2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷(解析版)
(2019秋)广州市越秀区八年级上期末质量数学试题有答案-精品.doc

越秀区初二上期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分)1.下面有四个图案,其中不是轴对称图形的是() AB. C. D. 2.若分式21x x --的值为零,则x 的值为( ) A.2- B.2± C.2 D.23.下列运算正确的是()A.3223()()0a a -+-=B.246()()b b b --=-C.32236()()a a a --=-D.248x x x ⋅=4.下列各因式分解中,结论正确的是()A.256(1)(6)x x x x ++=-+B.26(2)(3)x x x x -+=+-C.2221(1)(1)a ab b a b a b -+-=+++-C.2()223(3)(1)a b a b a b a b +++-=+++- 5. 到三角形三条边的距离都相等的点是这个三角形的( )A. 三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点 6.用剪刀将一个四边形沿直线剪去一部分,剩下部分的图形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能7.在下列四个轴对称图形中,对称轴条数最多的是()A.正方形B.正五边形C.正六边形D.正七边形8如图1,已知AB AC =,AE AF =,BE 与CF 交于点D ,则对于下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的是()A.①和2B.②和③C.①和③D.①、②和③9.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所 需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A 88203x x += B.88133x x =+ C.88203x x =+ D.81833x x+= 10.如图2,已知△ABC 中,AB=3,AC=5,BC=7,在△ABC 所在平面内一条直线,将△ABC 分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画( )A.2条B.3条C.4条D.5条二、填空题(本题共有6小题,每小题3分,共18分)11. 要使分式1x x+有意义,那么x 必须满足 . 12. 已知一个n 边形的内角和是其外角和的4倍多180度,则n = .13. 如图3,在△ABC ,36,=AB AC A =∠,BD 是AC 边上的高,则=DBC ∠ .14. 如图4,在△ABC 中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD.若AC=4cm ,△ADC 的周长为11cm ,则BC 的长为 15. 如图5,在△ABC 中,BF ⊥AC 于F ,AD ⊥BC 于D ,BF 与AD 相交于E.若AD=BD ,BC=8cm ,DC=3cm 则AE= cm.2·1·c·n·j·y16. 化简:2991(1)(1)...(1)a a a a a a a ++++++++= .三、解答题(本题共有7小题,共72分)17.完成下列运算(本题共2小题,每小题5分,共10分)(1)计算(21)(21)(41)(1)x x x x -+-+-(2)计算2()(2)2x x x y x y+÷-+18.解下列分式方程(本题共2小题,每小题5分,共10分)(1)21424x x =-- (2)1513162x x -=--19.(本题共2小题,每小题6分,共12分)(1)先化简,再求值:22(2)(2)()5x y x y x y x +-++-,其中35,x y ==.(2)先化简,再求值:211()11a a a a -⋅--,其中12a =-.20. (本题满分8分)如图6,在ABC ∆中,AD 是BC 边上的高,AE 是BAC ∠的平分线,4218,B DAE ∠=∠=,求C ∠的度数。
2019-2020学年八年级上学期期中考试数学试卷(附解答)

2019-2020学年八年级上学期期中考试数学试卷一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列计算结果为x6的是()A.x3•x2B.x2+x4C.(x4)2D.x7÷x3.如图,已知△ADC中,AB=AC,BD=DC,则下列结论错误的是()A.∠BAC=∠B B.∠BAD=∠CAD C.AD⊥BC D.∠B=∠C4.下列计算正确的是()A.(x+y)2=x2+y2B.(2m2)3=6m6C.(x﹣2)2=x2﹣4 D.(x+1)(x﹣1)=x2﹣15.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC6.如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,求∠3的度数()A.42°B.52°C.62°D.72°7.(x+p)(x+5)=x2+rx﹣10,则p,r的值分别是()A.2,﹣3 B.2,3 C.﹣2,3 D.﹣2,﹣38.如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=50,S△AED=38,则△DEF的面积为()A.6 B.12 C.4 D.89.如图,两个正方形边长分別为a,b,如果a+b=9,ab=12,则阴影部分的面积为()A.21.5 B.22.5 C.23.5 D.2410.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN =x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定二.填空题(共6小题)11.2x2y3•(﹣7x3y)=.12.点P(﹣3,4)关于原点对称的点的坐标是.13.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为.14.如图,在△ABC中,AB=AC,BE=CD,BD=CF,∠EDF=78°,则∠A的度数为.15.等腰三角形的其中两边长分别为(x+2)(2x﹣5),(x﹣1)2,已知这两边不相等,且x >5,则该等腰三角形的周长为(用含x的式子表示)16.计算:40372﹣8072×2019=.三.解答题(共9小题)17.计算:[(x+2y)2﹣(x﹣2y)(x+2y)]÷2y18.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.19.如图AB⊥l于点B,CD⊥1于点D,点E,F在直线1上,且BF=DE,AE=CF.求证:AE∥CF.20.如图△ABC,请用尺规作出它的外角∠BAE的平分线AD,若AD∥BC,证明:AB=AC.21.如图在△ABC中,DE是AC的垂直平分线,AE=5,△ABD的周长为14,求△ABC的周长.22.长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少2厘米.(1)新长方形的面积比原长方形的面积减少了多少平方厘米?(2)如果减少的面积恰好等于原面积的,试确定(a﹣6)(b﹣6)的值.23.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:①把被除式、除式按某个字母作降幂接列,井把所块的项用零补齐;②用除式的第一项除以除式第一项,得到商式的第一项;③用商式的一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2﹣2x﹣1,余式为0.根据阅读材料,请回答下列问题:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)的商是,余式是;(2)x3﹣x2+ax+b能被x2+2x+2整除,求a,b的值.24.等边三角形△ABC,直线1过点C且垂直AC.(1)请在直线1上作出点D,使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,求证,AD=2BD.25.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),点C的坐标为.(2)如图2,若OA平分∠BAC,BC与x轴交于点E,若点C纵坐标为m,求AE的长.(3)如图3,在(2)的条件下,点F在射线DM上,且∠ABF=∠ADF,AH⊥BF于点H,试探究BF、HFDF的数量关系.参考答案与试题解析一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意.故选:C.2.下列计算结果为x6的是()A.x3•x2B.x2+x4C.(x4)2D.x7÷x【分析】分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方法则以及同底数幂的除法法则逐一判断即可.【解答】解:A.x3•x2=x5,故本选项不合题意;B.x2与x4不是同类项,所以不能合并,故本选项不合题意;C.(x4)3=x8,故本选项不合题意;D.x7÷x=x6,故本选项符合题意.故选:D.3.如图,已知△ADC中,AB=AC,BD=DC,则下列结论错误的是()A.∠BAC=∠B B.∠BAD=∠CAD C.AD⊥BC D.∠B=∠C 【分析】证明△ADB≌△ADC即可解决问题.【解答】解:∵AB=AC,BD=DC,AD=AD,∴△ADB≌△ADC(SSS),∴∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,∴AD⊥BC,故B,C,D正确,故选:A.4.下列计算正确的是()A.(x+y)2=x2+y2B.(2m2)3=6m6C.(x﹣2)2=x2﹣4 D.(x+1)(x﹣1)=x2﹣1【分析】各项化简得到结果,即可作出判断.【解答】解:A、原式=x2+2xy+y2,不符合题意;B、原式=8m6,不符合题意;C、原式=x2﹣4x+4,不符合题意;D、原式=x2﹣1,符合题意,故选:D.5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.【解答】解:A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选:C.6.如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,求∠3的度数()A.42°B.52°C.62°D.72°【分析】由“SAS”可证△ABD≌△ACE,可得∠ABD=∠2=30°,由三角形外角性质可求解.【解答】解:∵∠BAC=∠DAE,∴∠1=∠CAE,且AD=AE,AB=AC,∴△ABD≌△ACE(SAS)∴∠ABD=∠2=30°,∴∠3=∠2+∠ABD=52°,故选:B.7.(x+p)(x+5)=x2+rx﹣10,则p,r的值分别是()A.2,﹣3 B.2,3 C.﹣2,3 D.﹣2,﹣3【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出p,r【解答】解:∵(x+p)(x+5)=x2+(p+5)x+5p=x2+rx﹣10,∴p+5=r,5p=﹣10,解得:p=﹣2,r=3.故选:C.8.如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=50,S△AED=38,则△DEF的面积为()A.6 B.12 C.4 D.8【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50﹣S,故选:A.9.如图,两个正方形边长分別为a,b,如果a+b=9,ab=12,则阴影部分的面积为()A.21.5 B.22.5 C.23.5 D.24【分析】根据正方形和三角形的面积的和差即可求解.【解答】解:根据题意,得∵a+b=9,ab=12,∴(a+b)2=92∴a2+2ab+b2=81,∴a2+b2=81﹣24=57,∴阴影部分的面积为:a2﹣b(a﹣b)=(a2﹣ab+b2)=(57﹣12)=22.5.故选:B.10.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN =x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题;【解答】解:将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,∵∠MON=30°,∴∠ABM+∠CBN=30°,∴∠NBH=∠CBH+∠CBN=30°,∴∠NBM=∠NBH,∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x,∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形,故选:C.二.填空题(共6小题)11.2x2y3•(﹣7x3y)=﹣14x5y4.【分析】原式利用单项式乘以单项式法则计算即可求出值.【解答】解:原式=﹣14x5y4,故答案为:﹣14x5y412.点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).【分析】本题比较容易,考查平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【解答】解:根据中心对称的性质,得点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).13.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为PQ≥2 .【分析】根据垂线段最短可得PQ⊥OB时,PQ最短,再根据角平分线上的点到角的两边距离相等可得PQ=PD.【解答】解:由垂线段最短可得PQ⊥OB时,PQ最短,∵OP平分∠AOB,PD⊥OA,∴PQ=PD=2,即线段PQ的最小值是2.∴PQ的取值范围为PQ≥2,故答案为PQ≥2.14.如图,在△ABC中,AB=AC,BE=CD,BD=CF,∠EDF=78°,则∠A的度数为24°.【分析】由等腰三角形的性质可得∠B=∠C,由“SAS”可证△BED≌△CDF,可得∠CDF =∠BED,由三角形外角的性质可得∠EDF=∠B=70°,即可求∠A的度数.【解答】解:∵AB=AC∴∠B=∠C,又∵BE=CD,BD=CF∴△BED≌△CDF(SAS)∴∠CDF=∠BED∵∠EDC=∠B+∠BED=∠CDF+∠EDF∴∠EDF=∠B=78°∴∠C=∠B=78°∴∠A=180°﹣78°﹣78°=24°故答案为:24°.15.等腰三角形的其中两边长分别为(x+2)(2x﹣5),(x﹣1)2,已知这两边不相等,且x >5,则该等腰三角形的周长为5x2﹣4x﹣19 (用含x的式子表示)【分析】分为两种情况:①当三角形的三边是(x+2)(2x﹣5),(x+2)(2x﹣5),(x﹣1)2时,②当三角形的三边是(x+2)(2x﹣5),(x﹣1)2,(x﹣1)2时,看看是否符合三角形的三边关系定理,符合时求出即可.【解答】解:分为两种情况:①当等腰三角形的腰为(x+2)(2x﹣5)时,三角形的三边是(x+2)(2x﹣5),(x+2)(2x﹣5),(x﹣1)2,此时符合三角形的三边关系定理,此时三角形的周长是:(x+2)(2x﹣5)+(x+2)(2x﹣5)+(x﹣1)2=2x2﹣x﹣10+2x2﹣x﹣10+x2﹣2x+1=5x2﹣4x﹣19;②当等腰三角形的腰为(x﹣1)2时,三角形的三边是(x+2)(2x﹣5),(x﹣1)2,(x﹣1)2时,∵(x﹣1)2+(x﹣1)2=2x2﹣4x+2,(x+2)(2x﹣5)=2x2﹣x﹣10,x>5,∴(x﹣1)2+(x﹣1)2﹣(x+2)(2x﹣5)=(2x2﹣4x+2)﹣(2x2﹣x﹣10)=﹣3x+12<0,∴(x﹣1)2+(x﹣1)2<(x+2)(2x﹣5),∴此时不符合三角形的三边关系定理,此时不存在三角形.