数学圆锥曲线图像

合集下载

数学高二圆锥曲线知识点

数学高二圆锥曲线知识点

数学高二圆锥曲线知识点在高中数学中,圆锥曲线是一个重要的数学概念,它在几何图形和代数方程中都有广泛的应用。

在高二数学学习过程中,我们会接触到圆锥曲线的基本知识和性质。

本文将详细介绍高二数学中的圆锥曲线知识点,帮助你更好地理解和掌握这一概念。

一、圆锥曲线的定义和分类圆锥曲线是在平面直角坐标系中描述的一类曲线,它们由一个平面和一个与其不重合的点(称为焦点)以及到这个点的距离之比(称为离心率)所确定。

根据离心率的不同取值,圆锥曲线可分为以下三类:1. 椭圆:离心率小于1的圆锥曲线。

在平面上的图形是一个闭合曲线,它以两个焦点为中心,轨迹上的所有点到两个焦点的距离之和等于一个常数。

2. 抛物线:离心率等于1的圆锥曲线。

在平面上的图形是一个开放曲线,它以一个焦点为中心,轨迹上的所有点到焦点的距离等于到其直角坐标轴的距离。

3. 双曲线:离心率大于1的圆锥曲线。

在平面上的图形是一个开放曲线,它以两个焦点为中心,轨迹上的所有点到两个焦点的距离之差等于一个常数。

二、椭圆的性质和方程表示椭圆是一种常见的圆锥曲线,在几何问题和工程应用中经常遇到。

以下是椭圆的一些基本性质和方程表示:1. 长轴和短轴:椭圆的长轴是连接两个焦点并通过中心的线段,短轴是与长轴垂直并通过中心的线段。

2. 焦距和离心率:椭圆的焦距是指两个焦点之间的距离,离心率则是焦距与椭圆长轴之间的比值。

3. 方程表示:椭圆的一般方程形式为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长半轴和短半轴的长度。

三、抛物线的性质和方程表示抛物线是另一种常见的圆锥曲线,其形状和特性与开口朝上或朝下的碗形相似。

以下是抛物线的一些基本性质和方程表示:1. 焦点和准线:抛物线的焦点是与准线的距离相等的点,准线是与焦点之间距离相等的直线。

2. 抛物线开口方向:抛物线开口朝上时,其准线在抛物线的上方;开口朝下时,准线在抛物线的下方。

解读数学中的圆锥曲线与双曲线

解读数学中的圆锥曲线与双曲线

解读数学中的圆锥曲线与双曲线圆锥曲线和双曲线是数学中重要的概念和研究对象。

它们在几何学、物理学、工程学等领域中有着广泛的应用。

本文将对圆锥曲线和双曲线进行解读,并介绍它们的定义、性质以及应用。

一、圆锥曲线的定义与性质圆锥曲线是由一个平面与一个圆锥相交所得到的曲线。

根据平面与圆锥的位置关系,圆锥曲线分为三种类型:椭圆、抛物线和双曲线。

1. 椭圆:当平面与圆锥的切线小于圆锥的斜边时,所得到的曲线称为椭圆。

椭圆具有以下性质:a. 椭圆的离心率小于1,且离心率越小,椭圆越接近于圆形;b. 椭圆的焦点是椭圆的特殊点,椭圆上任意一点到两个焦点的距离之和是常数;c. 椭圆的长轴、短轴及焦点之间存在一定的关系,可以通过这些参数来确定椭圆的形状和大小。

2. 抛物线:当平面与圆锥的切线等于圆锥的斜边时,所得到的曲线称为抛物线。

抛物线具有以下性质:a. 抛物线具有对称性,焦点是抛物线的特殊点,抛物线上任意一点到焦点的距离等于该点到准线的距离;b. 抛物线的形状由焦点和准线的位置决定,焦点越靠近准线,抛物线越扁平。

3. 双曲线:当平面与圆锥的切线大于圆锥的斜边时,所得到的曲线称为双曲线。

双曲线具有以下性质:a. 双曲线的离心率大于1,且离心率越大,双曲线的形状越扁平;b. 双曲线的焦点是双曲线的特殊点,双曲线上任意一点到两个焦点的距离之差是常数;c. 双曲线的长轴、短轴及焦点之间存在一定的关系,可以通过这些参数来确定双曲线的形状和大小。

