拉姆齐模型(RCK)与世代交替模型的异同

合集下载

世代交叠模型

世代交叠模型

彼得·戴蒙德(Peter Diamond,1940-):世代交叠模型的提出者,美国经济学家彼得·戴蒙德彼得•戴蒙德生于1940年,1960年毕业于耶鲁大学,获数学学士学位;1963年,年仅23岁就获得了麻省理工学院经济学博士学位,之后在加州大学伯克利分校开始教学生涯。

自1966年起至今,戴蒙德一直在麻省理工学院任教。

2002至2003年,戴蒙德被推选为美国经济协会主席。

彼得·戴蒙德(Peter A .Diamond)是一位相当活跃、举足轻重的潜在诺贝尔奖得主。

他在四十多年的学术生涯中,引领了宏观经济学研究潮流,不断开辟新的研究领域,为其他经济学家建立了研究标准和方向。

编辑本段学术研究与贡献世代交叠模型以世代交叠模型奠定学界标杆地位1965年,年仅25岁的戴蒙德就在《美国经济评论》上发表了他的第一篇经典论文“新古典增长模型中的国家债务”。

文中,他在拉姆齐研究的基础上,建立了著名的世代交叠模型(Overlapping-generations model,OLG)。

正是这个模型所采用的世代交叠研究方法,一举奠定了他在宏观经济学、公共财政问题研究中的标杆地位。

彼得·戴蒙德依据拉姆齐模型,经济中的个体都是彼此毫无差别的标准个体,他们具有无限的寿命,拥有完全相同的理性行为,在永恒的无限生命期界中,依照相同的经济决策方式追求跨期效用最大化,不考虑年龄对人们经济行为的影响,即所有人的经济决策都被视为无差别。

作为对照,在世代交叠模型中,每个社会成员都仅具有有限的生命,随着年老一代的逝去,新的人口在不断进入经济生活,在相同的时点上,不同代际的人共同生活,不仅同一代人存在经济联系,而且不同代际的人之间还存在着广泛的经济交往。

他们的消费、储蓄、投资等所有经济选择,由于身处不同代际(即处于不同的年龄段),必然表现出不同的行为方式,即不同代际的人之间的交往规律不尽相同,因此,整个经济就构成了一个复杂的有机体。