故答案为:5x2﹣4x﹣19.16.计算:40372﹣8072×2019= 1 .【分析】把8072×2019变为4038×4036,再套用平方差公式计算得结果.【解答】解:原式=40372﹣2×4036×2019=40372﹣4036×4038=40372﹣(4037﹣1)(4037+1)=40372﹣(40372﹣1)=1故答案为:1三.解答题(共9小题)17.计算:[(x+2y)2﹣(x﹣2y)(x+2y)]÷2y【分析】直接利用乘法公式进而化简,再利用整式的除法运算法则计算得出答案.【解答】解:原式=[x2+4y2+4xy﹣(x2﹣4y2)]÷2y=(8y2+4xy)÷2y=4y+2x.18.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.【分析】延长AO交BC于点D,先证出△ABO≌△ACO,得出∠BAO=∠CAO,再根据三线合一的性质得出AO⊥BC即可.【解答】证明:延长AO交BC于点D,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠BAO=∠CAO,∵AB=AC,∴AO⊥BC.19.如图AB⊥l于点B,CD⊥1于点D,点E,F在直线1上,且BF=DE,AE=CF.求证:AE∥CF.【分析】证明△ABE≌△CDF(HL),推出∠AEB=∠CFD可得结论.【解答】证明:∵AB⊥l于点B,CD⊥1于点D,∴∠ABE=∠CDF=90°,∵BF=DE,∴DF=BE,∵AE=CF,∴Rt△ABE≌Rt△CDF(HL),∴∠AEB=∠CFD,∴AE∥CF.20.如图△ABC,请用尺规作出它的外角∠BAE的平分线AD,若AD∥BC,证明:AB=AC.【分析】用尺规作外角∠BAE的平分线AD,再进行证明即可.【解答】解:如图所示:AD即为所求作的图形.证明:∵AD∥BC,∴∠DAE=∠C,∠DAB=∠B,∵AD平分∠BAE,∴∠DAE=∠DAB,∴∠B=∠C,∴AB=AC.21.如图在△ABC中,DE是AC的垂直平分线,AE=5,△ABD的周长为14,求△ABC的周长.【分析】根据线段的垂直平分线的性质得到DA=DC,AE=CE=5,而AB+BDAD=14,从而得到△ABC的周长.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,AE=CE=5,而△ABD的周长是14,即AB+BD+AD=14,∴AB+BC+AC=AB+BD+CD+AC=14+10=24,即△ABC的周长是24.22.长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少2厘米.(1)新长方形的面积比原长方形的面积减少了多少平方厘米?(2)如果减少的面积恰好等于原面积的,试确定(a﹣6)(b﹣6)的值.【分析】(1)根据题意表示出原来长方形与新长方形的面积,相减即可得到结果;(2)根据题意列出等式,化简即可求出.【解答】解:(1)ab﹣(a﹣2)(b﹣2)=ab﹣(ab﹣2a﹣2b+4)=ab﹣ab+2a+2b﹣4=2a+2b﹣4,∴新长方形的面积比原长方形的面积减少了(2a+2b﹣4)平方厘米;(2)由题意知2a+2b﹣4=ab,∴ab=6a+6b﹣12,(a﹣6)(b﹣6)=ab﹣6a﹣6b+36=6a+6b﹣12﹣6a﹣6b+36=24.23.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:①把被除式、除式按某个字母作降幂接列,井把所块的项用零补齐;②用除式的第一项除以除式第一项,得到商式的第一项;③用商式的一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2﹣2x﹣1,余式为0.根据阅读材料,请回答下列问题:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)的商是x2﹣2x+3 ,余式是 1 ;(2)x3﹣x2+ax+b能被x2+2x+2整除,求a,b的值.【分析】(1)根据整式除法的竖式计算方法,这个进行进行计算即可;(2)根据整式除法的竖式计算方法,要使x3﹣x2+ax+b能被x2+2x+2整除,即余式为0,可以得到a、b的值.【解答】解:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)=x2﹣2x+3 (1)故答案为:x2﹣2x+3,1.(2)由题意得:∵x3﹣x2+ax+b能被x2+2x+2整除,∴a﹣2=﹣6,b=﹣6,即:a=﹣4,b=﹣6.24.等边三角形△ABC,直线1过点C且垂直AC.(1)请在直线1上作出点D,使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,求证,AD=2BD.【分析】(1)作点A关于直线l的对称点A′,连接AA′交直线1于点D,此时使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,根据对称性和30度角所对直角边等于斜边的一半即可证明AD=2BD.【解答】解:(1)如图所示:作点A关于直线l的对称点A′,连接AA′,与直线l交于点D,则点D即为所求作的点.(2)根据对称性可知:AC=A′C,AD=A′D,∵△ABC为等边三角形,∴AC=BC=AB,∠ACB=60°=∠BAC,∴A′C=BC,∴∠A′=∠A′BC=30°,∠A′=∠DAA′=30°,∴∠ABD=90°,∴AD=2BD.25.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),点C的坐标为(﹣1,4).(2)如图2,若OA平分∠BAC,BC与x轴交于点E,若点C纵坐标为m,求AE的长.(3)如图3,在(2)的条件下,点F在射线DM上,且∠ABF=∠ADF,AH⊥BF于点H,试探究BF、HFDF的数量关系.【分析】(1)作CH⊥y轴于H,如图1,易得OA=3,OB=1根据等腰直角三角形的性质得BA=BC,∠ABC=90°,再利用等角的余角相等得到∠CBH=∠BAO,则可根据“AAS”证明△ABO≌△BCH,得到OB=CH=1,OA=BH=3,所以C(﹣1,4);(2)如图2,过点C作CF⊥AO,交AB的延长线于H,由“ASA”可证△AFC≌△AFH,可得CF=FH=m,由“AAS”可证△ABE≌△CBH,可得AE=CH=2m;(3)如图3,过点A作AN⊥DF于点N,由“AAS”可证△ABH≌△ADN,可得AN=AH,BH =DN,由“HL”可证Rt△ANF≌Rt△AHF,可得NF=FH,即可得结论.【解答】解:(1)作CH⊥y轴于H,如图1,∵点A的坐标是(﹣3,0),点B的坐标是(0,1),∴OA=3,OB=1,∵△ABC是等腰直角三角形,∴BA=BC,∠ABC=90°,∴∠ABO+∠CBH=90°,∵∠ABO+∠BAO=90°,∴∠CBH=∠BAO,在△ABO和△BCH中,∴△ABO≌△BCH(AAS),∴OB=CH=1,OA=BH=3,∴OH=OB+BH=1+3=4,∴C(﹣1,4),故答案为:(﹣1,4);(2)如图2,过点C作CF⊥AO,交AB的延长线于H,∴∠CBH=90°,∵CF⊥AO,∴∠BCH+∠H=90°,而∠HAF+∠H=90°,∴∠BCH=∠HAF,且∠ABC=∠CBH=90°,AB=CB,∴△ABE≌△CBH(AAS),∴AE=CH,∵AO平分∠BAC,∴∠CAF=∠HAF,且AF=AF,∠AFH=∠AFC,∴△AFC≌△AFH(ASA)∴CF=FH=m,∴AE=CH=2m;(3)BF=2FH+DF,理由如下:如图3,过点A作AN⊥DF于点N,∵∠CAE=∠BAE,∠AOB=∠AOD,∴∠ADB=∠ABD,∴AD=AB,且∠ADF=∠ABF,∠AHB=∠AND=90°,∴△ABH≌△ADN(AAS)∴AN=AH,BH=DN,∵在Rt△ANF和Rt△AHF中,AN=AH,AF=AF,∴Rt△ANF≌Rt△AHF(HL)∴NF=FH,∵BF=BH+FH=DN+FH∴BF=DF+NF+FH=2FH+DF.。
2019-2020学年广东省广州市越秀区八年级下学期期末数学试卷 (解析版)

2019-2020学年广东省广州市越秀区八年级第二学期期末数学试卷一、选择题1.的计算结果是()A.2B.9C.6D.32.在下列计算中,正确的是()A.B.C.D.3.在体育中考跳绳项目中,某小组的8位成员跳绳次数如下:175、176、175、180、179、176、180、176,这组数据的众数为()A.175B.176C.179D.1804.若菱形的两条对角线长分别为8和6,则这个菱形的面积是()A.96B.48C.24D.125.在竞选班干部时,某同学表达能力、组织能力、责任心的得分分别是90分,80分,85分.若依次按20%,40%,40%的比例确定最终得分,则这个人的最终得分是()A.82分B.84分C.85分D.86分6.在下列各组数中,不能作为直角三角形的三边长的是()A.,,B.30,40,50C.1,,2D.5,12,137.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5B.2C.D.8.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长是36,OE=3,则四边形ABFE的周长为()A.21B.24C.27D.189.下列有关一次函数y=﹣2x+1的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>1C.函数图象与y轴的交点坐标为(0,1)D.函数图象经过第一、二、四象限10.如图1,四边形ABCD为一块矩形草坪,小明从点B出发,沿BC→CD→DA运动至点A停止.设小明运动路程为x,△ABP的面积为y,y关于x的函数图象如图2所示.矩形草坪ABCD的边CD的长度是()A.6B.8C.10D.14二.填空题11.二次根式有意义,则x的取值范围是.12.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若a=4,b=3,则大正方形的面积是.13.将直线y=2x向上平移1个单位长度后得到的直线是.14.数据﹣2、﹣1、0、1、2的方差是.15.如图,一次函数y=mx+n与一次函数y=kx+b的图象交于点A(1,2),则关于x的不等式mx+n>kx+b的解集是.16.如图,四边形ABCD是正方形,BC=,点G为边CD上一点,CG=1,以CG为边作正方形CEFG,对于下列结论:①正方形ABCD的面积是3;②BG=2;③∠FED=45°;④BG⊥DE.其中正确的结论是(请写出所有正确结论的序号).三、解答题17.计算:.18.如图,在△ABC中,AB=15,AC=20,BC=25.(1)求证:∠BAC=90°;(2)作AH⊥BC,H为垂足,求AH的长.19.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.20.为了解某小区使用共享单车的情况,某研究小组随机采访该小区10位居民,得到这10位居民一周内使用共享单车的次数分别是:16,12,15,22,16,0,7,27,16,9.(1)计算这10位居民一周内使用共享单车的平均次数;(2)这组数据的中位数是;(3)某位居民一周内使用共享单车15次,能不能说该居民一周内使用共享单车的次数处于所有被采访居民的中上水平?试说明理由.21.如图,在平面直角坐标系中,直线y=﹣2x+10与y轴交于点A,与x轴交于点B,另一条直线经过点A和点C(﹣2,8),且与x轴交于点D.(1)求直线AD的解析式;(2)求△ABD的面积.22.如图,△ABC中,AH⊥BC于点H,点D,E分别是AB,AC的中点,连接DH,EH,DE.(1)求证:AD=DH;(2)若四边形ADHE的周长是30,△ADE的周长是21,求BC的长.23.某公司计划组织员工到某地旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人2000元.经过协商:甲旅行社表示可给予每位游客七五折(按报价75%)优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折(按报价80%)优惠.设该公司参加旅游的人数是x人,选择甲旅行社所需费用为y1元,选择乙旅行社所需费用为y2元.请解答下列问题:(1)请分别写出y1,y2与x之间的关系式.(2)在甲、乙两家旅行社中,你认为选择哪家旅行社更划算?24.如图,已知直线y=﹣2x+8与坐标轴跟别交于A,B两点,与直线y=2x交于点C.(1)求点C的坐标;(2)若点P在y轴上,且,求点P的坐标;(3)若点M在直线y=2x上,点M横坐标为m,且m>2,过点M作直线平行于y轴,该直线与直线y=﹣2x+8交于点N,且MN=1,求点M的坐标.25.如图1,四边形ABCD是矩形,点O位于对角线BD上,将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.(1)求证:∠EDO=∠FBO;(2)求证:四边形DEBF是菱形:(3)如图2,若AD=2,点P是线段ED上的动点,求2AP+DP的最小值.参考答案一、选择题1.的计算结果是()A.2B.9C.6D.3【分析】求出的结果,即可选出答案.解:=3,故选:D.2.在下列计算中,正确的是()A.B.C.D.【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.解:=3﹣=2,故选项A正确;=1,故选项B错误;,故选项C错误;==,故选项D错误;故选:A.3.在体育中考跳绳项目中,某小组的8位成员跳绳次数如下:175、176、175、180、179、176、180、176,这组数据的众数为()A.175B.176C.179D.180【分析】根据众数的概念求解可得.解:这组数据中176出现3次,次数最多,所以众数为176,故选:B.4.若菱形的两条对角线长分别为8和6,则这个菱形的面积是()A.96B.48C.24D.12【分析】根据菱形的面积等于对角线乘积的一半计算即可.解:∵四边形ABCD是菱形,∴S=×6×8=24.故选:C.5.在竞选班干部时,某同学表达能力、组织能力、责任心的得分分别是90分,80分,85分.若依次按20%,40%,40%的比例确定最终得分,则这个人的最终得分是()A.82分B.84分C.85分D.86分【分析】根据题意和加权平均数的计算方法,可以计算出这个人的最终得分.解:90×20%+80×40%+85×40%=84(分),即这个人的最终得分是84分,故选:B.6.在下列各组数中,不能作为直角三角形的三边长的是()A.,,B.30,40,50C.1,,2D.5,12,13【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.解:A、()2+()2≠()2,不符合勾股定理的逆定理,故本选项符合题意;B、302+402=502,符合勾股定理的逆定理,故本选项不符合题意;C、12+()2=22,符合勾股定理的逆定理,故本选项不符合题意;D、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;故选:A.7.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5B.2C.D.【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.解:由勾股定理可知,∵OB=,∴这个点表示的实数是.故选:D.8.