二、双曲线的应用双曲线在数学和物理学中有着广泛的应用。

以下是几个常见的应用领域:1. 光学:双曲线是抛物面镜和双曲面镜的截面曲线,这些曲线具有聚焦和发散光线的特性,被广泛应用于光学系统中,如望远镜、显微镜等。

2. 电磁场:在电磁学中,双曲线是电场和磁场的等势线,它们的分布和形状对电磁场的性质和行为有着重要的影响。

3. 天体力学:在天体力学中,双曲线被用来描述天体的轨道形状,如彗星的轨道就是一个双曲线。

高中数学-圆锥曲线知识点

高中数学-圆锥曲线知识点

高中数学-圆锥曲线知识点解析几何是数学中的一个重要分支,它研究的是几何图形在坐标系中的性质和变换。

其中,圆锥曲线是解析几何中的重要内容之一,下面将介绍椭圆和双曲线的知识点。

一、椭圆1、定义:椭圆是平面内与两定点F1、F2的距离之和(大于│F1F2│)为常数的点的轨迹。

其中,定点F1、F2叫做椭圆的焦点,两焦点之间的距离│F1F2│叫做椭圆的焦距。

注:2a>│F1F2│非常重要,因为当2a=│F1F2│时,其轨迹为线段F1F2;当2a<│F1F2│时,其轨迹不存在。

2、标准方程、图形和性质:椭圆的标准方程为│MF1│+│MF2│=2a(a>0),其中M为椭圆上任一点。

椭圆的焦点在y项系数的大小决定,由x、y项系数的大小关系可以确定椭圆的长轴、短轴、焦距、焦点坐标、离心率和顶点坐标等性质。

椭圆的离心率e=(<e<1),长轴长=2a,短轴长=2b,焦点在长轴上,对称轴为x轴或y轴,原点是对称中心。

二、双曲线1、定义:双曲线是平面内与两定点F1、F2的距离之差(小于│F1F2│)为常数的点的轨迹。

其中,定点F1、F2叫做双曲线的焦点,两焦点之间的距离│F1F2│叫做双曲线的焦距。

2、标准方程、图形和性质:双曲线的标准方程为│MF1│-│MF2│=2a(a>0),其中M为双曲线上任一点。

双曲线的焦点在y项系数的大小决定,由x、y项系数的大小关系可以确定双曲线的长轴、短轴、焦距、焦点坐标、离心率和顶点坐标等性质。

双曲线的离心率e>1,长轴长=2a,短轴长=2b,焦点在长轴上,对称轴为x轴或y轴,原点是对称中心。

以上是解析几何中椭圆和双曲线的基本知识点,掌握了这些知识,可以更好地理解和应用解析几何。

双曲线是一种与两个定点和一个常数有关的点的轨迹,其轨迹上满足两个定点到该点距离之差的绝对值小于定点之间距离的常数。

这两个定点分别称为双曲线的焦点,该常数为双曲线的焦距。

对于双曲线上的任意一点M,其到焦点F1和F2的距离之差的绝对值减去焦距的结果为常数2a。

湘教版高中数学选修1-1文科课件 2.4 圆锥曲线的应用课件

湘教版高中数学选修1-1文科课件 2.4 圆锥曲线的应用课件
(2)参数法:根据条件,将所求动点的坐标用恰当的参数 (如角度、直线斜率等)解析式表示出来,再利用某些关系式消 去参数得到轨迹方程.
课前探究学习
课堂讲练互动
活页规范训练
3.长度为1的线段AB在x轴上移动,点P(0,1)与点A连成直线 PA,点Q(1,2)与点B连成直线QB,求直线PA与直线QB交点的轨迹 方程.
课前探究学习
课堂讲练互动
活页规范训练
典例剖析 题型一 圆锥曲线在实际中的应用
【例1】 某工程要挖一个横截面为半圆的柱形隧道,挖出的 土只能沿道路AP、BP运到P处(如图),PA=100 m,PB=150 m, ∠APB=60°,试说明怎样运土才能最省工.
课前探究学习
课堂讲练互动
活页规范训练
解 以AB所在直线为x轴,AB的垂直平分线为y轴,建立直角
课前探究学习
课堂讲练互动
活页规范训练
(3)数学求解.根据所建立数学关系的知识系统,解出结果, 从而得到实际问题的解答.
解题的一般思想是:
课前探究学习
课堂讲练互动
活页规范训练2.圆锥曲线的应问题 解答圆锥曲线的应用问题时,要善于抓住问题的实质,通 过建立数学模型,实现实际问题向数学问题的顺利转化.要注 意认真分析数量间的关系,紧扣圆锥曲线的概念,充分利用圆 锥曲线的几何性质,确定正确的问题解决途径,灵活运用解析 几何的常用数学方法,求得最终完整的解答. 3.注意数学建模的方法,理解函数与方程、等价转化、 分类讨论等数学思想.
的解,
消去参数a,得点M的轨迹方程为(2-x)y=2.
课前探究学习
课堂讲练互动
活页规范训练
题型四 直线与圆锥曲线的位置关系问题
【例4】 (1)当k=________时,曲线y=k(x+1)与y2=4x恰有