拉姆齐模型

拉姆齐模型

拉姆齐模型拉姆齐模型是一种用于分析企业资本结构和债务重组的理论模型。

拉姆齐模型以名字命名,是由经济学家弗兰克·拉姆齐(Frank P. Ramsey)在20世纪30年代提出的。

该模型用于探讨企业在决定自己的资本结构时所面临的权衡问题,帮助企业制定最佳的债务比例。

背景资本结构是指企业所采用的资本来源和组织方式。

一般来说,企业可以通过两种方式筹集资金:通过债务融资和通过股权融资。

债务融资指的是企业通过发行债券或贷款等方式借入资金,而股权融资则是通过发行股票或吸引投资者购买股权来筹集资金。

企业的资本结构选择对其经营和财务状况有着重要的影响。

合理的资本结构可以降低企业的融资成本、提高税务效益,并平衡利益相关者之间的关系。

这就引出了拉姆齐模型。

模型解释拉姆齐模型首先假设企业的资本结构通过对债务与股权的选择进行优化来实现最大化价值的目标。

在这个模型中,企业的价值受到利润、税收、资本结构和风险等多个因素的影响。

模型中最基本的假设是,企业的资本结构会影响其成本和价值。

企业选择债务的比例是为了最大化净利润,同时平衡税务和金融风险。

根据拉姆齐模型的理论,债务的选择可以通过计算企业的债务税盾等参数来进行。

债务税盾是指企业由于债务利息的抵扣而减少应纳税额的优势。

在拉姆齐模型中,债务税盾会对企业的价值产生积极的影响,因为它减少了企业的纳税额,提高了净现金流。

此外,模型还考虑了资本结构对企业风险的影响。

债务融资可以增加企业财务风险,因为债务必须偿还,而股权融资则可以减少财务风险,因为股票的回报没有偿还压力。

因此,企业需要权衡风险与税盾所带来的优势,以确定最佳的资本结构。

实践应用拉姆齐模型的应用可以帮助企业确定最佳的资本结构,以实现最大化的价值。

通过分析债务税盾和风险影响,企业可以选择适合自己的债务比例,从而降低融资成本,改善财务状况。

在实际应用中,企业可以通过以下步骤使用拉姆齐模型:1.确定企业的利润和税务情况。

2-拉姆齐模型

2-拉姆齐模型

七、修正的黄金资本存量
定理1:在拉姆齐模型中,人均资本存量k收敛于k*,且低于索洛模
型中的黄金资本存量k*, 因此k*被称作“修正的黄金资本存量”。
定理2:拉姆齐模型表明在索洛模型中高于黄金资本存量的平衡增
长路径是不可能的。
【证明】通过相位图可以证明当k(0)>k(gold)时,追求跨期最优化的
家庭将降低储蓄,使k收敛于k*,且k*<k(gold)。
定理3:经济不收敛于产生最大c(即c(gold))的平衡增长路径,而
是收敛于一个较低的水平c*。
【证明】c*<c(gold)的前提是,它表明贴现率较高,家庭和个人更
重视现期消费,而不是未来消费。
图示(在索洛模型中当s低于s(gold)时提高s的影响):
c(gold)
c*
c0
c0
t
t
s较大的提高
s较小的提高
思考:在动态转移过程中ρ、ln(Y/L)、c、k、s的轨迹是什么? 此外,贴现率下降将可以使人均消费达到黄金律水平的平衡增长。
九、基本结论
1.拉姆齐模型没有改变索洛模型关于经济增长平衡路径的基本结 论。
2.索洛模型可以被看作是拉姆齐模型的一个特例,它必须对应于 后者特殊的参数和稳态。
3.拉姆齐模型的特点在于从家庭和个人的跨期消费行为的微观基 础出发决定稳态的消费(储蓄),从厂商的微观基础出发决定稳态的资 本存量,因此c和k是同时决定的。在这样的过程中,储蓄的决定被内生 化了。
六、平衡增长路径
均衡点E(c*,k*)的解为: 因此模型中的各个变量的长期变动如下:
变量
含义
平衡增长速度
K
资本存量
n+g
绝 对

简答什么是拉姆齐模型

简答什么是拉姆齐模型

简答什么是拉姆齐模型
简单来说,拉姆齐模型与索罗模型不同,拉姆齐模型是研究在任何情况下,国民产出有多少应该分配给消费从而产生当前的效用,又有多少国民产出应该分配给储蓄并进而投资以提高未来的产出和消费,从而产生未来的效用。

与新古典增长模型或者说索罗模型不同,因为在新古典增长模型中,储蓄率是被假定为一个外生参数,并没有说明其是如何决定的。

对此,拉姆齐模型引入了消费者(家庭)行为来分析跨期预算约束条件下的消费和储蓄选择,从而将储蓄这个参数内生化了。

拉姆齐模型的基本假定主要是:
1)市场是完全竞争的;
2)家庭是不断延续的;
3)家庭和个人是完全同质的;
4)忽略了资本折旧;
5)不考虑政府行为。

拉姆齐模型研究的结论可归结为以下几点:
第一,拉姆齐模型并没有改变新古典增长模型关于经济平衡增长路径的基本结论。

第二,在对应于拉姆齐模型中的参数稳态下,新古典增长模型可以看作是拉姆齐模型的一个特例。

第三,拉姆齐模型的特点在于从家庭和个人的跨期消费行为
的微观基础出发决定稳态的消费和储蓄,从厂商的微观基础出发决定稳态的资本存量,所以消费和储蓄是同时决定的。

在这个过程中,储蓄的决定被内生化了。

第四,拉姆齐模型避免了新古典增长模型中的无效的过度资本积累。

第五,拉姆齐模型中的任意初始状态不一定会收敛到稳态,会存在发散的情况,而新古典增长模型则不会。

第2章、无限时期与世代交替模型

第2章、无限时期与世代交替模型

第2章、无限时期与世代交替模型Infinite Horizon and Overlapping-Generations ModelsA 部分: Ramsey-Cass-Koopmans 模型 2.1 假设 1) 厂商✧ 生产函数: Y(t)=F(K(t), A(t)L(t)). 关于F 的假设与第一章相同。

