }满足a 3=1,a 5与32a 4的等差中项为12,则a 1的值为________.解析:设等比数列{a n }的公比为q ,因为a 5与32a 4的等差中项为12,所以a 5+32a 4=1,所以a 3q 2+32a 3q =1,又a 3=1,所以2q 2+3q -2=0,又数列{a n }的各项均为正数,所以q =12,所以a 1=a 3q 2=4.答案:48.已知数列{a n }的前n 项和为S n ,且满足a 1=1,a n (2S n -1)=2S 2n (n ≥2,n ∈N *),则S n =________,a n =________.解析:因为当n ≥2时,a n (2S n -1)=2S 2n ,a n =S n -S n -1,所以(S n -S n -1)·(2S n -1)=2S 2n ,所以S n -1-S n =2S n -1S n ,即1S n -1S n -1=2,故⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1为首项,2为公差的等差数列,所以1S n=1+2(n -1)=2n -1,所以S n =12n -1.因为当n ≥2时,a n =S n -S n -1, 所以a n =⎩⎪⎨⎪⎧1,n =1,-2(2n -1)(2n -3),n ≥2. 答案:12n -1 ⎩⎪⎨⎪⎧1,n =1,-2(2n -1)(2n -3),n ≥2 9.在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”,下列是对“等差比数列”的判断:①k 不可能为0;②等差数列一定是“等差比数列”;③等比数列一定是“等差比数列”;④“等差比数列”中可以有无数项为0.其中所有正确的序号是________.解析:由等差比数列的定义可知,k 不为0,所以①正确,当等差数列的公差为0,即等差数列为常数列时,等差数列不是等差比数列,所以②错误;当{a n }是等比数列,且公比q =1时,{a n }不是等差比数列,所以③错误;数列0,1,0,1,…是等差比数列,该数列中有无数多个0,所以④正确.答案:①④10.设S n 为等差数列{a n }的前n 项和,a 2+a 3=8,S 9=81.(1)求{a n }的通项公式;(2)若S 3,a 14,S m 成等比数列,求S 2m .解:(1)因为⎩⎨⎧S 9=9a 5=9(a 1+4d )=81,a 2+a 3=2a 1+3d =8,所以⎩⎨⎧a 1=1,d =2,故a n =1+(n -1)×2=2n -1.(2)由(1)知,S n =n (1+2n -1)2=n 2. 因为S 3,a 14,S m 成等比数列,所以S 3·S m =a 214,即9m 2=272,解得m =9,故S 2m =182=324.11.设S n 为数列{a n }的前n 项和,已知a 3=7,a n =2a n -1+a 2-2(n ≥2).(1)证明:数列{a n +1}为等比数列;(2)求数列{a n }的通项公式,并判断n ,a n ,S n 是否成等差数列? 解:(1)证明:因为a 3=7,a 3=3a 2-2,所以a 2=3,所以a n =2a n -1+1,所以a 1=1,a n +1a n -1+1=2a n -1+2a n -1+1=2(n ≥2), 所以数列{a n +1}是首项为a 1+1=2,公比为2的等比数列.(2)由(1)知,a n +1=2n ,所以a n =2n -1,所以S n =2(1-2n )1-2-n =2n +1-n -2, 所以n +S n -2a n =n +(2n +1-n -2)-2(2n -1)=0,所以n +S n =2a n ,即n ,a n ,S n 成等差数列.12.(2020·泰安模拟)在①b 1+b 3=a 2,②a 4=b 4,③S 5=-25这三个条件中任选一个,补充在下面问题中,若问题中的k 存在,求k 的值;若k 不存在,说明理由.设等差数列{a n }的前n 项和为S n ,{b n }是等比数列,________,b 1=a 5,b 2=3,b 5=-81,是否存在k ,使得S k >S k +1且S k +1<S k +2?解:方案一:选条件①.设{b n }的公比为q ,则q 3=b 5b 2=-27,即q =-3,b 1=-1. 所以b n =-(-3)n -1.从而a 5=b 1=-1,a 2=b 1+b 3=-10,由于{a n }是等差数列,所以a 1=-13,d =3,所以a n =3n -16. 因为S k >S k +1且S k +1<S k +2等价于a k +1<0且a k +2>0,所以满足题意的k 存在当且仅当⎩⎨⎧3(k +1)-16<0,3(k +2)-16>0,即k =4. 方案二:选条件②.设{b n }的公比为q ,则q 3=b 5b 2=-27,即q =-3,b 1=-1, 所以b n =-(-3)n -1.从而a 5=b 1=-1,a 4=b 4=27,所以{a n }的公差d =-28. 因为S k >S k +1且S k +1<S k +2等价于a k +1<0且a k +2>0,此时d =a k +2-a k +1>0,与d =-28矛盾,所以满足题意的k 不存在.方案三:选条件③.设{b n }的公比为q ,则q 3=b 5b 2=-27,即q =-3,b 1=-1, 所以b n =-(-3)n -1.从而a 5=b 1=-1,由{a n }是等差数列得S 5=5(a 1+a 5)2, 由S 5=-25得a 1=-9.所以a n =2n -11.因为S k >S k +1且S k +1<S k +2等价于a k +1<0且a k +2>0,所以满足题意的k 存在当且仅当⎩⎨⎧2(k +1)-11<0,2(k +2)-11>0,即k =4.。