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.2.1

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.2.1

数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(2)方法一:若焦点在 x 轴上, 设双曲线的标准方程为ax22-by22=1(a>0,b>0). 因为 M(1,1),N(-2,5)在双曲线上,
a12-b12=1, 所以-a222-5b22=1, 若焦点在 y 轴上,
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.根据下列条件,求双曲线的标准方程: (1)双曲线的中心在原点,焦点在 y 轴上,且经过点(0,2)与 ( 5,2 2); (2)c= 6,经过点(-5,2),焦点在 x 轴上.
数学 选修1-1
第二章 圆锥曲线与方程
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
双曲线的定义
定义
平面内与两个定点F1,F2的距离的_差__的__绝__对__值_ _是__常__数___的点的轨迹叫做双曲线
焦点 焦距 集合语言
_两__个__定__点__F_1,__F__2 _叫做双曲线的焦点
合作探究 课堂互动
高效测评 知能提升
1.了解双曲线的定义、几何图形和标准方程的推导过 程.
2.掌握双曲线的标准方程. 3.会利用双曲线的定义和标准方程解决简单的应用问 题.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
我海军“马鞍山”舰和“千岛湖”舰组成第四批护航编队 远赴亚丁湾,在索马里流域执行护航任务.
自主学习 新知突破

高中数学选修2-1第二章圆锥曲线

高中数学选修2-1第二章圆锥曲线
双曲线的标准方程: 双曲线的标准方程:
2
2
y x + 2 =1 (a > b > 0) 2 a b
2
2
x2 y2 − 2 =1 (a > 0,b > 0) 2 a b
抛物线的标准方程: 抛物线的标准方程:
y2 x2 − 2 =1 (a > 0,b > 0) 2 a b
y2 = ±2px ( p > 0)
动 M 一 定 F的 离 它 一 定 线的 离 比 点 与 个 点 距 和 到 条 直 l 距 的 是 数e, 常 l d .M
l
d
.M .
F
l
d.M
.
.
e >1
F
F
0 <e <1
e =1
定点是焦点,定直线叫做准线,常数e是离心率 .
椭圆的标准方程: 椭圆的标准方程:
x y + 2 =1 (a > b > 0) 2 a b
3.双曲线的几何性质:以 .双曲线的几何性质: x2/a2-y2/b2=1(a、b>0)表示的双曲线为例,其几 表示的双曲线为例, > 表示的双曲线为例 何性质如下: 何性质如下: (1)范围:x≤-a,或x≥a 范围: 范围 , (2)关于 轴、y轴、原点对称, 关于x轴 轴 原点对称, 关于 (3)两顶点是 ±a,0)(4)离心率 两顶点是(± 两顶点是 离心率 e=c/a∈(1,+∞).c=√a2+b2(5)渐近线方程为 ∈ 渐近线方程为 y=±bx/a,准线方程是 ±a2/c ± ,准线方程是x=±
椭圆 圆 锥 曲 线
定义 标准方程
双曲线
几何性质
抛物线
直线与圆锥曲线 的位置关系