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长是36,OE=3,则四边形ABFE的周长为()A.21B.24C.27D.18【分析】先由ASA证明△AOE≌△COF,得OE=OF,AE=CF,再求得AB+BC=18,由平行四边形ABFE的周长=AB+AE+BF+EF=AB+BF+CF+2OE,即可求得答案.解:∵四边形ABCD为平行四边形,对角线的交点为O,∴AB=CD,AD=BC,OA=OC,AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,AE=CF,∵平行四边形ABCD的周长为36,∴AB+BC=×36=18,∴四边形ABFE的周长=AB+AE+BF+EF=AB+BF+CF+2OE=AB+BC+2×3=18+6=24故选:B.9.下列有关一次函数y=﹣2x+1的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>1C.函数图象与y轴的交点坐标为(0,1)D.函数图象经过第一、二、四象限【分析】根据一次函数的性质分别判断后即可确定正确的选项.解:A、∵k=﹣2<0,∴y的值随着x增大而减小,正确,不符合题意;B、∵k=﹣2<0,∴y的值随着x增大而减小,∴当x>0时,y<1,错误,符合题意;C、∵当x=0时,y=1,∴函数图象与y轴的交点坐标为(0,1),正确,不符合题意;D、∵k=﹣2<0,b=1>0,∴函数图象经过第一、二、四象限,正确,不符合题意,故选:B.10.如图1,四边形ABCD为一块矩形草坪,小明从点B出发,沿BC→CD→DA运动至点A停止.设小明运动路程为x,△ABP的面积为y,y关于x的函数图象如图2所示.矩形草坪ABCD的边CD的长度是()A.6B.8C.10D.14【分析】点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为6时,面积发生了变化,说明BC的长为6,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由6到14,说明CD的长为8.解:结合图形可以知道,P点在BC上,△ABP的面积为y增大,当x在6﹣﹣14之间得出,△ABP的面积不变,得出BC=6,CD=14﹣6=8,故选:B.二.填空题11.二次根式有意义,则x的取值范围是x≥5.【分析】根据二次根式的意义,被开方数是非负数列出方程,解方程即可.解:根据题意得:x﹣5≥0,解得x≥5.故答案为:x≥5.12.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若a=4,b=3,则大正方形的面积是25.【分析】求出大正方形的边长即可.解:由勾股定理可知大正方形的边长===5,∴大正方形的面积为25,故答案为25.13.将直线y=2x向上平移1个单位长度后得到的直线是y=2x+1.【分析】先判断出直线经过坐标原点,然后根据向上平移,横坐标不变,纵坐标加求出平移后与坐标原点对应的点,然后利用待定系数法求一次函数解析式解答.解:直线y=2x经过点(0,0),向上平移1个单位后对应点的坐标为(0,1),∵平移前后直线解析式的k值不变,∴设平移后的直线为y=2x+b,则2×0+b=1,解得b=1,∴所得到的直线是y=2x+1.故答案为:y=2x+1.14.数据﹣2、﹣1、0、1、2的方差是2.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.解:由题意可得,这组数据的平均数是:,∴这组数据的方差是:=2,故答案为:2.15.如图,一次函数y=mx+n与一次函数y=kx+b的图象交于点A(1,2),则关于x的不等式mx+n>kx+b的解集是x>1.【分析】观察函数图象得到当x>1时,直线y=mx+n在直线y=kx+b的上方,于是得到不等式mx+n>kx+b的解集.解:根据图象可知,不等式mx+n>kx+b的解集为x>1.故答案为:x>1.16.如图,四边形ABCD是正方形,BC=,点G为边CD上一点,CG=1,以CG为边作正方形CEFG,对于下列结论:①正方形ABCD的面积是3;②BG=2;③∠FED=45°;④BG⊥DE.其中正确的结论是①②④(请写出所有正确结论的序号).【分析】由正方形的性质可得BC=CD,∠BCD=90°,正方形ABCD的面积=BC2=3,可判断①;由勾股定理可求BG的长,可判断②;由正方形的性质可得∠GEF=45°,可判断③;由“SAS”可证△BCG≌△DCE,可得BH⊥DE,可判断④,即可求解.解:∵四边形ABCD是正方形,BC=,∴BC=CD,∠BCD=90°,正方形ABCD的面积=BC2=3,故①正确;∵BC=,CG=1,∴BG===2,故②正确,如图,连接GE,延长BG交DE于H,∵四边形CEFG是正方形,∴CG=CE,∠GCE=∠BCG=90°,∠GEF=45°,∵∠FED<∠GEF,∴∠FED<45°,故③错误,∵CG=CE,∠GCE=∠BCG=90°,BC=CD,∴△BCG≌△DCE(SAS),∴∠GBC=∠CDE,∵∠CDE+∠DEC=90°,∴∠GBC+∠DEC=90°,∴∠BHE=90°,∴BH⊥DE,故④正确,故答案为:①②④.三、解答题17.计算:.【分析】根据二次根式的乘除法和减法可以解答本题解:=﹣+2=2+.18.如图,在△ABC中,AB=15,AC=20,BC=25.(1)求证:∠BAC=90°;(2)作AH⊥BC,H为垂足,求AH的长.【分析】(1)根据勾股定理的逆定理求出即可;(2)设BH=x,则HC=25﹣x,由勾股定理得出方程152﹣x2=202﹣(25﹣x)2,求出x,再根据勾股定理求出AH即可.【解答】(1)证明:∵AB2+AC2=152+202=625,BC2=252=625,∴AB2+AC2=BC2,∴∠BAC=90°;(2)解:设BH=x,则HC=25﹣x,∵AH⊥BC,∴∠AHB=∠AHC=90°,在Rt△AHB和Rt△AHC中,由勾股定理得:AH2=AB2﹣BH2=AC2﹣CH2,即152﹣x2=202﹣(25﹣x)2,解得:x=10,即BH=10,由勾股定理得:AH===5.19.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.【分析】根据正方形的判定和性质定理即可得到结论.解:∵四边形ABCD是正方形,∴∠FDC=∠DCF=45°,∵∠E=90°,ED=EC,∴∠EDC=∠ECD=45°,∴∠FCE=∠FDE=∠E=90°,∴四边形DFCE是矩形,∵DE=CE,∴四边形DFCE是正方形.20.为了解某小区使用共享单车的情况,某研究小组随机采访该小区10位居民,得到这10位居民一周内使用共享单车的次数分别是:16,12,15,22,16,0,7,27,16,9.(1)计算这10位居民一周内使用共享单车的平均次数;(2)这组数据的中位数是15.5;(3)某位居民一周内使用共享单车15次,能不能说该居民一周内使用共享单车的次数处于所有被采访居民的中上水平?试说明理由.【分析】(1)根据平均数的概念,将所有数的和除以10即可;(2)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数;(3)用样本平均数估算总体的平均数.解:(1)根据题意得:×(0+7+9+12+15+16×3+22+27)=14(次),答:这10位居民一周内使用共享单车的平均次数是14次;(2)按照从小到大的顺序新排列后,第5、第6个数分别是15和16,所以中位数是(15+16)÷2=15.5,故答案为:15.5;(3)不能;∵15次小于中位数15.5次,∴某位居民一周内使用共享单车15次,不能说该居民一周内使用共享单车的次数处于所有被采访居民的中上水平.21.如图,在平面直角坐标系中,直线y=﹣2x+10与y轴交于点A,与x轴交于点B,另一条直线经过点A和点C(﹣2,8),且与x轴交于点D.(1)求直线AD的解析式;(2)求△ABD的面积.【分析】(1)先直线AB的解析式求出A点坐标,再根据点A与点C的坐标即可求得直线AD的解析式;(2)根据直线AB的解析式求得点B的坐标,根据直线AD的解析式求得点D的坐标,再根据点A的坐标即可求得△ABD的面积.解:(1)∵直线y=﹣2x+10与y轴交于点A,∴A(0,10).设直线AD的解析式为y=kx+b,∵直线AD过A(0,10),C(﹣2,8),∴,解得,∴直线AD的解析式为y=x+10;(2)∵直线y=﹣2x+10与x轴交于点B,∴B(5,0),∵直线AD与x轴交于点D,∴D(﹣10,0),∴BD=15,∵A(0,10),∴△ABD的面积=BD•OA=×15×10=75.22.如图,△ABC中,AH⊥BC于点H,点D,E分别是AB,AC的中点,连接DH,EH,DE.(1)求证:AD=DH;(2)若四边形ADHE的周长是30,△ADE的周长是21,求BC的长.【分析】(1)根据直角三角形的性质即可得到即可;(2)根据直角三角形的性质得到AD=DH=AB,AE=HE=AC,求得AD+AE=×30=15,得到DE=21﹣15=6,根据三角形中位线定理即可得到结论.解:(1)∵AH⊥BC,∴∠AHB=90°,∵点D是AB的中点,∴AD=DH=AB;(2)∵AH⊥BC,∴∠AHB=∠AHC=90°,∵点D,E分别是AB,AC的中点,∴AD=DH=AB,AE=HE=AC,∵四边形ADHE的周长是30,∴AD+AE=×30=15,∵△ADE的周长是21,∴DE=21﹣15=6,∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=12.23.某公司计划组织员工到某地旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人2000元.经过协商:甲旅行社表示可给予每位游客七五折(按报价75%)优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折(按报价80%)优惠.设该公司参加旅游的人数是x人,选择甲旅行社所需费用为y1元,选择乙旅行社所需费用为y2元.请解答下列问题:(1)请分别写出y1,y2与x之间的关系式.(2)在甲、乙两家旅行社中,你认为选择哪家旅行社更划算?【分析】(1)根据甲、乙旅行社的不同的优惠方案,可求出函数关系式,(2)根据(1)的结论列方程或不等式解答即可.解:(1)由题意,得y1=2000×75%×x=1500x,y2=2000×80%(x﹣1)=1600x﹣1600;(2)①当y1=y2时,即:1500x=1600x﹣1600,解得,x=160,②当y1>y2时,即:1500x>1600x﹣1600,解得,x<160,③当y1<y2时,即:1500x<1600x﹣1600,解得,x>160,答:当x<160时,乙旅行社费用较少,当x=160,时,两个旅行社费用相同,当x>160时,甲旅行社费用较少.24.如图,已知直线y=﹣2x+8与坐标轴跟别交于A,B两点,与直线y=2x交于点C.(1)求点C的坐标;(2)若点P在y轴上,且,求点P的坐标;(3)若点M在直线y=2x上,点M横坐标为m,且m>2,过点M作直线平行于y轴,该直线与直线y=﹣2x+8交于点N,且MN=1,求点M的坐标.【分析】(1)解析式联立,解方程组即可求得;(2)根据题意求得OP的长,从而求得P的坐标;(3)根据题意得到2m﹣(﹣2m+8)=1,求得m的值,即可求得M的坐标.解:(1)由,解得,∴点C的坐标为(2,4);(2)∵直线y=﹣2x+8与坐标轴跟别交于A,B两点,∴A(0,8),B(4,0),∴OA=8,∵点P在y轴上,且,∴OP=OA=4,∴P的坐标为(0,4)或(0,﹣4);(3)∵点M在直线y=2x上,点M横坐标为m,且m>2,∴M(m,2m),N(m,﹣2m+8),∵MN=1,∴2m﹣(﹣2m+8)=1,∴m=,∴点M的坐标为(,).25.如图1,四边形ABCD是矩形,点O位于对角线BD上,将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.(1)求证:∠EDO=∠FBO;(2)求证:四边形DEBF是菱形:(3)如图2,若AD=2,点P是线段ED上的动点,求2AP+DP的最小值.【分析】(1)由折叠的性质得出△ADE≌△ODE,△CFB≌△OFB,则∠ADE=∠ODE =ADB,∠CBF=∠OBF=∠CBD,则可得出结论;(2)证得四边形DEBF是平行四边形,由全等三角形的性质得出∠A=∠DOE=90°,则可得出结论;(3)过点P作PH⊥AD于点H,得出∠ADE=∠ODE=∠ODF=30°,得出2AP+PD =2PA+2PH=2(AP+PH),过点O作OM⊥AD,与DE的交点即是2AP+PD的值最小的点P的位置.而此时(2AP+PD)的最小值=2OM,求出OM的长,则可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠CBD,∵将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.∴△ADE≌△ODE,∴△CFB≌△OFB,∴∠ADE=∠ODE=∠ADB,∠CBF=∠OBF=∠CBD,∴∠EDO=∠FBO;(2)证明:∵∠EDO=∠FBO,∴DE∥BF,∵四边形ABCD是矩形,∴AB∥CD,AD=BC,∠A=90°,∵DE∥BF,AB∥CD,∴四边形DEBF是平行四边形,又∵△ADE△≌△ODE,∴∠A=∠DOE=90°,∴EF⊥BD,∴四边形DEBF是菱形;(3)解:过点P作PH⊥AD于点H,∵四边形DEBF是菱形,△ADE≌△ODE,∴∠ADE=∠ODE=∠ODF=30°,∴在Rt△DPH中,2PH=PD,∴2AP+PD=2PA+2PH=2(AP+PH),过点O作OM⊥AD,与DE的交点即是2AP+PD的值最小的点P的位置.而此时(2AP+PD)的最小值=2OM,∵△ADE≌△ODE,AD=2,∴AD=DO=2,在Rt△OMD中,∵∠ODA=2∠ADE=60°,∴∠DOM=30°,∴DM=DO=1,∵DM2+OM2=DO2,∴12+OM2=22,∴OM=,∴(2PA+PD)的最小值为2OM=2.。
2019-2020学年广东省广州市越秀区八年级上期末数学试卷及答案解析

17.(6分)先化简,再求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=﹣1,y=﹣2018.
18.(6分)解分式方程
(1) .
(2) .
19.(8分)因式分解:
(1)m3﹣16m
(2)9a2(x﹣y)+4b2(y﹣x)
20.(8分)某两个城中村A,B与两条公路l1,l2位置如图所示,因城市拆迁安置需要,在C处新建安置小区,要求小区与两个村A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图,找出所有符合条件的C点.(不写已知,求作,作法,只保留作图痕迹)
25.(12分)在△ABC中,∠ACB=90°,AC=BC,点O是AB的中点,点D是OB上的一点(点D不与点O,B重合).过点A,点B作直线CD的垂线,垂足分别为点E和点F.
(1)如图1,求证:EF=AE﹣BF;
(2)如图2,连接OEห้องสมุดไป่ตู้OF,请判断线段OE与OF之间的数量关系和位置关系,并说明理由.
(1)求证:AE=AF;
(2)求证:BE=CF;
(3)如果AB=12,AC=8,求AE的长.
24.(8分)某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买得的笔记本比打折前多10本.
(1)请利用分式方程求出每本笔记本的原来标价;
(2)恰逢文具店周年志庆,每本笔记本可以按原价打8折,这样该校最多可购入多少本笔记本?
12.如图,D、E、F分别为BC、AD、BE的中点,若△BFD的面积为6,则△ABC的面积等于.
13.已知:在一个直角三角形中30°角所对的直角边为3cm,则斜边长为.