✧ 要素市场和产出市场都是竞争性的。

✧ 厂商利润最大化。

家庭拥有厂商(企业)。

2) 家庭家庭效用最大化0()max (())tt L t eu C t dt Hρ∞-=⎰ 此处,C(t): 家庭中每个成员的消费, u(.): 瞬时效用函数,L(t): 经济的总人口, dL(t)/dt = nL(t) H: 家庭的数量,u(C(t))L(t)/H: 家庭的总瞬时效用, ρ: 贴现率 K(0): 初始资本 瞬时效用函数为:● 常数相对风险厌恶效用函数(Constant-relative-risk-aversion (CRRA) utility function ):相对风险厌恶系数为-Cu ’’(C)/u ’(C)= θ ● RRA 系数: θ● 跨期替代弹性(Elasticity of substitution ): 1/ θ———————————— 补充材料: 严格定义:● Constantinides (1990)和Weil (1989)按照投资者的值函数来定义投资者的RRA 系数,RRA WWWWJ J ≡-,将RRA 系数进一步表示为投资者的值函数关于财富的弹性,得到:RRA //W WdJ J dW W=-。

因此,投资者的RRA系数的含义是投资者的财富变动1个百分点,投资者的边际效用变动多少个百分点。

RRA 系数刻画了投资者关于风险的态度。

● 投资者的IES 系数则定义为当股票的溢价r μ-保持不变时,经济中利率水平增加1个单位,投资者的最优消费增长率增加的幅度,即如下偏微分:IES [(/)/]|r E dC C dt rμ-∂≡∂● 当投资者的效用函数为CRRA 时,投资者的RRA 系数和IES 系数互为倒数:RRA ⨯IES =1。

拉姆齐模型(RCK)与世代交替模型的异同

拉姆齐模型(RCK)与世代交替模型的异同

拉姆齐模型与世代交替模型的异同一、拉姆齐模型与世代交替模型的相同点拉姆齐模型(又称RCK 模型)与世代交替模型(又称Diamond 模型)都是现代经济增长理论的基准分析模型。

两个模型的主要相同点在于:第一,在这两种基准模型的一般均衡分析框架下,宏观层面的经济增长都具备了各个经济主体追求利益最大化的微观基础,这就使得经济学家能够在动态时间视角以及资源跨期最优配置的设定下对宏观经济增长进行更为深入的研究。

第二,两个模型均放弃了储蓄率外生给定的假设而通过家庭的效用最大化行为,将储蓄率表示为资本存量的函数,以便分析储蓄率的变动情况。

第三,两个模型在求解经济体一般均衡的结果时,都从市场竞争以及中央计划者配置(社会性最优)两个角度审视相应最优化结果是否具有一致性,从而比较并分析市场机制与计划手段的社会福利情况。

第四,两个模型的一般均衡结果中,人均资本存量以及人均消费量(以效率劳动的角度衡量)在长期内的增长率均为零,不存在持续性的增长机制。

二、拉姆齐模型与世代交替模型的区别从两个模型形式上的区别来看,经典的拉姆齐模型假设经济体中个人的寿命是无限的,因此对于家庭效用函数的构建以及效用最大化问题的讨论便从数理角度转化为了无限期连续型最优控制问题;而经典的世代交替模型假设经济体中个人的寿命是有限的,将人的一生简单划分为青年和老年两个阶段,青年阶段通过投入自身要素禀赋获得相应收入并消费,老年阶段则消费青年阶段的储蓄量,经济体每一期都存在着青年人出生、老年人死亡、上一期青年人变成老年人的迭代,因此对于消费者效用最大化行为的刻划便从数理角度转化为了跨期的非线性规划问题。