数学中的圆锥曲线与二次函数关系

数学中的圆锥曲线与二次函数关系数学中,圆锥曲线和二次函数是两个重要的概念。

它们之间存在着密切的关系,通过研究二次函数可以深入理解圆锥曲线的性质。

本文将探讨圆锥曲线与二次函数之间的关系以及它们在数学领域中的应用。

一、圆锥曲线的定义和性质圆锥曲线是在平面上由一个定点(焦点)F 和一个定直线(准线)L 构成的所有动点 P 的轨迹。

根据焦点与准线之间的位置关系,圆锥曲线分为三种类型:椭圆、双曲线和抛物线。

1. 椭圆:椭圆是焦点到动点的距离之和等于常数的点的轨迹。

可以通过二次函数的方程来表示椭圆。

设椭圆的长半轴为 a,短半轴为 b,则椭圆的标准方程为(x/a)^2 + (y/b)^2 = 1。

2. 双曲线:双曲线是焦点到动点的距离之差等于常数的点的轨迹。

同样可以用二次函数的方程来表示双曲线。

设双曲线的长半轴为 a,短半轴为 b,则双曲线的标准方程为(x/a)^2 - (y/b)^2 = 1。

3. 抛物线:抛物线是焦点到动点的距离等于动点到准线的距离的点的轨迹。

抛物线的方程也可以用二次函数来表示。

设抛物线的焦点到准线的距离为 p,则抛物线的标准方程为y^2 = 2px。

二、二次函数与圆锥曲线之间的关系二次函数与圆锥曲线之间存在着密切的关系。

实际上,圆锥曲线的标准方程就是二次函数的一种特殊形式。

通过对二次函数进行参数的调整,可以得到各种类型的圆锥曲线的方程。

1. 椭圆与二次函数关系:椭圆的标准方程为(x/a)^2 + (y/b)^2 = 1。

通过对该方程进行一些参数调整,可以将其变换为二次函数的方程。

例如,将 x 替换为 x/a,y 替换为 y/b,就可以得到二次函数的方程。

2. 双曲线与二次函数关系:双曲线的标准方程为(x/a)^2 - (y/b)^2 = 1。

同样,通过对该方程进行参数的调整,可以将其转化为二次函数的方程。

将 x 替换为 x/a,y 替换为 y/b,就可以得到二次函数的方程。

3. 抛物线与二次函数关系:抛物线的标准方程为y^2 = 2px。

高三数学圆锥曲线

,紧接着开始商量起事情,他们在说钱的事情,母亲很沮丧,轻声地说:“家里只有六十元了,快过年了,要买年货,过完年孩子们还要交学费,这手头实在是太 紧了,”父亲惭愧温和地对母亲说:“我去朋友那里借上五百元,等三月份奶牛产奶卖了再还上,”母亲又为难地说:“这大冷天的又快过年了,到那里去借钱,谁会借给你啊?”父亲自信坦率地说: “二十多公里外的头孚村二队有一个经济条件好的朋友可以借到钱,”母亲没有说话了,他们沉默了片刻。父亲对母亲说他现在就要动身去借钱,母亲伤感地说:“下这么大的雪路不好走,等明天雪停 了再去,”母亲再三劝阻还是没有阻止父亲坚持立马动身去借钱。父亲穿戴好棉衣棉帽和棉手套,毅然拉开了房门走了出去。母亲哭得很伤心,我和母亲也走出了房门,目送父亲挺直了身板,迈着阔步 走进漫天飞舞的雪花中,没有走多远,整个身影消失在风雪中。
宅男午夜在线看黄 2019年3月22日作于新疆石河子市
乡村纪事
父亲没有走失在风雪中
寒风呼啸地吹过房顶,炉膛里的火苗嗖嗖地猛烈地燃烧着,从窗户往外望去,大朵大朵的雪花被风吃得在天空乱舞,密密麻麻的看不见远处的东西。我转到铁炉旁仔细瞧着炉膛里的煤炭是否烧完, 深怕火熄灭了,严寒跑进我的房子里。