2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷

2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷一、选择题:本题共有10小题,每小题3分,共30分.每小题给出的四个选项,只有一项是符合题目要求的. 1.(3分)已知一个三角形两边的长分别是2和5,那么第三边的边长可能是下列各数中的()A.1B.2C.3D.52.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.BC=AD C.∠C=∠D D.∠CAB=∠DBA3.(3分)下列运算正确的是()A.a2+a2=a4B.a3÷a=a3C.a2•a3=a5D.(a2)4=a64.(3分)要使分式有意义,则x的取值范围是()A.x≠﹣3B.x≠3C.x≠0D.x≠±35.(3分)下列变形从左到右一定正确的是()A.B.C.D.=6.(3分)如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上()根木条.A.1B.2C.3D.47.(3分)如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是()A.ASA B.SSS C.SAS D.AAS8.(3分)若等腰三角形中的一个外角等于130°,则它的顶角的度数是()A.50°B.80°C.65°D.50°或80°9.(3分)如图,AD∥BC,BG,AG分别平分∠ABC与∠BAD,GH⊥AB,GH=5,则AD与BC之间的距离是()A.5B.8C.10D.1510.(3分)若a,b,c是△ABC的三边长,且a2+b2+c2﹣ab﹣ac﹣bc=0,则△ABC的形状是()A.等腰三角形B.等腰直角三角形C.等边三角形D.不能确定二、填空题:本题共6小题,每小题3分,共18分.11.(3分)如果一个多边形的内角和是1800度,它是边形.12.(3分)若关于x的多项式x2+10x+k(k为常数是完全平方式,则k=.13.(3分)分式与的最简公分母是.14.(3分)若3m=5,3n=8,则32m+n=.15.(3分)点(﹣3,4)与点(a2,b2)关于y轴对称,则(a+b)(a﹣b)=.16.(3分)如图,△ABC是等边三角形,AD=AB,点E、F分别为边AC、BC上的动点,当△DEF的周长最小时,∠FDE的度数是.三、解答题:本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.(6分)解方程:.18.(8分)计算:(1)(﹣2x)3﹣3x(x﹣2x2)(2)[(x+2y)2﹣(x﹣2y)(x+2y)]÷4y19.(8分)分解因式:(1)a﹣6ab+9ab2(2)x2(x﹣y)+y2(y﹣x)20.(6分)如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.21.(10分)(1)先化简再求值:,其中x=﹣3;(2)如果a2+2a﹣1=0,求代数式的值.22.(8分)如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E.F、G分别是OA、OB上的点,且PF=PG,DF =EG.(1)求证:OC是∠AOB的平分线.(2)若PF∥OB,且PF=8,∠AOB=30°,求PE的长.23.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,点P是直线AC上的动点(不和A、C重合),CD⊥BP 于点D,交直线AB于点Q.(1)当点P在边AC上时,求证:AP=AQ(2)若点P在AC的延长线上时,(1)的结论是否成立?若成立,请画出图形(不写画法,画出示意图);若不成立,请直接写出正确结论.24.(8分)春节前夕,某超市用6000元购进了一批箱装饮料,上市后很快售完,接着又用8800元购进第二批这种箱装饮料.已知第二批所购箱装饮料的进价比第一批每箱多20元,且数量是第一批箱数的倍.(1)求第一批箱装饮料每箱的进价是多少元;(2)若两批箱装饮料按相同的标价出售,为加快销售,商家决定最后的10箱饮料按八折出售,如果两批箱装饮料全部售完利润率不低于36%(不考虑其他因素),那么每箱饮料的标价至少多少元?25.(10分)如图所示,点O是线段AC的中点,OB⊥AC,OA=9.(1)如图1,若∠ABO=30°,求证△ABC是等边三角形;(2)如图1,在(1)的条件下,若点D在射线AC上,点D在点C右侧,且△BDQ是等边三角形,QC的延长线交直线OB于点P,求PC的长度;(3)如图2,在(1)的条件下,若点M在线段BC上,△OMN是等边三角形,且点M沿着线段BC从点B运动到点C,点N随之运动,求点N的运动路径的长度.2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本题共有10小题,每小题3分,共30分.每小题给出的四个选项,只有一项是符合题目要求的. 1.【解答】解:设第三边的长度为x,由题意得:5﹣2<x<5+2,即:3<x<7,只有D选项在范围内.故选:D.2.【解答】解:A、当添加AC=BD时,且∠ABC=∠BAD,AB=BA,由“SSA”不能证得△ABC≌△BAD,故本选项符合题意;B、当添加BC=AD时,且∠ABC=∠BAD,AB=BA,由“SAS”能证得△ABC≌△BAD,故本选项不符合题意;C、当添加∠C=∠D时,且∠ABC=∠BAD,AB=BA,由“AAS”能证得△ABC≌△BAD,故本选项不符合题意;D、当添加∠CAB=∠DBA时,且∠ABC=∠BAD,AB=BA,由“ASA”能证得△ABC≌△BAD,故本选项不符合题意;故选:A.3.【解答】解:A、a2+a2=2a2,故A错误;B、a3÷a=a2,故B错误;C、a2•a3=a5,故C正确;D、(a2)3=a8,故D错误.故选:C.4.【解答】解:由题意得:x+3≠0,解得:x≠﹣3,故选:A.5.【解答】解:A、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故A错误;B、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,错误;C、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C错误;D、分子分母都除以x,分式的值不变,故D正确;故选:D.6.【解答】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;故选:C.7.【解答】解:在△OCE和△ODE中,,∴△OCE≌△ODE(SSS).故选:B.8.【解答】解:①当130°外角是底角的外角时,底角为:180°﹣130°=50°,∴顶角度数是180°﹣50°﹣50°=80°,②当130°外角是顶角的外角时,顶角为:180°﹣130°=50°,∴顶角为50°或80°.故选:D.9.【解答】解:作GE⊥AD于E,EG的延长线交BC于F,如图,∵AD∥BC,GE⊥AD,∴EF⊥BC,∵BG,AG分别平分∠ABC与∠BAD,∴GE=GH=5,GF=GH=5,∴EF=5+5=10,即AD与BC之间的距离为10.故选:C.10.【解答】解:已知等式整理得:2a2+2b2+2c2﹣2ab﹣2ac﹣2bc=0,即(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)=0,变形得:(a﹣b)2+(a﹣c)2+(b﹣c)2=0,∴a=b=c,则△ABC为等边三角形,故选:C.二、填空题:本题共6小题,每小题3分,共18分.11.【解答】解:这个正多边形的边数是n,则(n﹣2)•180°=1800°,解得:n=12,则这个正多边形是12.故答案为:12.12.【解答】解:∵关于x的多项式x2+10x+k是完全平方式,∴x2+10x+k=x2+2•x•5+52,∴k=52=25,故答案为:25.13.【解答】解:分式与的最简公分母是6a3b4c,故答案为:6a3b4c.14.【解答】解:∵3m=5,3n=8,∴32m+n=(3m)2×3n=52×8=200.故答案为:200.15.【解答】解:∵点(﹣3,4)与点(a2,b2)关于y轴对称,∴a2=3,b2=4,解得a=±,b=±2.∴(a+b)(a﹣b)=(+2)(﹣2)=3﹣4=﹣1;或(a+b)(a﹣b)=(﹣2)(+2)=3﹣4=﹣1;或(a+b)(a﹣b)=(﹣+2)(﹣﹣2)=3﹣4=﹣1;或(a+b)(a﹣b)=(﹣﹣2)(﹣+2)=3﹣4=﹣1.故答案为:﹣1.16.【解答】解:作D关于AC的对称点G,D关于BC的对称点H,连接GH交AC于E交BC于F,则此时,△DEF的周长最小,∵∠A=∠B=60°,DG⊥AC,DH⊥BC,∴∠ADG=∠BDH=30°,∴∠GDH=120°,∴∠H+∠G=60°,∵EG=ED,DF=HF,∴∠G=∠GDE,∠H=∠HDF,∴∠HDF+∠GDE=60°,∴∠FDE=60°,故答案为:60°.三、解答题:本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤. 17.【解答】解:去分母得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,检验:当x=2时,(x+1)(x﹣1)≠0,∴原分式方程的解是x=2.18.【解答】解:(1)(﹣2x)3﹣3x(x﹣2x2)=﹣8x3﹣3x2+6x3=﹣2x3﹣3x2;(2)[(x+2y)2﹣(x﹣2y)(x+2y)]÷4y=(x2+4y2+4xy﹣x2+4y2)÷4y=(8y2+4xy)÷4y=x+2y.19.【解答】解:(1)原式=a(1﹣6b+9b2)=a(1﹣3b)2;(2)原式=x2(x﹣y)﹣y2(x﹣y)=(x﹣y)2(x+y).20.【解答】解:∵∠1=∠2,∠3=∠4,而∠3=∠1+∠2,∴∠3=∠4=∠1+∠2=2∠1,在△ADC中,∠DAC+∠3+∠4=180°,∴∠DAC+4∠1=180°,∵∠BAC=∠1+∠DAC=69°,∴∠1+180°﹣4∠1=69°,解得∠1=37°,∴∠DAC=69°﹣37°=32°.21.【解答】解:(1)原式=•=•=,当x=﹣3时,原式=﹣2;(2)∵a2+2a﹣1=0,∴a2+2a=1,则原式=•=•=a2+2a=1.22.【解答】解:(1)证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.(2)∵PF∥OB,∠AOB=30°,∴∠PFD=∠AOB=30°,在Rt△PDF中,.23.【解答】解:(1)∵CD⊥BP∴∠BAC=∠BDQ=90°∴∠Q+∠QBD=90°,∠Q+∠ACQ=90°,∴∠QBD=∠ACQ,且AB=AC,∠BAC=∠QAC=90°,∴△ABP≌△ACQ(ASA)∴AP=AQ;(2)成立理由如下:如图,∵CD⊥BP∴∠BAC=∠BDQ=90°∴∠Q+∠QBD=90°,∠Q+∠ACQ=90°,∴∠QBD=∠ACQ,且AB=AC,∠BAC=∠QAC=90°,∴△ABP≌△ACQ(ASA)∴AP=AQ;24.【解答】解:(1)该第一批箱装饮料每箱的进价是x元,则第二批购进(x+20)元,根据题意,得解得:x=200(2)设每箱饮料的标价为y元,根据题意,得(30+40﹣10)y+0.8×10y≥(1+36%)(6000+8800)解得:y≥296答:至少标价296元.25.【解答】解:(1)∵∠ABO=30°,OB⊥AC,∴∠BAO=60°,∵O是线段AC中点,OB⊥AC,∴BA=BC,又∠BAO=60°,∴△ABC是等边三角形;(2)∵△ABC和△BDQ为等边三角形,∴BA=BC,BD=BQ,∠BAC=60°,∠DBQ=60°,∴∠ABD=∠CBQ,在△BAD和△BCQ中,,∴△BAD≌△BCQ(SAS)∴∠BCQ=∠BAD=60°,∵∠BCA=60°,∴∠OCP=60°,∵∠POC=90°,∴∠OPC=30°,∴PC=2OC=18;(3)取BC的中点H,连接OH,连接CN,则OH=BC=BH=CH,∴△HOC为等边三角形,∴∠HOC=∠OHC=60°,OH=OC,当M在BH上时,∠MON=60°,∠HOC=60°,∴∠MOH=∠NOC,在△OMH和△ONC中,,∴△OMH≌△ONC(SAS),∴∠OCN=∠OHM=120°,当点M与点B重合时,在△OBC和△N′BC中,,∴△OBC≌△N′BC(SAS)∴∠BCN′=∠BCO=60°,∴∠OCN′=120°,即C、N、N′在同一条直线上,∴CN′=OC=9,∴点N从起点到C作直线运动路径为9,当M在HC上时,△OCN为等边三角形,∴CN=OC=9,∴点N从C到终点作直线运动路径长为9综上所述,N的路径长度为:9+9=18.。
2019-2020年广州市越秀区八年级上册期末数学试卷(有答案)

广东省广州市越秀区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列微信按钮图标中,是轴对称图形的是()A. B. C.D.2.(3分)已知三角形的两边长分别为6,11,那么第三边的长可以是()A.3 B.4 C.5 D.63.(3分)下列计算正确的是()A.•3=4B.4+4=8C.(2)3=5D.﹣1=﹣4.(3分)分式﹣可变形为()A.﹣B.C.﹣D.5.(3分)下列从左到右的运算是因式分解的是()A.22﹣2﹣1=2(﹣1)﹣1 B.4a2+4a+1=(2a+1)2C.(a+b)(a﹣b)=a2﹣b2D.2+y2=(+y)2﹣2y6.(3分)若分式有意义,则的取值范围是()A.≠2 B.≠±2 C.≠﹣2 D.≥﹣27.(3分)计算a﹣2b2•(a2b﹣2)﹣2正确的结果是()A. B.C.a6b6 D.8.(3分)如图,已知∠ABD=∠BAC,添加下列条件还不能判定△ABC≌△BAD的依据是()A.AC=BD B.∠DAB=∠CBA C.∠C=∠D D.BC=AD9.(3分)若一个凸多边形的每一个外角都等于36°,则这个多边形的内角和是()A.1080° B.1260°C.1440°D.1620°10.(3分)如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.△BDF≌△CDEC.点D在∠BAC的平分线上D.点D是CF的中点二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)科学家发现一种病毒直径为0.00023微米,则这种病毒的直径用科学记数法可以表示为微米.12.(3分)方程的解为= .13.(3分)如图,在△ABC中,AB=AC,AD是BC边上的高,BD=4cm,则BC= cm.14.(3分)运用完全平方公式计算:(﹣3+2)2= .15.(3分)如图,在△ABC中,BD⊥AD,∠A=15°,AC=BC=6,则BD的长是.16.(3分)如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB交AB的延长线于E,DF⊥AC于F,现有下列结论:①DE⊥DF;②DE+DF=AD;③DM平分∠EDF;④AB+AC=2AE;其中正确的有.(填写序号)三、解答题(本大题共9小题,共102分)17.(8分)如图,△ABC三个顶点的坐标分别为A(﹣4,﹣2),B(﹣1,﹣1),C(﹣1,﹣4).(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)在轴上作出一点P,使PA+PB的值最小(保留作图痕迹)18.(6分)计算:(2y+)(﹣2y)﹣(23y+4y3)÷2y.19.(8分)分解因式:(1)4m3n﹣mn3(2)(﹣1)(﹣3)+1.20.(8分)先化简(﹣)÷,然后从﹣3,0,1,3四个数中选择一个适当的数作为a的值代入求值.21.(8分)如图,在△ABC中,BD平分∠ABC,CE平分∠ACB,BD与CE相交于点O,∠BOC=119°.(1)求∠OBC+∠OCB的度数;(2)求∠A的度数.22.(8分)如图,点G.H分别是正六边形ABCDEF的边BC.CD上的点,且BG=CH,AG交BH 于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.23.(8分)如图,在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线.(1)求证:△BCD是等腰三角形;(2)若△ABD的周长是a,BC=b,求△BCD的周长.(用含a,b的代数式表示)24.(8分)某车间有甲乙两个小组,甲组的工作效率比乙组的工作效率高20%,甲组加工2700个零件所用的时间比乙组加工2000个零件所用的时间多半小时,求甲乙两组每小时各加工零件多少个?25.(10分)在△ABC中,∠BAC=90°,射线AM∥BC,点D在射线AM上(不与点A重合),连接BD,过点D作BD的垂线交CA的延长线于点P(1)如图①,若∠C=30°,且AB=DB,求∠APD的度数;(2)如图②,若∠C=45°,当点D在射线AM上运动时,PD与BD之间有怎样的数量关系?请写出你的结论,并加以证明;(3)如图③,在(2)的条件下,连接BP,设BP与射线AM的交点为Q,∠AQP=α,∠APD=β,当点D在射线AM上运动时,α与β之间有怎样的数量关系?请写出你的结论,并加以证明.广东省广州市越秀区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列微信按钮图标中,是轴对称图形的是()A. B. C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.2.(3分)已知三角形的两边长分别为6,11,那么第三边的长可以是()A.3 B.4 C.5 D.6【解答】解:设第三边长为,由题意得:11﹣6<<11+6,解得:5<<17.故选:D.3.(3分)下列计算正确的是()A.•3=4B.4+4=8C.(2)3=5D.﹣1=﹣【解答】解:A、•3=4,正确;B、4+4=24,故此选项错误;C、(2)3=6,故此选项错误;D、﹣1=,故此选项错误;故选:A.4.(3分)分式﹣可变形为()A.﹣B.C.﹣D.【解答】解:﹣==.故选:B.5.(3分)下列从左到右的运算是因式分解的是()A.22﹣2﹣1=2(﹣1)﹣1 B.4a2+4a+1=(2a+1)2C.