除了这种形式上的区别之外,两类模型还存在如下两点本质性的差异: 第一,竞争性均衡与社会性最优的关系。

在经典的拉姆齐模型中,竞争性均衡与社会性最优的结果是一致的。

首先考虑社会性最优的情形(计划增长模型),假设存在一个代表经济体中全部民众的善意计划者(中央政府)在既定资源约束下选择最优消费与资本增长路径使得家庭消费效用最大化,则最优选择问题可以表示为如下最优控制问题:0(,)0max :(())..:(),(0)t c k U c t e dt s t k f k c nk k k θ∞-=--=⎰解该最优控制问题,得到家庭最优消费路径为:(())c k cc U c f k n c U cθ=--- 接下来考虑竞争性均衡(分散化决策)的情形。

拉姆齐模型的主要结论

拉姆齐模型的主要结论
拉姆齐模型,又称拉姆齐-拉米哈模型,是当代生物信息学领域中一种非常重要且被广泛使用的基因表达预测模型。

该模型的核心思想是利用RNA结合蛋白(RBP)相互作用来预测基因表达。

拉姆齐模型由多个步骤组成,包括:1)基因筛选2)RP结合3)RP解离4)基因表达5)蛋白质检测。

拉姆齐模型的主要优点在于其高度的预测准确性。

与传统的基因表达预测方法相比,拉姆齐模型在预测基因表达方面具有更好的表现。

此外,该模型还具有较好的可扩展性,可以处理大规模数据。

除此之外,拉姆齐模型还具有其他优点,如易于计算,并且可以与其他生物信息学方法相结合。

然而,拉姆齐模型也存在一些局限性。

首先,该模型主要适用于预测编码蛋白质的基因表达。

对于其他类型的基因表达,如RNA预测、代谢网络预测等,拉姆齐模型可能无法获得同样的预测准确。

其次,拉姆齐模型的预测结果可能受到RP结合物的选择性影响。


此,在进行基因表达预测时,需要进行严格的实验验证,以确保结果的可靠性。

尽管如此,拉姆齐模型在基因表达预测中仍然具有广泛的应用。

该模型可以用于研究基因功能、基因表达调控、基因敲除等研究领域。

此外,随着生物信息学技术的不断发展,拉姆齐模型也在不断更新,以更好地满足新的研究需求。

总之,拉姆齐模型是一种非常有价值的基因表达预测工具。

它的主要优点在于高度的预测准确性和较好的可扩展性。

然而,也存在一些局限性,需要根据具体需求进行选择。

世代交叠模型

彼得·戴蒙德(Peter Diamond,1940-):世代交叠模型的提出者,美国经济学家彼得·戴蒙德彼得•戴蒙德生于1940年,1960年毕业于耶鲁大学,获数学学士学位;1963年,年仅23岁就获得了麻省理工学院经济学博士学位,之后在加州大学伯克利分校开始教学生涯。

自1966年起至今,戴蒙德一直在麻省理工学院任教。

2002至2003年,戴蒙德被推选为美国经济协会主席。

彼得·戴蒙德(Peter A .Diamond)是一位相当活跃、举足轻重的潜在诺贝尔奖得主。

他在四十多年的学术生涯中,引领了宏观经济学研究潮流,不断开辟新的研究领域,为其他经济学家建立了研究标准和方向。

编辑本段学术研究与贡献世代交叠模型以世代交叠模型奠定学界标杆地位1965年,年仅25岁的戴蒙德就在《美国经济评论》上发表了他的第一篇经典论文“新古典增长模型中的国家债务”。

文中,他在拉姆齐研究的基础上,建立了著名的世代交叠模型(Overlapping-generations model,OLG)。

正是这个模型所采用的世代交叠研究方法,一举奠定了他在宏观经济学、公共财政问题研究中的标杆地位。

彼得·戴蒙德依据拉姆齐模型,经济中的个体都是彼此毫无差别的标准个体,他们具有无限的寿命,拥有完全相同的理性行为,在永恒的无限生命期界中,依照相同的经济决策方式追求跨期效用最大化,不考虑年龄对人们经济行为的影响,即所有人的经济决策都被视为无差别。