数学宝典之圆锥曲线

数学宝典之圆锥曲线一、知识点回顾:二、章节知识点回顾:椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.椭圆的标准方程:12222=+b y a x ,12222=+b x a y (0>>b a )3.椭圆的性质:由椭圆方程12222=+by a x (0>>b a )(1)范围: a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中.(2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称原点叫椭圆的对称中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点: )0,(),0,(2a A a A -,,0(),,0(2b B b B -加两焦点)0,(),0,(21c F c F -共有六个特殊点 21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为a 2,2 b a ,分别为椭圆的长半轴长和短半轴长椭圆的顶点即为椭圆与对称轴的交点(4)离心率: 椭圆焦距与长轴长之比a c =⇒e =<<e 椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例 ,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例4椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式 5.椭圆的准线方程对于12222=+by a x ,左准线c a x l 21:-=;右准线c x l 22:=对于12222=+bx a y ,下准线c a y l 21:-=;上准线c y l 22:=焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数) 椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称6.椭圆的焦半径公式:(左焦半径)01ex a r +=,(右焦半径)02ex a r -=,其中e 是离心率焦点在y轴上的椭圆的焦半径公式: ⎩⎨⎧-=+=0201ey a MF ey a MF ( 其中21,F F 分别是椭圆的下上焦点)焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关 可以记为:左加右减,上减下加7椭圆的参数方程(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x8.双曲线的定义:平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线即a MF MF 221=- 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距在同样的差下,两定点间距离较长,则所画出的双曲线的开口较开阔(→两条平行线)两定点间距离较短(大于定差),则所画出的双曲线的开口较狭窄(→两条射线) 双曲线的形状与两定点间距离、定差有关9.双曲线的标准方程及特点:(1)双曲线的标准方程有焦点在x 轴上和焦点y 轴上两种:焦点在x 轴上时双曲线的标准方程为:12222=-b y a x (0>a ,0>b );焦点在y 轴上时双曲线的标准方程为:12222=-bx a y (0>a ,0>b )(2)c b a ,,有关系式222b a c +=成立,且,0,0>>>c b a 其中a 与b 的大小关系:可以为a b a b a ><=,,10焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母2x 、2y 项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴 而双曲线是根据项的正负来判断焦点所在的位置,即2x 项的系数是正的,那么焦点在x 轴上;2y 项的系数是正的,那么焦点在y 轴上11.双曲线的几何性质: (1)范围、对称性由标准方程12222=-by a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心 (2)顶点顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做虚半轴长双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 (3)渐近线过双曲线12222=-by a x 的渐近线x a b y ±=(0=±b y a x )(4)离心率双曲线的焦距与实轴长的比aca c e ==22,叫做双曲线的离心率 范围:1>e 双曲线形状与e 的关系:1122222-=-=-==e ac a a c a b k ,e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔12.等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率=e13.共渐近线的双曲线系如果已知一双曲线的渐近线方程为x a b y ±=)0(>±=k x kakb,那么此双曲线方程就一定是:)0(1)()(2222>±=-k kb y ka x 或写成λ=-2222b y a x 14.共轭双曲线以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 区别:三量a,b,c 中a,b 不同(互换)c 相同 共用一对渐近线 双曲线和它的共轭双曲线的焦点在同一圆上确定双曲线的共轭双曲线的方法:将1变为-115. 双曲线的第二定义:到定点F 的距离与到定直线l 的距离之比为常数)0(>>=a c ace 的点的轨迹是双曲线 其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率. 16.双曲线的准线方程:对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 21:-=,相对于右焦点)0,(2c F 对应着右准线c a x l 22:=; 焦点到准线的距离cb p 2=(也叫焦参数)对于12222=-b x a y 来说,相对于上焦点),0(1c F -对应着上准线c a y l 21:-=;相对于下焦点),0(2c F 对应着下准线ca y l 22:=17 双曲线的焦半径定义:双曲线上任意一点M 与双曲线焦点21,F F 的连线段,叫做双曲线的焦半径焦点在x 轴上的双曲线的焦半径公式:⎩⎨⎧-=+=∴0201ex a MF ex a MF 焦点在y 轴上的双曲线的焦半径公式:⎩⎨⎧-=+=∴0201ey a MF ey a MF ( 其中21,F F 分别是双曲线的下上焦点)18.双曲线的焦点弦:定义:过焦点的直线割双曲线所成的相交弦 焦点弦公式:当双曲线焦点在x 轴上时,过左焦点与左支交于两点时: (221x x e a AB +--=过右焦点与右支交于两点时:(221x x e a AB ++-=当双曲线焦点在y 轴上时,过左焦点与左支交于两点时:(221y y e a AB +--=过右焦点与右支交于两点时:(221y y e a AB ++-=19.双曲线的通径:定义:过焦点且垂直于对称轴的相交弦 ad 2=20 抛物线定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线 定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线 21.