(a+b)(a﹣b)=a2﹣b2D.2+y2=(+y)2﹣2y【解答】解:A、没把一个多项式转化成几个整式积的形式,故本选项错误;B、把一个多项式转化成几个整式积的形式,故本选项正确;C、是整式的乘法,故本选项错误;D、没把一个多项式转化成几个整式积的形式,故本选项错误;故选:B.6.(3分)若分式有意义,则的取值范围是()A.≠2 B.≠±2 C.≠﹣2 D.≥﹣2【解答】解:∵分式有意义,∴2﹣4≠0,解得:≠±2,则的取值范围是:≠±2.故选:B.7.(3分)计算a﹣2b2•(a2b﹣2)﹣2正确的结果是()A. B.C.a6b6 D.【解答】解:a﹣2b2•(a2b﹣2)﹣2=×=,故选:B.8.(3分)如图,已知∠ABD=∠BAC,添加下列条件还不能判定△ABC≌△BAD的依据是()A.AC=BD B.∠DAB=∠CBA C.∠C=∠D D.BC=AD【解答】解:由题意得,∠ABD=∠BAC,A、在△ABC与△BAD中,,∴△ABC≌△BAD(SAS);故A正确;B、在△ABC与△BAD中,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,BC=AD,AB=BA,∠BAC=∠ABD(SSA),△ABC与△BAD不全等,故错误;故选:D.9.(3分)若一个凸多边形的每一个外角都等于36°,则这个多边形的内角和是()A.1080° B.1260°C.1440°D.1620°【解答】解:360°÷36°=10,(10﹣2)•180°=1440°.所以多边形的内角和为1440°.故选:C.10.(3分)如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.△BDF≌△CDEC.点D在∠BAC的平分线上D.点D是CF的中点【解答】解:A、∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;B∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(AAS),正确;C、∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;D、无法判定,错误;故选:D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)科学家发现一种病毒直径为0.00023微米,则这种病毒的直径用科学记数法可以表示为 2.3×10﹣4微米.【解答】解:0.00023微米,则这种病毒的直径用科学记数法可以表示为2.3×10﹣4微米,故答案为:2.3×10﹣4.12.(3分)方程的解为= ﹣3 .【解答】解:方程两边同乘以(﹣3),得2=﹣3,解得=﹣3.经检验:=﹣3是原方程的解.13.(3分)如图,在△ABC中,AB=AC,AD是BC边上的高,BD=4cm,则BC= 8 cm.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD=4cm,∴BC=BD+CD=8cm.故答案为8,14.(3分)运用完全平方公式计算:(﹣3+2)2= 92﹣12+4 .【解答】解:原式=92﹣12+4,故答案为:92﹣12+415.(3分)如图,在△ABC中,BD⊥AD,∠A=15°,AC=BC=6,则BD的长是 3 .【解答】解:如图,∵在△ABC中,∠A=15°,AC=BC,∴∠A=∠CBA=15°,∴∠BCD=∠A+∠CBA=30°.又BD ⊥AD ,AC=BC=6,∴BC=BC=×6=3.故答案是:3.16.(3分)如图,△ABC 中,∠BAC=60°,∠BAC 的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE ⊥AB 交AB 的延长线于E ,DF ⊥AC 于F ,现有下列结论:①DE ⊥DF ;②DE+DF=AD ;③DM 平分∠EDF ;④AB+AC=2AE ;其中正确的有 ①②④ .(填写序号)【解答】解:如图所示:连接BD 、DC .①∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴ED=DF .故①正确.②∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=AD.同理:DF=AD.∴DE+DF=AD.故②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠ADF,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC是否等于90°不知道,∴不能判定MD平分∠ADF.故③错误.④∵DM是BC的垂直平分线,∴DB=DC.在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD.∴BE=FC.∴AB+AC=AE﹣BE+AF+FC又∵AE=AF,BE=FC,∴AB+AC=2AE.故④正确.故答案为①②④三、解答题(本大题共9小题,共102分)17.(8分)如图,△ABC三个顶点的坐标分别为A(﹣4,﹣2),B(﹣1,﹣1),C(﹣1,﹣4).(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)在轴上作出一点P,使PA+PB的值最小(保留作图痕迹)【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:点P即为所求.18.(6分)计算:(2y+)(﹣2y)﹣(23y+4y3)÷2y.【解答】解:(2y+)(﹣2y)﹣(23y+4y3)÷2y=2﹣4y2﹣2﹣2y2=﹣6y2.19.(8分)分解因式:(1)4m3n﹣mn3(2)(﹣1)(﹣3)+1.【解答】解:(1)原式=mn(4m2﹣n2)=mn(2m+n)(2m﹣n);(2)原式=2﹣4+3+1=2﹣4+4=(﹣2)2.20.(8分)先化简(﹣)÷,然后从﹣3,0,1,3四个数中选择一个适当的数作为a 的值代入求值.【解答】解:原式=﹣•=3a ﹣9﹣2a ﹣6=a ﹣15,当a=1时,原式=﹣14.21.(8分)如图,在△ABC 中,BD 平分∠ABC ,CE 平分∠ACB ,BD 与CE 相交于点O ,∠BOC=119°. (1)求∠OBC+∠OCB 的度数;(2)求∠A 的度数.【解答】解:(1)∵∠BOC=119°∴△BCO 中,∠OBC+∠OCB =180°﹣∠BOC=61°;(2)∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠ABC+∠ACB=2∠OBC+2∠OCB=2(∠OBC+∠OCB )=122°,∴△ABC 中,∠A=180°﹣122°=58°.22.(8分)如图,点G .H 分别是正六边形ABCDEF 的边BC .CD 上的点,且BG=CH ,AG 交BH 于点P .(1)求证:△ABG ≌△BCH ;(2)求∠APH 的度数.【解答】(1)证明:∵在正六边形ABCDEF中,AB=BC,∠ABC=∠C=120°,在△ABG与△BCH中,∴△ABG≌△BCH;(2)由(1)知:△ABG≌△BCH,∴∠BAG=∠HBC,∴∠BPG=∠ABG=120°,∴∠APH=∠BPG=120°.23.(8分)如图,在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线.(1)求证:△BCD是等腰三角形;(2)若△ABD的周长是a,BC=b,求△BCD的周长.(用含a,b的代数式表示)【解答】(1)证明:∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵DE是AC的垂直平分线,∴AD=DC,∴∠ACD=∠A=36°,∵∠CDB是△ADC的外角,∴∠CDB=∠ACD+∠A=72°,∴∠B=∠CDB,∴CB=CD,∴△BCD是等腰三角形;(2)∵AD=BD=CB=b,△ABD的周长是a,∴AB=a﹣2b,∵AB=AC,∴CD=a﹣3b,∴△BCD的周长长=CD+BD+BC=a﹣3b+b+b=a﹣b.24.(8分)某车间有甲乙两个小组,甲组的工作效率比乙组的工作效率高20%,甲组加工2700个零件所用的时间比乙组加工2000个零件所用的时间多半小时,求甲乙两组每小时各加工零件多少个?【解答】解:设乙组每小时加工的零件数为个,则甲组每小时加工零件数为(1+20%)个.根据题意得: =+,解得:=500,经检验,=500是原方程的解,(1+20%)=600,答:甲每小时加工600个零件,乙每小时加工500个零件.25.(10分)在△ABC中,∠BAC=90°,射线AM∥BC,点D在射线AM上(不与点A重合),连接BD,过点D作BD的垂线交CA的延长线于点P(1)如图①,若∠C=30°,且AB=DB,求∠APD的度数;(2)如图②,若∠C=45°,当点D在射线AM上运动时,PD与BD之间有怎样的数量关系?请写出你的结论,并加以证明;(3)如图③,在(2)的条件下,连接BP,设BP与射线AM的交点为Q,∠AQP=α,∠APD=β,当点D在射线AM上运动时,α与β之间有怎样的数量关系?请写出你的结论,并加以证明.【解答】解:(1)如图①中,∵∠BAC=90°,∠C=30°,∴∠ABC=90°﹣30°=60°,∵AM∥BC,∴∠DAB=∠ABC=60°,∵BD=BA,∴△ABD是等边三角形,∴∠ABD=60°,∵∠PDB+∠PAB=180°,∴∠APD+∠ABD=180°,∴∠APD=120°.(2)如图②中,结论:DP=DB.理由:作DM⊥CP于M,DN⊥AB于N.∵∠BAC=90°,∠C=45°,∴∠ABC=∠C=45°,∵AM∥BC,∴∠DAM=∠C=45°,∠DAN=∠ABC=45°,∴AM平分∠BAP,∵DM⊥CP于M,DN⊥AB于N,∴DM=DN,∵∠APD+∠DPM=180°,∠APD+∠DBN=180°,∴∠DPM=∠DBN,在△DMP和△DNB中,,∴△DMP≌△DNB,∴DP=DB.(3)结论:α+β=180°.理由:如图③中,由(2)可知,∠DAP=∠DAB=45°,∵∠PDB+∠BAP=180°,∴A、B、D、P四点共圆,∴∠DPQ=∠BAQ=45°,∵∠1=∠2+∠DPB=∠2+45°,∠3=∠2+∠DAP=∠2+45°,∴∠1=∠3,∵∠3+∠APD=180°,∴∠1+∠APD=180°,即α+β=180.。
2020-2021学年 广东省广州市越秀区二中八年级(上)期中数学试卷(解析版)
2020-2021学年广东省广州市越秀区二中八年级第一学期期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.在以下节水、节能、回收、绿色食品四个标志中,是轴对称图形的是()A.B.C.D.2.一个三角形的两边长分别为3cm和8cm,则此三角形第三边长可能是()A.3cm B.5cm C.7cm D.11cm3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°4.如图,直线m是五边形ABCDE的对称轴,其中∠A=130°,∠B=110°,那么∠BCD 等于()A.40°B.50°C.60°D.70°5.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DEF()A.BC=EF B.AC=DF C.AC∥DF D.∠A=∠D6.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°7.若一个多边形的每个内角都为144°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形8.如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠C′BD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC′一定是全等三角形9.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm10.如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC 于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+∠C;②AE+BF=EF;③当∠C=90°时,E,F分别是AC,BC的中点;④若OD=a,CE+CF=2b,则S△CEF=ab.其中正确的是()A.①②B.③④C.①②④D.①③④二、填空题(本大题共6小题,每小题3分,共18分)11.在平面直角坐标系中,点(﹣3,5)关于x轴对称的点的坐标为.12.已知等腰三角形的两边长分别为5cm和8cm,则等腰三角形的周长为.13.如图,在△ABC中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC=8cm2,则图中阴影部分△BEF的面积等于cm2.14.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.15.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是.16.如图,在平面直角坐标系中,直线l与x轴交于点B1,与y轴交点于D,且OB1=1,∠ODB1=60°,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长坐等三角形A3A2B3,…,则点A10的横坐标是.三、解答题(本大题共7题,共72分,解答应写出文字说明、证明过程或演算步骤.). 17.如图,已知∠AOB和两点M、N,试确定一点P,使得P到射线OA、OB的距离相等,并且到点M、N的距离也相等.(尺规作图:不写作法)18.如图,在平面直角坐标系中,Rt△ABC的三个顶点均在边长为1的正方形网格上.(1)画出△ABC关于y轴对称的图形△A′B′C′,并写出A′,B′,C′的坐标;(2)若点D在图中所给网格中的格点上,且以A,B,D为顶点的三角形为等腰直角三角形,请直接写出点D的坐标.19.如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E (1)若∠A=40°,求∠DCB的度数;(2)若AE=5,△DCB的周长为16,求△ABC的周长.20.如图,AB=CD,AE⊥BC,DF⊥BC,CE=BF.求证:AB∥CD.21.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.(1)求证:△ADC≌△BEA;(2)若PQ=4,PE=1,求AD的长.22.两个三角形有两组边对应相等,并且其中一组相等的边所对的角也相等,如果这两个三角形不全等,我们称它们互为“伴生三角形”,相等的边所对的相等的角称为“伴生角”.如图,AB=A′B′,AC=A′C′,∠B=∠B',但△ABC和△A′B′C′不全等,则称△ABC和△A′B′C′互为“伴生三角形”,∠B与∠B'称为“伴生角”.(1)若某三角形的两个内角为30°和50°,请直接写出这个三角形的伴生三角形的三个内角的度数;(2)若互为伴生三角形的两个三角形都是等腰三角形,求伴生角的度数.23.如图,△ABC中∠ACB是钝角,点P在边BC的垂直平分线上.(1)如图1,若点P也在边AC的垂直平分线上,且∠ACB=110°,求∠APB的度数;(2)如图2,若点P也在∠BAC的外角平分线上,过点P作PH⊥AB于H,试找出线段AB、AH、AC之间的数量关系,并说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在以下节水、节能、回收、绿色食品四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.故选:D.2.一个三角形的两边长分别为3cm和8cm,则此三角形第三边长可能是()A.3cm B.5cm C.7cm D.11cm【分析】根据已知边长求第三边x的取值范围为:5<x<11,因此只有选项C符合.解:设第三边长为xcm,则8﹣3<x<3+8,5<x<11,故选:C.3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【分析】根据全等三角形对应角相等可知∠α是b、c边的夹角,然后写出即可.解:∵两个三角形全等,∴∠α的度数是72°.故选:A.4.如图,直线m是五边形ABCDE的对称轴,其中∠A=130°,∠B=110°,那么∠BCD 等于()A.40°B.50°C.60°D.70°【分析】首先依据轴对称图形的性质可求得∠E、∠D的度数,再用五边形的内角和减去∠A、∠B、∠E、∠D的度数即可.解:∵直线m是多边形ABCDE的对称轴,∠A=130°,∠B=110°,∴∠A=∠E=130°,∠B=∠D=110°,∵∠A+∠B+∠BCD+∠D+∠E=(5﹣2)180°=540°,∴∠BCD=540°﹣(∠A+∠B+∠D+∠E)=540°﹣130°×2﹣110°×2=60°.故选:C.5.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DEF()A.BC=EF B.AC=DF C.AC∥DF D.∠A=∠D【分析】由BE=CF可得BC=EF,然后再利用全等三角形的判定方法分别进行分析即可.解:A、添加BC=EF不能证明△ABC≌△DEF,故此选项错误;B、添加AC=DF可利用SSS判定△ABC≌△DEF,故此选项正确;C、添加AC∥DF可得∠ACB=∠F,不能证明△ABC≌△DEF,故此选项错误;D、添加∠A=∠D不能证明△ABC≌△DEF,故此选项错误;故选:B.6.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°【分析】根据内角与相邻的外角的和等于180°求出∠A,再根据等腰三角形两底角相等解答.解:∵∠A的相邻外角是70°,∴∠A=180°﹣70°=110°,∵△ABC为等腰三角形,∴∠B=(180°﹣110°)=35°.故选:B.7.若一个多边形的每个内角都为144°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【分析】先求出每一个外角的度数,再根据边数=360°÷一个外角的度数计算即可.解:180°﹣144°=36°,360°÷36°=10,故这个多边形的边数是10.故选:D.8.