作为对照,在世代交叠模型中,每个社会成员都仅具有有限的生命,随着年老一代的逝去,新的人口在不断进入经济生活,在相同的时点上,不同代际的人共同生活,不仅同一代人存在经济联系,而且不同代际的人之间还存在着广泛的经济交往。

他们的消费、储蓄、投资等所有经济选择,由于身处不同代际(即处于不同的年龄段),必然表现出不同的行为方式,即不同代际的人之间的交往规律不尽相同,因此,整个经济就构成了一个复杂的有机体。

拉姆齐模型的详细推导

拉姆齐模型的详细推导拉姆齐模型(Ramsey model)是一种用来研究经济增长和储蓄决策的动态经济模型。

它由经济学家弗兰克·拉姆齐(Frank Ramsey)于1928年提出。

拉姆齐模型的基本假设是在一个无限时间段内,个体的目标是最大化消费效用的总和。

模型中的主要变量包括消费(C),资本(K)和劳动(L)。

模型的核心是通过设立动态规划问题来推导最优的消费和储蓄决策规则。

下面是拉姆齐模型的详细推导过程:1. 假设:-整个经济的生产函数为Y = F(K, L),其中Y为产出,K为资本,L为劳动。

-消费者的效用函数为U(C),其中C为消费。

-劳动力的增长率为n,资本的折旧率为δ。

-时间折现率为ρ(消费者对未来收益的偏好程度)。

-模型是一个无期限模型,没有考虑人口增长和技术进步。

2. 确定个体的动态规划问题:-消费者的目标是最大化消费效用的总和,即max [∫[0,∞] U(C(t))e^(-ρt)dt]-消费者面临的约束条件为C(t) + K(t+1) = F(K(t), L(t)) + (1-δ)K(t),即消费和资本投资的总和等于产出和资本折旧的总和。

3. 利用欧拉方程推导消费决策规则:-求解拉格朗日函数:J = ∫[0,∞] U(C(t))e^(-ρt)dt + λ[∫[0,∞] {F(K(t), L(t)) - C(t) - K(t+1) + (1-δ)K(t)}dt]-通过求极值问题,得到欧拉方程:U'(C(t)) = U'(C(t+1))(F'(K(t+1), L(t+1)) -δ)-将欧拉方程整理为消费决策规则:C(t) = (1/ρ)(1+n+g)F(K(t), L(t)) - (1/ρ)(1+n+g-δ)K(t+1),其中g为人口增长率。

4. 确定资本积累规律:-将消费决策规则代入约束条件,得到资本积累规律:K(t+1) = (1/ρ)(1+n+g)F(K(t), L(t)) - C(t),即现期资本等于当期产出减去消费。

高等宏观经济学-第三章拉姆齐模型

第三章 无限期界模型(拉姆齐模型)一、问题的提出在索洛模型中,储蓄率s 被假定为外生参数,储蓄率的变动将影响稳态的人均消费和动态的人均消费水平。

当gold s s >时,与最优储蓄(相对应于最优资本存量和最优消费)相比会出现“过度储蓄”(即“过度积累”)的情况,而一个高于黄金率的储蓄率被证明是动态无效的。

当gold s s <时,只有在给定在当前消费与未来消费之间的权衡参数的条件下,才能判断增加储蓄率的合理性。

图示:s 的变动对稳态和动态的人均消费的影响c gold 那么,储蓄率是如何决定的?必须引入消费者(家庭)行为来分析跨期预算约束条件下的消费和储蓄选择,即储蓄率的“内生化”。