抛物线的准线方程:(1))0(22>=p px y , 焦点:)0,2(p ,准线l :2x =(2))0(22>=p py x , 焦点:)2,0(p ,准线l :2py -=(3))0(22>-=p px y , 焦点:)0,2(p -,准线l :2x =(4) )0(22>-=p py x , 焦点:)2,0(p -,准线l :2y =相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的41,即242pp = 不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2±、左端为2y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2±,左端为2x (2)开口方向在X 轴(或Y 轴)正向时,焦点在X 轴(或Y 轴)的正半轴上,方程右端取正号;开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号 22.抛物线的几何性质 (1)范围因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y)满足不等式x≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸. (2)对称性以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴. (3)顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y=0时,x=0,因此抛物线()022>=p px y 的顶点就是坐标原点.(4)离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e=1.23抛物线的焦半径公式:抛物线)0(22>=p px y ,0022x pp x PF +=+=抛物线)0(22>-=p px y ,0022x pp x PF -=-= 抛物线)0(22>=p py x ,0022y pp y PF +=+= 抛物线)0(22>-=p py x ,0022y pp y PF -=-= 24.直线与抛物线:(1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点)将b kx y l +=:代入0:22=++++F Ey Dx Cy Ax C ,消去y ,得到关于x 的二次方程2=++c bx ax (*)若0>∆,相交;0=∆,相切;0<∆,相离 综上,得:联立⎩⎨⎧=+=pxy b kx y 22,得关于x 的方程02=++c bx ax 当0=a (二次项系数为零),唯一一个公共点(交点)当0≠a ,则若0>∆,两个公共点(交点) 0=∆,一个公共点(切点) 0<∆,无公共点 (相离) (2)相交弦长:弦长公式:21k ad +∆=, (3)焦点弦公式:抛物线)0(22>=p px y , (21x x p AB ++=抛物线)0(22>-=p px y , (21x x p AB +-=抛物线)0(22>=p py x , (21y y p AB ++=抛物线)0(22>-=p py x ,(21y y p AB +-=(4)通径:定义:过焦点且垂直于对称轴的相交弦 通径:p d 2=(5)若已知过焦点的直线倾斜角θ则⎪⎩⎪⎨⎧=-=px y p x k y 2)2(20222=--⇒p y k p y ⎪⎩⎪⎨⎧-==+⇒221212p y y k p y y θsin 24422221p p kp y y =+=-⇒θθ221sin 2sin 1p y y AB =-=⇒ (6)常用结论:⎪⎩⎪⎨⎧=-=pxy p x k y 2)2(20222=--⇒p y k p y 和04)2(22222=++-p k x p p k x k 221p y y -=⇒和421x x =25.抛物线)0(22>=p px y 的参数方程:⎩⎨⎧== 222pt y pt x (t 为参数)二、讲解范例:例1 根据下列条件,写出椭圆方程⑴ 中心在原点、以对称轴为坐标轴、离心率为1/2、长轴长为8; ⑵ 和椭圆9x 2+4y 2=36有相同的焦点,且经过点(2,-3);⑶ 中心在原点,焦点在x 轴上,从一个焦点看短轴两端的视角为直角,焦点到长轴上较近顶点的距离是10-分析: 求椭圆的标准方程,首先要根据焦点位置确定方程形式,其次是根据a 2=b 2+c 2及已知条件确定a 2、b 2的值进而写出标准方程解 ⑴ 焦点位置可在x 轴上,也可在y 轴上,因此有两解:1121611216222=+=+x y y x 或 ⑵ 焦点位置确定,且为(0,5±),设原方程为12222=+b y a x ,(a>b>0),由已知条件有⎪⎩⎪⎨⎧=+=-14952222b ab a 10,1522==⇒b a ,故方程为10152=+xy⑶ 设椭圆方程为12222=+by a x ,(a>b>0)由题设条件有⎩⎨⎧-=-=510c a cb 及a 2=b 2+c 2,解得b=10,5=a ,故所求椭圆的方程是15102=+y x 例2 从椭圆12222=+by a x ,(a>b>0)上一点M 向x 轴所作垂线恰好通过椭圆的左焦点F 1,A 、B 分别是椭圆长、短轴的端点,AB ∥OM 设Q 是椭圆上任意一点,当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若⊿F 2PQ的面积为203,求此时椭圆的方程解 可用待定系数法求解∵b=c,a=2c ,可设椭圆方程为122222=+cy c x∵PQ ⊥AB,∴k PQ =-21==bak AB ,则PQ 的方程为y=2(x-c), 代入椭圆方程整理得5x 2-8cx+2c 2=0, 根据弦长公式,得c PQ 526=, 又点F 1到PQ 的距离d=362 c ∴==∆d PQ S PQ F 2112534c ,由,2532053422==c c ,得 故所求椭圆方程为255022=+y x 例3 已知椭圆:1922=+y x ,过左焦点F 作倾斜角为6π的直线交椭圆于A 、B 两点,求弦AB 的长 解:a=3,b=1,c=22; 则F (-22,0)由题意知:)22(31:+=x y l 与1922=+y x 联立消去y 得: 01521242=++x x设A (),11y x 、B (),22y x ,则21,x x 是上面方程的二实根,由违达定理,2321-=+x x41521=⋅x x ,223221-=+=x x x M 又因为A 、B 、F 都是直线l 上的点, 所以|AB|=21518324)(32||3112122121=-=-+⋅=-⋅+x x x x x x点评:也可让学生利用“焦半径”公式计算例4 中心在原点,一个焦点为F 1(0,50)的椭圆截直线23-=x y 所得弦的中点横坐标为21,求椭圆的方程分析:根据题意,可设椭圆的标准方程,与直线方程联立解方程组,利用韦达定理及中点坐标公式,求出中点的横坐标,再由F 1(0,50)知,c=50,5022=-∴b a ,最后解关于a 、b 的方程组即可解:设椭圆的标准方程为)0(12222>>=+b a by a x ,由F 1(0,50)得 5022=-b a把直线方程23-=x y 代入椭圆方程整理得:0)4(12)9(222222=-+-+a b x b x b a设弦的两个端点为),(),,(2211y x B y x A ,则由根与系数的关系得:22221912ba b x x +=+, 又AB 的中点横坐标为21,2196222221=+=+∴b a b x x223b a =∴,与方程5022=-b a 联立可解出25,7522==b a故所求椭圆的方程为:1257522=+y x 例5 直线1+=kx y 与双曲线1322=-y x 相交于A 、B 两点,当a 为何值时,A 、B 在双曲线的同一支上?