如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠C′BD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC′一定是全等三角形【分析】根据题意结合图形可以证明EB=ED,进而证明△ABE≌△C′DE;此时可以判断选项A、B、D是成立的,问题即可解决.解:由题意得:△BC′D≌△BFD,∴DC′=DF,∠C′=∠C=90°;∠C′BD=∠CBD;又∵四边形ABCD为矩形,∴∠A=∠F=90°;DE∥BF,AB=DF;∴∠EDB=∠FBD,DC′=AB;∴∠EDB=∠C′BD,∴EB=ED,△EBD为等腰三角形;在△ABE与△CDE中,∵,∴△ABE≌△C′DE(HL);又∵△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形;综上所述,选项A、C、D成立,∴下列说法错误的是B,故选:B.9.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm【分析】连接AM、AN、过A作AD⊥BC于D,求出AB、AC值,求出BE、CF值,求出BM、CN值,代入MN=BC﹣BM﹣CN求出即可.解:连接AM、AN、过A作AD⊥BC于D,∵在△ABC中,AB=AC,∠A=120°,BC=6cm,∴∠B=∠C=30°,BD=CD=3cm,∴AB==2cm=AC,∵AB的垂直平分线EM,∴BE=AB=cm同理CF=cm,∴BM==2cm,同理CN=2cm,∴MN=BC﹣BM﹣CN=2cm,故选:C.10.如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC 于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+∠C;②AE+BF=EF;③当∠C=90°时,E,F分别是AC,BC的中点;④若OD=a,CE+CF=2b,则S△CEF=ab.其中正确的是()A.①②B.③④C.①②④D.①③④【分析】根据角平分线的定义和三角形内角和定理判断①;根据角平分线的定义和平行线的性质判断②;根据三角形三边关系判断③;关键角平分线的性质判断④.解:∵∠BAC和∠ABC的平分线相交于点O,∴∠OBA=∠CBA,∠OAB=∠CAB,∴∠AOB=180°﹣∠OBA﹣∠OAB=180°﹣∠CBA﹣∠CAB=180°﹣(180°﹣∠C)=90°+∠C,①正确;∵EF∥AB,∴∠FOB=∠ABO,又∠ABO=∠FBO,∴∠FOB=∠FBO,∴FO=FB,同理EO=EA,∴AE+BF=EF,②正确;当∠C=90°时,AE+BF=EF<CF+CE,∴E,F不是AC,BC的中点,③错误;作OH⊥AC于H,∵∠BAC和∠ABC的平分线相交于点O,∴点O在∠C的平分线上,∴OD=OH,∴S△CEF=×CF×OD×CE×OH=ab,④正确.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)11.在平面直角坐标系中,点(﹣3,5)关于x轴对称的点的坐标为(﹣3,﹣5).【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.解:在平面直角坐标系中,点(﹣3,5)关于x轴对称的点的坐标为(﹣3,﹣5),故答案为:(﹣3,﹣5).12.已知等腰三角形的两边长分别为5cm和8cm,则等腰三角形的周长为18cm或21cm.【分析】等腰三角形两边的长为5cm和8cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.解:①当腰是5cm,底边是8cm时,能构成三角形,则其周长=5+5+8=18cm;②当底边是5cm,腰长是8cm时,能构成三角形,则其周长=5+8+8=21cm.故答案为:18cm或21cm.13.如图,在△ABC中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC=8cm2,则图中阴影部分△BEF的面积等于2cm2.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×8=4,∴S△BCE=S△ABC=4,∵点F是CE的中点,∴S△BEF=S△BCE=×4=2(cm2).故答案为:2.14.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.【分析】连接AD,利用三角形内角和定理可得∠B+∠C=∠1+∠2,然后利用四边形内角和为360°可得答案.解:连接AD,在△AOD和△BOC中,∵∠AOD=∠BOC,∴∠B+∠C=∠1+∠2,∴∠B+∠C+∠BAF+∠EDF=∠1+∠2+∠BAF+∠EDF=∠EDA+∠FAD,∵∠EDA+∠FAD+∠E+∠F=360°,∴∠BAF+∠EDF+∠B+∠C+∠E+∠F=360°,故答案为:360°.15.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是3.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,×4×2+×AC×2=7,解得AC=3.故答案为3.16.如图,在平面直角坐标系中,直线l与x轴交于点B1,与y轴交点于D,且OB1=1,∠ODB1=60°,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长坐等三角形A3A2B3,…,则点A10的横坐标是.【分析】先根据OB1=1,∠ODB1=60°,可得B1(1,0),∠OB1D=30°,D(0,﹣).再过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A10的横坐标.解:∵OB1=1,∠ODB1=60°,∴OD==,B1(1,0),∠OB1D=30°,∴D(0,﹣),如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A10的横坐标是=,故答案为.三、解答题(本大题共7题,共72分,解答应写出文字说明、证明过程或演算步骤.). 17.如图,已知∠AOB和两点M、N,试确定一点P,使得P到射线OA、OB的距离相等,并且到点M、N的距离也相等.(尺规作图:不写作法)【分析】作线段MN的垂直平分线EF,作∠AOB的角平分线OT,射线OT交直线EF 于点P,点P即为所求.解:如图,点P即为所求.18.如图,在平面直角坐标系中,Rt△ABC的三个顶点均在边长为1的正方形网格上.(1)画出△ABC关于y轴对称的图形△A′B′C′,并写出A′,B′,C′的坐标;(2)若点D在图中所给网格中的格点上,且以A,B,D为顶点的三角形为等腰直角三角形,请直接写出点D的坐标.【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接;(2)根据图形可得,点D的坐标为(2,4)或(2,1)或(﹣4,4)或(﹣4,1).解:(1)所作图形如图所示:;(2)点D的坐标为(2,4)或(2,1)或(﹣4,4)或(﹣4,1).19.如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E (1)若∠A=40°,求∠DCB的度数;(2)若AE=5,△DCB的周长为16,求△ABC的周长.【分析】(1)根据等腰三角形的性质和三角形内角和定理求出∠ACB的度数,根据线段的垂直平分线的性质求出∠DCA的度数,计算即可;(2)根据线段的垂直平分线的性质和三角形的周长公式求出BC+AB=16,计算即可.解:(1)∵AB=AC,∠A=40°,∴∠ACB=∠B=70°,∵DE是AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=40°,∴∠DCB=30°;(2)∵DE是AC的垂直平分线,∴DA=DC,EC=AE=5,△DCB的周长=BC+BD+DC=BC+BD+DA=BC+AB=16,则△ABC的周长=AB+BC+AC=26.20.如图,AB=CD,AE⊥BC,DF⊥BC,CE=BF.求证:AB∥CD.【分析】证明△CFD≌△BEA,根据全等三角形的性质得到∠C=∠B,根据平行线的性质证明结论.解:∵CE=BF,∴CE+EF=BF+EF,即CF=BE,∵AE⊥BC,DF⊥BC,∴∠CFD=∠BEA=90°,在Rt△CFD和Rt△BEA中,,∴Rt△CFD≌Rt△BEA(HL),∴∠C=∠B,∴AB∥CD.21.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.(1)求证:△ADC≌△BEA;(2)若PQ=4,PE=1,求AD的长.【分析】(1)根据等边三角形的性质就可以得出AB=BC=AC,∠BAC=∠C=60°,就可以得出△ADC≌△BEA;(2)由△ADC≌△BEA就可以得出∠DAC=∠EBA,AD=BE.既可以得出∠BPQ=60°,就可以求出PB的值,进而求出BE的值而得出结论解:(1)证明:∵△ABC是等边三角形,∴AC=AB,∠C=∠BAE=60°,在△ADC与△BEA中,,∴△ADC≌△BEA(SAS);(2)∵△ADC≌△BEA,∴∠DAC=∠EBA,AD=BE.∵∠BPQ=∠BAP+∠ABP,∴∠BPQ=∠BAP+∠DAC=60°.∵BQ⊥AD,∴∠BQP=90°.∴∠PBQ=30°∴BP=2PQ.∵PQ=4,∴BP=8.∵PE=1,∴BE=BP+PE=9,∴AD=BE=9.答:AD=9.22.两个三角形有两组边对应相等,并且其中一组相等的边所对的角也相等,如果这两个三角形不全等,我们称它们互为“伴生三角形”,相等的边所对的相等的角称为“伴生角”.如图,AB=A′B′,AC=A′C′,∠B=∠B',但△ABC和△A′B′C′不全等,则称△ABC和△A′B′C′互为“伴生三角形”,∠B与∠B'称为“伴生角”.(1)若某三角形的两个内角为30°和50°,请直接写出这个三角形的伴生三角形的三个内角的度数;(2)若互为伴生三角形的两个三角形都是等腰三角形,求伴生角的度数.【分析】(1)根据题意画出图形,确定伴生角为∠B=30°,根据等腰三角形的性质和三角形的内角和定理可求解;(2)根据题意画出图形,确定伴生角为∠B,题目中有三个等腰三角形,得到∠B=∠BAD,∠ADC=∠C=2∠B,根据三角形内角和即可求解.解:(1)如图,△ABC和△ABD中,AB=AB,AD=AC,∠B=∠B,则△ABC和△ABD 是伴生三角形,其中∠B为伴生角,当∠B=50°时,无法画出图形;当∠B=30°,∠C=50°,∵AD=AC,∴∠C=∠ADC=50°,∴∠ADB=130°,∴∠BAD=180°﹣∠B﹣∠ADB=20°.故答案为:130°,20°;(2)如图,等腰△ABC和等腰△ABD中,AB=BC,BC=AD,当AB=AB,AD=AC,∠B=∠B时,△ABC和△ABD是伴生三角形,则AD=AC,∠B是伴生角.∵BD=AD=AC,∴∠B=∠BAD,∠ADC=∠C,∴∠ADC=∠C=2∠B,∵BA=BC,∴∠C=∠BAC=2∠B,在△ABC中,∵∠B+∠BAC+∠C=180°,∴∠B+2∠B+2∠B=180°,∴5∠B=180°,∴∠B=36°.23.如图,△ABC中∠ACB是钝角,点P在边BC的垂直平分线上.(1)如图1,若点P也在边AC的垂直平分线上,且∠ACB=110°,求∠APB的度数;(2)如图2,若点P也在∠BAC的外角平分线上,过点P作PH⊥AB于H,试找出线段AB、AH、AC之间的数量关系,并说明理由.【分析】(1)连接PC,点P在边BC的垂直平分线上,可得∠PBC=∠PCB,再由点P 在边AC的垂直平分线上,可得∠PAC=∠PCA,从而有∠PBC+∠PAC=∠PCB+∠PCA =∠ACB=110°,则可求解;(2)过点P作PD⊥AC,连接PC,证明Rt△PBH≌Rt△PCD,则有BH=CD,结合图形即可求解.【解答】(1)证明:如图1,连接PC,∵点P在边BC的垂直平分线上,∴PB=PC,∴∠PBC=∠PCB,∵点P在边AC的垂直平分线上,∴PA=PC,∴∠PAC=∠PCA,∴∠PBC+∠PAC=∠PCB+∠PCA=∠ACB=110°,∴∠APB=360°﹣(∠PBC+∠PAC+∠ACB)=360°﹣(110°+110°)=140°;(2)线段AB、AH、AC之间的数量关系是AB=AC+2AH;理由如下:如图2,过点P作PD⊥AC,连接PC,∵点P在∠BAD的平分线上,PH⊥AB,PD⊥AC,∴PH=PD,∵AP=AP,∴AH=AD,∵点P在边BC的垂直平分线上,∴PB=PC,在Rt△PBH和Rt△PCD中,,∴Rt△PBH≌Rt△PCD(HL),∴BH=CD,∴AB﹣AH=AC+AD,∴AB=AC+2AH.。
广东省广州市越秀区2019-2020学年八年级(上)期中数学试卷(含答案解析)
广东省广州市越秀区2019-2020学年八年级(上)期中试卷数学一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.93.到三角形三边的距离相等的点是()A.三角形三条高的交点B.三角形三条中线的交点C.三角形三条角平分线的交点D.不存在这个点4.如图所示,已知∠1=∠2,若添加一个条件使△ABC≌△ADC,则添加错误的是()A.AB=AD B.∠B=∠D C.∠BCA=∠DCA D.BC=DC5.如图,把一个含30°角的直角三角尺的直角顶点放在直尺的一边上,如果∠1=20°,那么∠2的度数为()A.20°B.50°C.60°D.70°6.点(5,﹣2)关于x轴的对称点是()A.(5,﹣2)B.(5,2)C.(﹣5,2)D.(﹣5.﹣2)7.如图,在△ABC中,∠BDC=110°,点D是∠ABC和∠ACB角平分线的交点,则∠A=()A.40°B.50°C.60°D.70°8.点P在∠AOB的平分线上,点P到OA边的距离等于6,点Q是OB边上的任意一点,则下列选项正确的是()A.PQ>6 B.PQ≥6 C.PQ<6 D.PQ≤69.如图,等边△ABC的边长为1cm,D、E分别AB、AC是上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分的周长为()cmA.1 B.2 C.3 D.410.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.5个B.6个C.7个D.8个二、填空题(本大题共6小题,每小题3分,共18分)11.如图,已知△OAB≌△OCD,∠A=30°,∠AOB=105°,则∠D=°.12.一个正多边形的每个内角都等于140°,那么它是正边形.13.等腰三角形中,已知两边的长分别是9和6,则周长为.14.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于°.15.如图所示,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2.连接P1P2交OA于M,交OB于N,若P1P2=6,则△PMN的周长为.16.如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,OD⊥BC于D,如果AB=25cm,BC=20cm,AC=15cm,且S△ABC=150cm2,那么OD=cm.三、解答题(本大题共有8小题,满分72分,解答要写出文字说明,证明过程或计算步骤)17.(6分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.18.(6分)如图,M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM交BN于点P.求证:△ABM≌△BCN.19.(8分)如图:(1)画出△ABC关于y轴对称的△A1B1C1;(2)在y轴上画出点P,使PA+PC最小;(3)求△ABC的面积.20.(8分)如图所示,在△ABC中,AB=AC=CD,AD=DB,求∠BAC的度数.21.(8分)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.22.(10分)如图,在△ABC中,AB=AC,∠BAC=120°.(1)作线段AC的垂直平分线,分别交BC、AC于点D、E.(尺规作图,保留作图痕迹,不写作法)(2)连接AD,若DE=2cm,求BC的长.23.(12分)如图,在△ABC中,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)求证:∠EFA=90°﹣∠B;(2)若∠B=60°,求证:EF=DF.24.(14分)已知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:∠FEA=∠FCA;②猜想线段FE,AD,FD之间的数量关系,并证明你的结论;(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的异侧时,利用图2画出图形探究线段FE,AD,FD之间的数量关系,并直接写出你的结论.广东省广州市越秀区八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【分析】首先根据三角形的三边关系求得第三边的取值范围,再根据第三边又是奇数得到答案.【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.【点评】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.3.到三角形三边的距离相等的点是()A.三角形三条高的交点B.三角形三条中线的交点C.三角形三条角平分线的交点D.不存在这个点【分析】根据角平分线上的点到角的两边的距离相等的性质解答.【解答】解:到三角形三边的距离相等的点是:三角形三条角平分线的交点.故选:C.【点评】本题考查了角平分线的性质,熟记角平分线上的点到角的两边的距离相等是解题的关键.4.如图所示,已知∠1=∠2,若添加一个条件使△ABC≌△ADC,则添加错误的是()A.AB=AD B.∠B=∠D C.∠BCA=∠DCA D.BC=DC【分析】本题是开放题,要使△ABC≌△ADC,已知∠1=∠2,AC是公共边,具备了一组边和一组角对应相等,再结合选项一一论证即可.【解答】解:A、添加AB=AD,能根据SAS判定△ABC≌△ADC,故选项正确;B、添加∠B=∠D,能根据ASA判定△ABC≌△ADC,故选项正确;C、添加∠BCA=∠DCA,能根据ASA判定△ABC≌△ADC,故选项正确;D、添加BC=DC,SSA不能判定△ABC≌△ADC,故选项错误.