二、模型假定1.完全竞争市场结构2.长生不老的不断扩展的家庭(有限寿命的个人和基于利他主义的代际转让)3.家庭和个人完全同质4.忽略资本的折旧5.暂不考虑政府行为在简单经济中,家庭与厂商之间的关系:三、厂商行为沿用新古典生产函数),(AL K F Y = 根据欧拉定理,AL AL Y K K Y Y )(∂∂+∂∂=其中,资本的边际产品为:r k f KY==∂∂)('(真实利率) 有效劳动的边际产品为:w k kf k f AL Y=-=∂∂)(')()((工资率)四、家庭行为1.一些假定和符号总人口为L ,以速率n 增长,e L t L nt )0()(=; 家庭的个数为H ,每个家庭有L/H 个人; 每个家庭成员在每一时点上提供1单位劳动;资本最初存量为K(0),每个家庭初始资本存量为K(0)/H 。

2. 家庭效用函数和即期效用函数定义家庭效用函数(也称作“幸福函数”)为:dt HL t C u dt H t L t C u U o t tn o t te e)0()]([)()]([)(⎰⎰∞=--∞=-==ρρ其中,C(t)为每个家庭成员的消费,)(∙u 为即期效用函数,ρ为贴现率(ρ越大表明与现期消费相比远期消费的价值就越低)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉姆齐模型与世代交替模型的异同
一、拉姆齐模型与世代交替模型的相同点
拉姆齐模型(又称RCK 模型)与世代交替模型(又称Diamond 模型)都是现代经济增长理论的基准分析模型.两个模型的主要相同点在于:
第一,在这两种基准模型的一般均衡分析框架下,宏观层面的经济增长都具备了各个经济主体追求利益最大化的微观基础,这就使得经济学家能够在动态时间视角以及资源跨期最优配置的设定下对宏观经济增长进行更为深入的研究。

第二,两个模型均放弃了储蓄率外生给定的假设而通过家庭的效用最大化行为,将储蓄率表示为资本存量的函数,以便分析储蓄率的变动情况。

第三,两个模型在求解经济体一般均衡的结果时,都从市场竞争以及中央计划者配置(社会性最优)两个角度审视相应最优化结果是否具有一致性,从而比较并分析市场机制与计划手段的社会福利情况。

第四,两个模型的一般均衡结果中,人均资本存量以及人均消费量(以效率劳动的角度衡量)在长期内的增长率均为零,不存在持续性的增长机制。

二、拉姆齐模型与世代交替模型的区别
从两个模型形式上的区别来看,经典的拉姆齐模型假设经济体中个人的寿命是无限的,因此对于家庭效用函数的构建以及效用最大化问题的讨论便从数理角度转化为了无限期连续型最优控制问题;而经典的世代交替模型假设经济体中个人的寿命是有限的,将人的一生简单划分为青年和老年两个阶段,青年阶段通过投入自身要素禀赋获得相应收入并消费,老年阶段则消费青年阶段的储蓄量,经济体每一期都存在着青年人出生、老年人死亡、上一期青年人变成老年人的迭代,因此对于消费者效用最大化行为的刻划便从数理角度转化为了跨期的非线性规划问题。

除了这种形式上的区别之外,两类模型还存在如下两点本质性的差异: 第一,竞争性均衡与社会性最优的关系。

在经典的拉姆齐模型中,竞争性均衡与社会性最优的结果是一致的。

首先考虑社会性最优的情形(计划增长模型),假设存在一个代表经济体中全部民众的善意计划者(中央政府)在既定资源约束下选择最优消费与资本增长路径使得家庭消费效用最大化,则最优选择问题可以表示为如下最优控制问题:
0(,)0
max :(())..:(),(0)t c k U c t e dt s t k f k c nk k k θ∞-=--=⎰
解该最优控制问题,得到家庭最优消费路径为: (())c k cc U c f k n c U c
θ=--- 接下来考虑竞争性均衡(分散化决策)的情形。

假设在竞争性市场中存在众多无差异的家庭和无差异的企业,它们从自身利益最大化的角度分别独立作出决策,并且存在完全竞争的资本和劳动两个要素市场,两种要素均由家庭提供,对于家庭和企业而言两种要素的价格(利率与工资)均为外生给定的变量,因此家庭消费效用最大化问题所对应的最优控制问题变为如下形式:
0(,)0
max :(())..:,(0)t c k U c t e dt s t k rk w c nk k k θ∞-=+--=⎰
解该最优控制问题,得到家庭最优消费路径为:
()c cc U c r n c U c
θ=--- 另一方面,由企业的利润最大化问题可得如下两个一阶条件:
(),()()k k r f k w f k kf k ==-
将这两个一阶条件代入最优消费和资本增长路径,可以发现结果与前述社会性最优问题对应的最优消费和资本增长路径一致。