当a 为何值时,A 、B 分别在双曲线的两支上?解: 把1+=kx y 代入1322=-y x 整理得:022)3(22=---ax x a (1)当3±≠a 时,424a -=∆ 由∆>0得66〈〈-a 且3±≠a 时,方程组有两解,直线与双曲线有两个交点若A 、B 在双曲线的同一支,须32221-=a x x >0 ,所以3〈-a或a 故当36〈-〈-a 或63a 〈时,A 、B 两点在同一支上;当33a 〈-时,A 、B 两点在双曲线的两支上例6 已知双曲线的中心在原点,过右焦点F (2,0)作斜率为53的直线,交双曲线于M 、N 两点,且MN =4,求双曲线方程 解:设所求双曲线方程为)0,0(12222〉〉=-b a b y a x ,由右焦点为(2,0)知C=2,b 2=4-a 2 则双曲线方程为142222=--b y a x ,设直线MN 的方程为:)2(53-=x y ,代入双曲线方程整理得:(20-8a 2)x 2+12a 2x+5a 4-32a 2=0 设M (x 1,y 1),N(x 2,y 2),则222182012a a x x --=+, 22421820325a a a x x --= ∴()212124531x x x x MN -+∙⎪⎪⎭⎫ ⎝⎛+= 482032548201258224222=--⋅-⎪⎪⎭⎫ ⎝⎛--∙=a a a a a 解得:12=a ,142=-=∴b 故所求双曲线方程为:322=-y x 点评:利用待定系数法求曲线方程,运用一元二次方程得根与系数关系将两根之和与积整体代入,体现了数学的整体思想,也简化了计算,要求学生熟练掌握例7 已知双曲线1222=-y x ,过点 A (2,1)的直线与已知双曲线交于P 、Q 两点1)求PQ 中点的轨迹方程;(2)过B (1,1)能否作直线l ,使l 与所给双曲线交于两点M 、N ,且B 为MN 的中点,若存在,求出l 的方程,不存在说明理由解:(1)设P (x 1,y 1)、Q(x 2,y 2),其中点为(x ,y ),PQ 的斜率为k,若PQ 的斜率不存在显然(2,0)点是曲线上的点若PQ 的斜率存在,由题设知:122121=-y x …(1) 122222=-y x …(2) (2)-(1)得:02))(())((12211221=-+--+y y y y x x x x 22121k y y x x =++∴,即2k y x =…(3) 又21--=x y k 代入(3)整理得:04222=+--y x y x (2)显然过B 点垂直X 抽的直线不符合题意只考虑有斜率的情况设l 的方程为y-1=k(x-1) 代入双曲线方程1222=-y x ,整理得: ()()032122222=-+----k k x k k x k …※设M (x 1,y 1)、N(x 2,y 2)则有()212221=--=+k k k x x 解得:k =2 又直线与双曲线必须有两不同交点,所以※式的()()()k k k k k 〉+--+-=∆3224142222 把K=2代入得8-=∆<0,故不存在满足题意的直线l例8 已知抛物线方程为)0)(1(22>+=p x p y ,直线m y x l =+:过抛物线的焦点F 且被抛物线截得的弦长为3,求p 的值.解:设l 与抛物线交于1122(,),(,),|| 3.A x y B x y AB =则由距离公式|AB|=221221)()(y y x x -+-1212||y y y y -=- 则有 2129().2y y -= 由.02,).1(2,21222=-+⎪⎩⎪⎨⎧+=+-=+p py y x x p y p y x 得消去 .,2.04)2(2212122p y y p y y p p -=-=+∴>+=∆ 解得43=p 从而.294)2(,4)()(2221221221=+--+=-p p y y y y y y 即由于p>0,例9 如图,线段AB 过x 轴正半轴上一点M (m ,0)(m >0),端点A 、B 到x 轴距离之积为m 2,以x 轴为对称轴,过A ,O ,B 三点作抛物线(1)求抛物线方程;(2)若m AOB tg ,求1-=∠的取值范围解:(1)当AB 不垂直x 轴时,设AB 方程为)0(2).(2>=-=p px y m x k y 抛物线方程由212122|2,0222)(y y pm y y pkm py ky pxy m x k y ∴-=∴=--⎩⎨⎧=-=得|m pm 22== ,22),2,(),2,(,,.1m pm pm m Pm m B A X AB p =-⊥=∴由题意有分别为轴时当1=p ,故所求抛物线方程为.22x y =(2)设知由)1(),2(),,2(222121y y B y y A ky y m y y 2,22121=+-= =-∴||21y y ,844)(221221m ky y y y +=-+ ,2,212211y k y k AOB tg ==-=∠又m k m y y y y y y y y 84242|,|2411|22|221212121+=+-∴-=+-=+-∴即①, 平方后化简得246246,04124412222+>-<∴>+-∴=+-m m m m k m m 或又由①知m m m ∴<∴>+-2,042的取值范围为x AB m m ⊥-=-<<且当2462460轴时,1tan .2)12(4),12(2),12(222121-=∠-=--=--=-=AOB m y y y y符合条件,故符合条件的m 取值范围为.2460-≤<m二、课堂练习:1.直线()2:-=x k y l 与曲线()0122>=-x y x ,相交于A 、B 两点,求直线l 的倾斜角的范围答案:⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛43,22,4ππππ 2.直线1+=kx y 与双曲线122=-y x 的左支仅有一个公共点,求K 的取值范围答案:11≤〈-k 或2=k3.已知双曲线1222=-y x 与点P (1,2),过P 点作直线L 与双曲线交于A 、B 两点,若P 为AB 的中点(1)求直线AB 的方程(2)若Q 为(-1,-1),证明不存在以Q 为中点的弦答案 AB :x-y+1=04.双曲线)1(1322≥=-x y x ,一条长为8的弦AB 的两端在曲线上运动,其中点为M ,求距Y 轴最近的点M 的坐标答案:⎪⎪⎭⎫ ⎝⎛215,255.顶点在原点,焦点在x 轴上的抛物线,截直线42-=x y 所得的弦长为53,求抛物线的方程:x y 42=或y 362-=6.过抛物线焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在抛物线准线上的射影分别为E 、G ,则EFG ∠等于 ( B ) A .045 B 0 C 0 D 0 7若抛物线x y 82=被过焦点,且倾斜角为0135的直线所截,求截得的线段的中点坐标答案:(4,6- ()6,1--的直线l 与抛物线x y 42=交于A 、B 两点,求直线l 的斜率K ()()103,00,103+- 9.过点()4,2--A 作倾斜角为045的直线交抛物线()022>=p px y 于点1P 、2P ,若21221AP AP P P ⋅=,求实数p 的值答案:1=p。