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,把一个含30°角的直角三角尺的直角顶点放在直尺的一边上,如果∠1=20°,那么∠2的度数为()A.20°B.50°C.60°D.70°【分析】根据三角形的外角性质得出∠2=∠A+∠1,代入求出即可.【解答】解:∠2=∠A+∠1=30°+20°=50°,故选:B.【点评】本题考查了三角形的外角性质,能根据三角形的外角性质得出∠2=∠A+∠1是解此题的关键.6.点(5,﹣2)关于x轴的对称点是()A.(5,﹣2)B.(5,2)C.(﹣5,2)D.(﹣5.﹣2)【分析】关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.【解答】解:(5,﹣2)关于x轴的对称点为(5,2),故选:B.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.7.如图,在△ABC中,∠BDC=110°,点D是∠ABC和∠ACB角平分线的交点,则∠A=()A.40°B.50°C.60°D.70°【分析】根据三角形内角和定理得到∠DBC+∠DCB=70°,根据角平分线的定义和三角形内角和定理计算即可.【解答】解:∵∠BDC=110°,∴∠DBC+∠DCB=180°﹣110°=70°,∵点D是∠ABC和∠ACB角平分线的交点,∴∠ABC=2∠DBC,∠ACB=2∠DCB,∴∠ABC+∠ACB=2×(∠DBC+2∠DCB)=140°,∴∠A=180°﹣140°=40°,故选:A.【点评】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.8.点P在∠AOB的平分线上,点P到OA边的距离等于6,点Q是OB边上的任意一点,则下列选项正确的是()A.PQ>6 B.PQ≥6 C.PQ<6 D.PQ≤6【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为6,再根据垂线段最短解答.【解答】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于6,∴点P到OB的距离为6,∵点Q是OB边上的任意一点,∴PQ≥6.故选:B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.9.如图,等边△ABC的边长为1cm,D、E分别AB、AC是上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分的周长为()cmA.1 B.2 C.3 D.4【分析】由题意得AE=A′E,AD=A′D,故阴影部分的周长可以转化为三角形ABC的周长.【解答】解:将△ADE沿直线DE折叠,点A落在点A′处,所以AD=A′D,AE=A′E.则阴影部分图形的周长等于BC+BD+CE+A′D+A′E,=BC+BD+CE+AD+AE,=BC+AB+AC,=3cm.故选:C.【点评】此题考查翻折问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.10.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.5个B.6个C.7个D.8个【分析】根据等腰三角形的判定定理,结合图形即可得到结论.【解答】解:如图,第1个点在CA延长线上,取一点P,使BA=AP;第2个点在CB延长线上,取一点P,使AB=PB;第3个点在AC延长线上,取一点P,使AB=PB;第4个点在BC延长线上,取一点P,使AB=PA;第5个点在AC延长线上,取一点P,使AB=AP;第6个点在AC上,取一点P,使∠PBA=∠PAB;∴符合条件的点P有6个点.故选:B.【点评】本题考查了等腰三角形的判定来解决实际问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.二、填空题(本大题共6小题,每小题3分,共18分)11.如图,已知△OAB≌△OCD,∠A=30°,∠AOB=105°,则∠D=45 °.【分析】根据三角形内角和定理求出∠B,根据全等三角形的对应角相等解答.【解答】解:∠B=180°﹣∠A﹣∠AOB=45°,∵△OAB≌△OCD,∴∠D=∠B=45°,故答案为:45.【点评】本题考查的是全等三角形的性质,三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.12.一个正多边形的每个内角都等于140°,那么它是正九边形.【分析】首先根据多边形的内角与相邻的外角互补可得外角为180°﹣140°=40°,再利用外角和360°除以外角的度数可得边数.【解答】解:∵正多边形的每个内角都等于140°,∴多边形的外角为180°﹣140°=40°,∴多边形的边数为360°÷40°=9,故答案为:九.【点评】此题主要考查了多边形的内角与外角,关键是掌握外角和360°除以外角的度数可得边数.13.等腰三角形中,已知两边的长分别是9和6,则周长为21或24 .【分析】分9是底和腰两种情况进行讨论,利用三角形的三边关系来判断,再计算其周长即可.【解答】解:当边长为9的边为底时,三角形的三边长为:9、6、6,满足三角形的三边关系,此时其周长为21;当边长为9的边为腰时,三角形的三边长为:9、9、6,满足三角形的三边关系,此时其周长为24.故答案为:21或24.【点评】本题主要考查等腰三角形的性质和三角形的三边关系,注意分两种情况进行讨论是解题的关键.14.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于45 °.【分析】根据等腰三角形的性质以及三角形的外角的性质即可解决问题;【解答】解:∵AB=BC,∴∠BAC=∠BCA=15°,∴∠CBD=∠A+∠BCA=30°,∵CB=CD,∴∠CBD=∠CDB=30°,∴∠ECD=∠A+∠CDB=15°+30°=45°,故答案为45.【点评】本题考查等腰三角形的性质、三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.如图所示,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2.连接P1P2交OA于M,交OB于N,若P1P2=6,则△PMN的周长为 6 .【分析】根据轴对称的性质可得P1M=PM,PN=P2N,然后求出△PMN的周长=P1P2.【解答】解:∵点P关于OA的对称点P1,∴OA是PP1的中垂线,∴P1M=PM,同理可得:P2N=PN,∵△PMN的周长=PM+PN+MN,∴△PMN的周长=P1M+MN+P2N=P1P2=6,故答案为:6.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.16.如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,OD⊥BC于D,如果AB=25cm,BC=20cm,AC=15cm,且S△ABC=150cm2,那么OD= 5 cm.【分析】先连接OA ,过点O 分别作AC ,AB 的垂线,垂足分别为E 、F ,由角平分线的性质可知OD =OE =OF ,再根据S △ABC =S △AOB +S △BOC +S △AOC 进行解答即可.【解答】解:连接OA ,过点O 分别作AC ,AB 的垂线,垂足分别为E 、F ,∵∠ABC ,∠ACB 的平分线交于点O ,OD ⊥BC 于D ,∴OD =OE =OF ,∴S △ABC =S △AOB +S △BOC +S △AOC =AB •OF +BC •OD +AC •OE =OD (AB +BC +AC )=×OD ×(25+20+15)=150,解得OD =5cm .故答案为:5.【点评】本题考查的是三角形的面积及角平分线的性质,根据题意作出辅助线,把△ABC 的面积分为S △AOB +S △BOC +S △AOC 是解答此题的关键.三、解答题(本大题共有8小题,满分72分,解答要写出文字说明,证明过程或计算步骤)17.(6分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n ,依题意得(n ﹣2)×180°=3×360°﹣180°,n ﹣2=6﹣1,n =7.∴这个多边形的边数是7.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.18.(6分)如图,M ,N 分别是正五边形ABCDE 的边BC ,CD 上的点,且BM =CN ,AM 交BN 于点P .求证:△ABM ≌△BCN .【分析】利用正五边形的性质得出AB =BC ,∠ABM =∠C ,再利用全等三角形的判定即可证明△ABM ≌△BCN .【解答】证明:∵五边形ABCDE 是正五边形,∴AB =BC ,∠ABM =∠C ,∴在△ABM 和△BCN 中,∴△ABM ≌△BCN (SAS ).【点评】此题主要考查了全等三角形的判定以及正五边形的性质等知识,熟练掌握全等三角形的判定方法是解题关键.19.(8分)如图:(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)在y 轴上画出点P ,使PA +PC 最小;(3)求△ABC 的面积.【分析】(1)分别作出点A 、B 、C 关于y 轴对称的点A 1,B 1,C 1,然后顺次连接,并写出坐标.(2)连接AC 1交y 轴于点P ,则PA +PC 最小,点P 即为所求.(3)利用△ABC 所在梯形面积减去周围三角形面积,进而得出答案.【解答】解:(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,点P 即为所求;(3)如图所示,S △ABC =S 梯形BCDE ﹣S △ACD ﹣S △ABE=﹣﹣=12﹣2.5﹣3=6.5.【点评】本题考查轴对称变换、三角形的面积、两点之间线段最短等知识,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.20.(8分)如图所示,在△ABC中,AB=AC=CD,AD=DB,求∠BAC的度数.【分析】AB=AC=CD,AD=BD可得∠B=∠C=∠BAD,∠CDA=∠CAD,且利用外角可得∠CDA=2∠B =2∠C,在△ACD中利用三角形内角和可求得∠C,进一步可求得∠CAC,再利用角的和差求得∠BAC.【解答】解:∵AB=AC,DA=DB,∴∠B=∠C=∠BAD,∵CA=CD,∴∠CDA=∠CAD,又∠CDA=∠B+∠BAD=2∠B=2∠C,∴∠CAD=2∠C,在△ACD中,∠C+∠CDA+∠CAD=180°,∴2∠C+2∠C+∠C=180°,∴∠C=36°,∴∠BAD=36°,∠CAD=2∠C=72°,∴∠BAC=∠BAD+∠CAD=36°+72°=108°.【点评】本题主要考查等腰三角形的性质及外角性质、三角形内角和定理,由条件得到2∠C+2∠C+∠C=180°求出∠C是解题的关键,注意外角性质及三角形内角和定理的应用.21.(8分)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.【分析】先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF ≌△ACF,从而证出AF平分∠BAC.【解答】证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;等量减等量差相等的利用是解答本题的关键.22.(10分)如图,在△ABC中,AB=AC,∠BAC=120°.(1)作线段AC的垂直平分线,分别交BC、AC于点D、E.(尺规作图,保留作图痕迹,不写作法)(2)连接AD,若DE=2cm,求BC的长.【分析】(1)利用尺规作出线段AC的垂直平分线即可;(2)先求出AD=CD,得出∠DAC=∠C=30°,求出AD=CD=2DE=10,再证∠BAD=90°,得出BD =2AD=20,即可求出BC的长.【解答】解:(1)线段AC的垂直平分线如图所示:(2)∵AB=AC,∠BAC=120°,∴∠C=∠B=30°,∵DE是AC的垂直平分线,∴AD=CD,∴∠DAC=∠C=30°,∴AD=CD=2DE=2×2=4cm,∠BAD=120°﹣30°=90°,∴BD=2AD=8cm,∴BC=BD+CD=8+4=12(cm).【点评】本题考查了等腰三角形的性质、线段垂直平分线的性质以及含30°的直角三角形的性质;利用线段垂直平分线得出线段相等、角相等是解题的关键.23.(12分)如图,在△ABC中,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)求证:∠EFA=90°﹣∠B;(2)若∠B=60°,求证:EF=DF.【分析】(1)由∠FAC=∠BAC,∠FCA=∠BCA,推出∠FAC+∠FCA=×(∠ABC+∠ACB)=(180°﹣∠B)=90°﹣∠B;(2)过点F作FG⊥BC于G,作FH⊥AB于H,作FM⊥AC于,构造全等三角形解决问题即可;【解答】证明:(1)∵∠BAC+∠BCA=180°﹣∠B,又∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=∠BAC,∠FCA=∠BCA,∴∠FAC+∠FCA=×(180°﹣∠B)=90°﹣∠B,∵∠EFA=∠FAC+∠FCA,∴∠EFA=90°﹣∠B.(2)如图,过点F作FG⊥BC于G,作FH⊥AB于H,作FM⊥AC于M.∵AD、CE分别是∠BAC、∠BCA的平分线,∴FG=FH=FM,∵∠EFH+∠DFH=120°,∠DFG+∠DFH=360°﹣90°×2﹣60°=120°,∴∠EFH=∠DFG,在△EFH和△DFG中,,∴△EFH≌△DFG(AAS),∴EF=DF.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24.(14分)已知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:∠FEA=∠FCA;②猜想线段FE,AD,FD之间的数量关系,并证明你的结论;(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的异侧时,利用图2画出图形探究线段FE,AD,FD之间的数量关系,并直接写出你的结论.【分析】(1)①由题意可得AB=AC=AE,即可求∠ABF=∠AEF,由AD是BC的中垂线可得BF=CF,可证△ABF≌△ACF,可得∠ABF=∠ACF,则结论可得;②延长AD使DP=AD,连接CP,由题意可得AC=CP=CE,∠ACD=∠PCD,即可证∠ECF=∠FCP,则可证△ECF≌△FCP,可得EF=FP=FD+AD;(2)连接CF,延长AD使FD=DP,连接CP,由题意可得∠ABF=∠ACF=∠AEF,△FCP是等边三角形,可证△ACP≌△ECF,即可得EF=AD+DP=AD+DF.【解答】证明:(1)①∵△AEC是等边三角形∴∠EAC=∠ACE=60°,CE=AC=AE,且AB=AC∴AB=AE∴∠ABF=∠AEF∵AB=AC,AD⊥BC∴AD是BC的垂直平分线∴BF=FC,且AF=AF,AB=AC∴△ABF≌△ACF(SSS)∴∠ABF=∠ACF∴∠ACF=∠AEF②EF=FD+AD延长AD使DP=AD,连接CP∵AD=DP,∠ADC=∠PDC,CD=CD∴△ADC≌△PDC(SAS)∴AC=CP=CE,∠ACD=∠PCD∵∠ACF=∠AEF,且∠AMC=∠FME∴∠EFC=∠EAC=60°∵BF=CF,且∠EFC=60°∴∠FCD=30°∵∠FCA=∠FCD﹣∠ACD∴∠FCA=30°﹣∠ACD∵∠ECF=∠ECA﹣∠FCA∴∠ECF=30°+∠ACD∵∠FCP=∠FCD+∠DCP∴∠FCP=30°+∠ACD∴∠ECF=∠FCP,且FC=FC,CP=CE∴△ECF≌△FCP(SAS)∴EF=FP∴EF=FD+AD(2)连接CF,延长AD使FD=DP,连接CP.∵△AEC是等边三角形∴∠EAC=∠ACE=60°,CE=AC=AE,且AB=AC∴AB=AE∴∠ABF=∠AEF∵AB=AC,AD⊥BC∴AD是BC的垂直平分线∴BF=FC,且AF=AF,AB=AC∴△ABF≌△ACF(SSS)∴∠ABF=∠ACF∴∠ACF=∠AEF且∠AME=∠CMF∴∠EAC=∠EFC=60°∵BF=CF,∠EFC=60°∴∠FCB=30°∵FD=DP,∠FDC=∠PDC,CD=CD∴△FDC≌△PDC(SAS)∴FC=CP,∠FCD=∠PCD=30°∴∠FCP=60°=∠ACE∴∠ACP=∠FCE且CF=CP,AC=CE∴△ACP≌△ECF(SAS)∴EF=AP∴EF=AD+DP=AD+DF【点评】本题考查了三角形综合题,等腰三角形的性质,全等三角形的性质和判定,添加恰当的辅助线构造全等三角形是本题的关键.。
2019-2020学年广东省广州市番禺区八年级(上)期末数学试卷
三.解答题(本大题共 9 小题,满分 68 分.解答应写出文字说明、证明过程或演算步骤.) 17.(6 分)(海淀区一模)如图,在△ABC 中,D,E 是 BC 边上两点,
2019-2020 学年广东省广州市番禺区八年级(上)期末数学试卷
答案与试题解析
一.选择题(本大题共 10 小题,每小题 2 分,满分 20 分.在每小题给出的四个选项中,只有
一项是符合题目要求的.)
1.(2 分)(2019 秋•番禺区期末)点 M(1,﹣2)关于 y 轴的对称点坐标为( )
A.(﹣1,2)
内角的和.
4.(2 分)(苏州)下列四个图案中,不是轴对称图案的是( )
A.
B.
C.
D.
【考点】轴对称图形.
【分析】根据轴对称的概念对各选项分析判断利用排除法求解.
解:A、是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项正确;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误.
A.5cm
B.6cm
C.7cm
D.8cm
二.填空题(共 6 题,每题 2 分,共 12 分.)
11.(2 分)(2002•宁德)计算:(xy2)2= .
12.(2 分)(成都)等腰三角形的一个底角为 50°,则它的顶角的度数为 .
13.(2 分)(雁江区模拟)分解因式:b3﹣6b2+9b= .