因此在拉姆齐模型中,竞争性均衡的结果就是社会性最优的结果,两者有内在的一致性,即资源的动态最优配置可以完全通过市场机制实现。

而在经典的世代交替模型中,竞争性均衡与社会性最优的结果是不一致的.首先考虑社会性最优的情形,与前述相似,存在一个善意的中央计划者最大化家庭的效用贴现值总和,家庭效用最大化问题对应的非线性规划问题为:
11
112012101112max :(1)()(1)[()(1)()]..:()(1)(1)T t t t t t t t t t
u c R u c u c s t k f k n k c n c θθ-----+=-+++++++=++++∑
解该非线性规划问题,并利用经济体处于稳态时的条件,可以解得稳态的资本存量由下式决定:
1()(1)(1)t f k n R *'+=++
接下来考虑竞争性均衡(分散化决策)的情形,此时经济体中每个人都以最大化自身的终身(两期)效用为目标,因此消费者的效用最大化行为对应的非线性规划问题为:
11211211211max :(,)()(1)()
..:,(1)t t t t t t t t t t u c c u c u c s t c s w c r s θ-++++=+++==+
由该问题的一阶条件、厂商的最优化问题的一阶条件以及市场均衡的条件可以解得如下资本的动态方程,其中隐含着稳态资本存量的决定式:
11[()(),()]1t t t t t s f k k f k f k k n
++''-=+ 此式中稳态资本量取决于储蓄函数的具体形式与效用函数的具体设定,因此在一般意义上而言与社会性最优情形下的稳态资本存量不相等,因此在一般意义上而言,世代交替模型中竞争均衡与社会性最优的结果是不一致的.
第二,竞争性均衡与帕累托最优的关系。

在经典的拉姆齐模型中,根据前述竞争均衡与社会性最优结果的一致性,可以知道资源配置的最优结果能够通过市场竞争机制的作用达到,因此竞争性均衡是帕累托最优的。

而在经典的世代交替模型中,竞争均衡的结果存在着帕累托改进的余地。

可以证明,在世代交替模型中,稳态的资本存量可能超过资本的黄金律水平,在这种情况下,如果政府不进行任何干预,则经济体的人均消费量可以表示为下式:
()c f k nk **=-
而如果政府在某一时期0t 对资源进行再配置,让消费更多而储蓄有所下降,以使下一时期的人均资本k 降低到黄金律水平G k ,并使从此以后各期的人均资本k 都保持在黄金律水
平G k 上不变。

即在时期0t 减少储蓄并增加人均消费水平,使时期0t 以后的各个时期人均资本水平都为G k 。

由于本期储蓄等到下一期时才能成为资本投入到生产中,因此0t 时期的人
均资本仍为k *,人均产出也仍然为()f k *
,但储蓄水平却已经降低到G nk ,即降低到了使以后各期的人均资本均为G k 的水平.既然从下一期开始,投入到生产中的人均资本都为低于k *
的水平G k ,所以在时期0t ,每人除了可以消费掉储蓄后剩余的当期产出()G f k nk *-,还可
以消费掉以后不再需要的多出的资本G k k *-,从而0t 时期的人均消费总额为
()()G G f k nk k k **-+-,时期0t 以后的人均消费为()G G f k nk -.又由于以下两式成立,故政府这一重新配置资源的行为是一个帕累托改进(提高了各期的人均消费量):
()()()()()()()G G G G G G G
G G f k nk k k f k nk k k f k nk f k nk f k nk *****-+->-+->-->-
所以,世代交替模型的竞争均衡结果不是帕累托有效的。

这就是世代交替模型的所谓“动态不一致性”。

以上,便是拉姆齐模型与世代交替模型的主要区别所在。

相关文档
最新文档