圆锥曲线的共同性质


课堂互动讲练
考点突破 利用共同性质求方程
平面上, 动点 M 到定点 F 的距离 MF 与到定直 MF 线 l 的距离 d 之比 d =e(e 为大于零的常数)的 点的轨迹是圆锥曲线,当 e∈(0,1)时是椭圆,e =1 时是抛物线,e∈(1,+∞)时是双曲线.
例1 已知一条圆锥曲线的一个焦点是 F(1,0),
x2 y2 例3 (本题满分 14 分)已知椭圆 + 25 16 =1, 为椭圆上任意一点, 1, 2 为左、 P F F 右两个焦点,若|PF1|∶|PF2|=2∶1,求 点 P 的坐标.
【思路点拨】 出x. 设点P(x,y),由焦半径公式求
【规范解答】 设点 P 的坐标为(x, y). x2 y 2 ∵椭圆 + =1, 25 16 ∴a=5,b=4,c=3. 3 25 ∴e= ,准线方程为 x=± .6 分 5 3 3 由圆锥曲线的统一定义知|PF1|=ed1= 5
圆锥曲线的焦半径、焦 点弦问题
圆锥曲线上的点与焦点连线时,焦半径对应的 问题常应用统一定义来解决. 圆锥曲线的焦点弦问题是常见的一类弦长问题, 可以用一般弦长公式求解,但更好的方法是利 用焦点弦特有的公式进行计算,焦点弦公式为 AB=AF+BF=e(AA1+BB1),其中AA1,BB1为 弦的两端点到准线的距离.
2. 圆锥曲线的焦点、 准线与曲线的相对 位置,曲线中与坐标系无关的不变量 (1)准线与曲线没有公共点. (2)椭圆中长轴长 2a,短轴长 2b,离心 c 率 e=a,中心到焦点的距离 c,中心到 a2 准线的距离 c 等都是与坐标系无关的不 变量.
p 抛物线中焦点到顶点的距离 ,焦点到 2 准线的距离 p 也都是与坐标系无关的不 变量.
25 3 x+ = x+5, 3 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学圆锥曲线图像
数学是一门抽象而又精确的学科,它以逻辑和推理为基础,通过符号和公式来
描述和解决问题。在数学的世界中,有一类特殊的曲线被称为圆锥曲线。圆锥曲线
包括椭圆、双曲线和抛物线,它们在数学和物理学中有着广泛的应用。

椭圆是一种非常优美的曲线,它的图像呈现出一种闭合的形状。椭圆的图像可
以通过一个简单的方程来描述:x²/a² + y²/b² = 1。其中,a和b分别代表椭圆的长轴
和短轴的长度。通过改变a和b的值,我们可以得到不同形状和大小的椭圆。当a
和b相等时,椭圆就变成了一个圆。椭圆的图像在几何学和天文学中有着广泛的应
用,例如描述行星的轨道和卫星的运动轨迹等。

双曲线是另一种重要的圆锥曲线,它的图像呈现出两个分离的曲线。双曲线的
方程可以写成x²/a² - y²/b² = 1。与椭圆不同,双曲线的图像在原点附近呈现出两个
分离的支线。双曲线的图像在物理学和工程学中有着广泛的应用,例如描述光的折
射和天体的引力场等。

抛物线是圆锥曲线中最简单的一种,它的图像呈现出一种开口向上或向下的形
状。抛物线的方程可以写成y = ax² + bx + c。通过改变a、b和c的值,我们可以得
到不同形状和位置的抛物线。抛物线的图像在物理学和工程学中有着广泛的应用,
例如描述物体的抛射运动和天体的轨迹等。

除了这三种基本的圆锥曲线,还有一些其他的变体曲线也属于圆锥曲线的范畴。
例如,椭圆双曲线、抛物线双曲线和双曲线抛物线等。这些曲线的图像形状更加复
杂,但它们的方程和性质与基本的圆锥曲线类似。

圆锥曲线的图像不仅仅在数学中有着重要的地位,它们也在现实世界中有着广
泛的应用。例如,椭圆的图像可以用来描述行星的轨道和卫星的运动轨迹,双曲线
的图像可以用来描述光的折射和天体的引力场,抛物线的图像可以用来描述物体的
抛射运动和天体的轨迹。这些应用使得圆锥曲线成为了数学和物理学中不可或缺的
工具。

总结起来,数学圆锥曲线图像是一门深入研究的学科,它包括椭圆、双曲线和
抛物线等曲线的图像。这些曲线的图像形状各异,但它们都有着重要的数学和物理
学应用。通过研究和理解圆锥曲线的图像,我们可以更好地理解和解决实际问题。
数学圆锥曲线图像的研究不仅仅是一种学术追求,更是一种对自然界规律的深入探
索。

相关文档
最新文档