10.(2 分)(2019 秋•番禺区期末)如图,在△ABC 中,∠C=90°,AC=BC,AD 是
2019-2020学年度北师大版八年级数学上册期末测试卷(含答案)
2019-2020学年度上学期期末考试试卷八年级 数学本试卷满分100分,考试时间100分钟一、选择题(本大题共8小题,每小题3分,共24分,每小题只有一个正确选项,请将这个正确的选项填在下面表格中.)1.下列各数是无理数的是( ) A.2 B.38 C.722D.0π 2.点P 的坐标是(-3,4),则点P 在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.下列各组数中,能作为直角三角形边长的是( ) A.4,5,6 B.12,16,20 C.5,10,13 D.8,40,414.下列命题是真命题的有( ) ①等边三角形的三个内角都相等; ②如果3325xx -=-,那么x=4; ③两个锐角之和一定是钝角; ④如果x 2>0,那么x>0;A.1个B.2个C.3个D.4个 5.有一组数据:2,5,5,6,7,这组数据的平均数为( ) A.3 B.4 C.5 D.66一个两位数,十位上的数字比个位上的数字大1,若将个位与十位上的数字对调,得到的新数比原数小9,设个位上的数字为x,十位上的数字为y,根据题意,可列方程为( )A.⎩⎨⎧++=+=-910101x y y x y xB.⎩⎨⎧++=+=-910101y x x y y xC.⎩⎨⎧++=+=-910101x y y x x yD.⎩⎨⎧++=+=-910101y x x y x y7.如图在△ABC 中,D 是AB 上一点,E 是AC 上一点,BE,CD 相交于点F,∠A=70°,∠ACD=20°,∠ABE=32°,则∠CFE 的度数为( )。
A.680B.580C.520D.4808. 两条直线y=kx+b 与y=bx+k(k,b 为常数,且k b≠0)在同一坐标系中的图像可能是( )。
二、填空题(本大题共8小题,每小题3分,共24分) 9绝对值最小的实数是 。
10.若一个正数的两个平方根是x-5和x+1,则x= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4B.a>4C.a<4D.a≠42.下列计算正确的是()A.a2+a3=a5B.(2a)2=4a C.a2•a3=a5D.(a2)3=a53.计算(a﹣2)(a+3)的结果是()A.a2﹣6B.a2+a﹣6C.a2+6D.a2﹣a+64.下面四个图形分别是绿色食品、节能、节水和低碳标志,在这四个标志中,是轴对称图形的是()A.B.C.D.5.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3,则点D到AB 的距离是()A.5B.4C.3D.26.一个多边形的内角和是720°,这个多边形的边数是()A.6B.7C.8D.97.若等腰三角形的两边长分别是3、5,则第三边长是()A.3或5B.5C.3D.4或68.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°9.如图,点A、B、C、D在同一条直线上,AE=DF,CE=BF,要使得△ACE≌△DBF,则需要添加的一个条件可以是()A.AE∥DF B.CE∥BF C.AB=CD D.∠A=∠D10.若2m=5,4n=3,则43n﹣m的值是()A.B.C.2D.4二、填空题(本大题共6小题,每小题3分,满分18分)11.已知等腰三角形的周长为32.底边长为12,则这个等腰三角形的腰长为.12.如图,在△ABC中,AD、AE分别是边BC上的中线与高,AE=4,△ABC的面积为12,则CD 的长为.13.如图,在△ABC中,AC⊥BC,∠B=30°,CD⊥AB,垂足为D,若AD=1,则AC的长为.14.计算:的结果是(结果化为最简形式).15.如图,有一张长方形纸板,在它的四角各切去一个边长为a的正方形,然后将四周突出部分折起,制成一个长方体形状的无盖纸盒.如果纸盒的容积为2a(x2﹣y2)(x>y),底面长方形的一边长为x﹣y,则底面长方形的另一边长为.16.如图,在边长为2的等边△ABC中,D是BC的中点,点E在线段AD上,连结BE,在BE的下方作等边△BEF,连结DF.当△BDF的周长最小时,∠DBF的度数是.三、解答题(本大题共9小题,满分72分.解答须写出文字说明、证明过程和演算步骤)17.(6分)先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.18.(6分)解方程:﹣1=19.(8分)分解因式(1)a3b﹣9ab(2)4ab2﹣4ab+a20.(8分)如图,两条公路OA与OB相交于点O,在∠AOB的内部有两个小区C与D,现要修建一个市场P,使市场P到两条公路OA、OB的距离相等,且到两个小区C、D的距离相等.(1)市场P应修建在什么位置?(请用文字加以说明)(2)在图中标出点P的位置(要求:用尺规作图,不写作法,保留作图痕遼,写出结论).21.(8分)如图,AC与BD相交于点E,AC=BD,AC⊥BC,BD⊥AD.垂足分别是C、D.(1)若AD=6,求BC的长;(2)求证:△ADE≌△BCE.22.(8分)如图,六边形ABCDEF的内角都相等,∠FAD=60°.(1)求∠ADE的度数;(2)求证:EF∥BC.23.(8分)如图,在△ABC中,AD平分∠BAC,AD与BC相交于点D,DE⊥AB,DF⊥AC,垂足分别是E、F,连接EF.(1)求证:AD垂直平分EF;(2)试问:与相等吗?并说明理由.24.(8分)两个小组同时从山脚开始攀登一座600m高的山,第一小组的攀登速度(即攀登高度与攀登时间之比)是第二小组的1.2倍,并比第二小组早20min到达山顶.(1)第二小组的攀登速度是多少?(2)如果山高为hm,第一小组的攀登速度是第二小组的k(k>1)倍,并比第二小组早tmin到达山顶,则第一小组的攀登速度是多少?25.(12分)如图,△ABC是等腰直角三角形,AB=BC,O是△ABC内部的一个动点,△OBD是等腰直角三角形,OB=BD.(1)求证:∠AOB=∠CDB;(2)若△COD是等腰三角形,∠AOC=140°,求∠AOB的度数.2018-2019学年广东省广州市越秀区八年级(上)期末数学试卷参考答案与试题解析一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【分析】根据三角形具有稳定性,四边形不具有稳定性即可判断.【解答】解:因为三角形具有稳定性,四边形不具有稳定性,故选:D.【点评】本题考查三角形的稳定性,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2),故选:C.【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.【分析】利用分式的定义:分母中含有字母,判断即可得到结果.【解答】解:在所列的4个代数式中,分式的是和这2个,故选:B.【点评】此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.5.【分析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)﹣3=,故此选项错误;C、(ab3)4=a4b12,故此选项错误;D、(﹣3a4)3=﹣27a12,正确.故选:D.【点评】此题主要考查了同底数幂的乘法运算以及积的乘方运算,正确掌握相关运算法则是解题关键.6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:18nm=18×10﹣9m=0.000000018=1.8×10﹣8m.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.【分析】图中全等三角形有4对,是△ADB≌△CBD,△ABC≌△CDA,△AOD≌△COB,△AOB ≌△COD.首先证明△AOB≌△COD(ASA),再利用全等三角形的性质和判定一一证明即可.【解答】解:图中全等三角形有4对,是△ADB≌△CBD,△ABC≌△CDA,△AOD≌△COB,△AOB≌△COD,理由是:∵AB∥CD,∴∠ABD=∠CDB,∠BAO=∠DCO,∵AB=CD,∴△AOB≌△COD(ASA),∴OA=OC,OB=OD,∵∠AOD=∠COD,∴△AOD≌△COB(SAS),∴AD=BC,∵AD=BC,CD=AB,AC=CA,∴△ADC≌△CBA(SSS),∵AD=BC,AB=CD,DB=BD,∴△ADB≌△CBD(SSS),故选:D.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【分析】先分别求出大拖拉机和小拖拉机的工作效率,再进行相除,即可得出答案.【解答】解:∵大拖拉机n天耕地a公顷,∴大拖拉机的工作效率是,∵小拖拉机m天耕地b公顷,∴小拖拉机的工作效率是,∴大拖机的工作效率是小拖机的工作效率÷=倍.故选:A.【点评】此题考查了列代数式,用到的知识点是工作效率=工作总量÷工作时间,解题的关键是分别求出大拖拉机和小拖拉机的工作效率.9.【分析】根据全等三角形的判定方法即可解决问题.【解答】解:在△AEC和△DFB中,∵AE=DF,EC=BF,根据SSS,需要添加AC=BD或AB=CD,根据SAS需要添加∠E=∠F,故选项C正确,故选:C.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考基础题.10.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则将原式变形得出答案.【解答】解:∵2m=5,4n=3,∴43n﹣m=(4n)3÷4m=(4n)3÷(2m)2=.故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确将原式变形是解题关键.二、填空题(本大题共6小题,每小题3分,满分18分)11.【分析】根据等腰三角形两腰相等求出腰长,过顶点A作AD⊥BC于D,根据等腰三角形三线合一的性质求出BD,再利用勾股定理即可得到结论.【解答】解:如图过A作AD⊥BC于D,∵△ABC的周长是32,底边BC=12,∴AB=AC=(32﹣12)=10,故答案为:10.【点评】本题考查了等腰三角形三线合一的性质,勾股定理的应用,作辅助线求出底边上的高是解题的关键,作出图形更形象直观.12.【分析】利用三角形的面积公式求出BC即可解决问题.【解答】解:∵AE⊥BC,AE=4,△ABC的面积为12,∴×BC×AE=12,∴×BC×4=12,∴BC=6,∵AD是△ABC的中线,∴CD=BC=3,故答案为3.【点评】本题考查三角形的面积,三角形的中线与高等知识,解题的关键是熟练掌握基本知识,属于中基础题.13.【分析】根据30°角所对的直角边等于斜边的一半可求得斜边长.【解答】解:∵AC⊥BC,∴∠ACB=90°,∵∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,∴AC=2AD=2,故答案为2.【点评】本题考查直角三角形的性质,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.【分析】根据分式的混合运算顺序和运算法则化简即可得.【解答】解:原式=[﹣]•=•=•=2a,故答案为:2a.【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.15.【分析】先求出长方体的底面积=体积÷高,然后求出底面另一边长=底面积÷一边长.【解答】解:长方体底面积:2a(x2﹣y2)÷a=2(x2﹣y2),长方体底面另一边长2(x2﹣y2)÷(x﹣y)=2(x+y),故答案为2(x+y).【点评】本题考查了整式的除法,熟练掌握平方差公式是解题的关键.16.【分析】连接CF,由条件可以得出∠ABE=∠CBF,再根据等边三角形的性质就可以证明△BAE ≌△BCF,从而可以得出∠BCF=∠BAD=30°,作点D关于CF的对称点G,连接CG,DG,则FD=FG,依据当B,F,G在同一直线上时,DF+BF的最小值等于线段BG长,可得△BDF 的周长最小,再根据等边三角形的性质即可得到∠DBF的度数.【解答】解:如图,连接CF,∵△ABC、△BEF都是等边三角形,∴AB=BC=AC,BE=EF=BF,∠BAC=∠ABC=∠ACB=∠EBF=∠BEF=∠BFE=60°,∴∠ABC﹣∠EBD=∠EBF﹣∠EBD,∴∠ABE=∠CBF,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴∠BCF=∠BAD=30°,如图,作点D关于CF的对称点G,连接CG,DG,则FD=FG,∴当B,F,G在同一直线上时,DF+BF的最小值等于线段BG长,此时△BDF的周长最小,由轴对称的性质,可得∠DCG=2∠BCF=60°,CD=CG,∴△DCG是等边三角形,∴DG=DC=DB,∴∠DBG=∠DGB=∠CDG=30°,故答案为:30°.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质的运用.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(本大题共9小题,满分72分.解答须写出文字说明、证明过程和演算步骤)17.【分析】原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,当x=5,y=时,原式=50﹣7=43.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+x﹣x2+x+2=6,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.【分析】(1)直接提取公因式ab,再利用平方差公式分解因式即可;(2)直接提取公因式a,再利用完全平方公式分解因式即可.【解答】解:(1)a3b﹣9ab=ab(a2﹣9)=ab(a﹣3)(a+3);(2)4ab2﹣4ab+a=a(4b2﹣4b+1)=a(2b﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.【分析】(1)直接利用角平分线的性质以及线段垂直平分线的性质分析得出答案;(2)直接利用角平分线的作法以及线段垂直平分线的作法得出答案.【解答】解:(1)点P应修建在∠AOB的角平分线和线段CD的垂直平分线的交点处;(2)如图所示:点P即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质以及线段垂直平分线的性质是解题关键.21.【分析】(1)根据HL证明Rt△ADB≌Rt△BCA即可;(2)由△ADB≌△BCA,推出AD=BC,再根据AAS即可证明△ADE≌△BCE;【解答】(1)解:∵AC⊥BC,BD⊥AD,∴∠D=∠C=90°,在Rt△ADB和Rt△BCA中,,∴Rt△ADB≌Rt△BCA(HL),∴AD=BC,∵AD=6,∴BC=6.(2)证明:∵△ADB≌△BCA,∴AD=BC,在△ADE和△BCE中,,∴△ADE≌△BCE(AAS).【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)由于六边形的内角和为720°,然后利用六边形ABCDEF的内角都相等得到每个内角的度数为120°,而∠DAB=60°,四边形ABCD的内角和为360°,由此即可分别求出∠CDA和∠EDA,最后利用平行线的判定方法即可推知AB∥DE,根据平行线的性质即可得到结论;(2)根据平行线的判定即可得到结论.【解答】解:(1)∵六边形ABCDEF的内角都相等,∴∠BAF=∠B=∠C=∠CDE=∠E=∠F=120,∵∠FAD=60°,∴∠F+∠FAD=180°,∴EF∥AD,∴∠E+∠ADE=180°,∴∠ADE=60°;(2)∵∠BAD=∠FAB﹣∠FAD=60°,∴∠BAD+∠B=180°,∴AD∥BC,∴EF∥BC.【点评】本题考查了多边形的内角和,以及平行线的判定,垂直的证明,三角形的内角和定理,证明平行是关键.23.【分析】(1)利用全等三角形的性质,证明AE=AF,DE=DF即可解决问题;(2)利用面积法证明即可;【解答】(1)证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,∴Rt△ADE≌Rt△AFD(HL),∴AE=AF,∵DE=DF,∴AD垂直平分相等EF.(2)解:结论:=.理由:∵==,∵DE=DF,∴.【点评】本题考查全等三角形的判定和性质,角平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用面积法证明线段之间的关系.24.【分析】(1)根据题意,可以列出相应的分式方程,本题得以解决;(2)根据题意,可以列出相应的分式方程,本题得以解决.【解答】解:(1)设第二小组的攀登速度是xm/min,,解得,x=5经检验,x=5是原分式方程的解,答:第二小组的攀登速度是5m/min;(2)设第一小组的攀登速度是am/min,,解得,a=,经检验,a=是原分式方程的解,答:第一小组的攀登速度是m/min.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要检验.25.【分析】(1)根据等腰直角三角形的性质和全等三角形的判定和性质解答即可;(2)设∠AOB的度数为x,分三种情况进行解答即可.【解答】证明:(1)∵△ABC和△OBD是等腰直角三角形,∴AB=BC,OB=BD,∠ABC=∠OBD=90°,∵∠ABO+∠OBC=∠CBD+∠OBC,∴∠ABO=∠CBD,在△ABO和△CBD中,∴△ABO≌△CBD(SAS),∴∠AOB=∠CDB;(2)设∠AOB的度数为x,则∠CDB=x,∠CDO=x﹣45°,∠COD=∠COB﹣∠DOB=360°﹣140°﹣x﹣45°=175°﹣x,∠OCD=180°﹣∠CDO﹣∠COD=50°,①当∠CDO=∠COD时,x﹣45°=175°﹣x,解得:x=110°,②当∠CDO=∠OCD时,x﹣45°=50°,解得:x=95°,③当∠COD=∠OCD时,175°﹣x=50°,解得:x=125°,故∠AOB的度数为110°或95°或125°.【点评】本题考查了全等三角形的判定与性质,关键是根据等腰直角三角形的性质和全等三角形的判定和性质解答.。