高分辨电子显微学的成像原理和图像获得

透射电子显微镜的原理与应用

透射电子显微镜的原理及应用 一.前言 人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。。光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。如要求分表几十埃或更小尺寸的分子或原子。一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。 图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。图中表示了像平面上光强度的分布。约84%的强度集中在中央亮斑上。其余则由内向外顺次递减,分散在第一、第二……亮环上。一般将第一暗环半径定义为埃利斑的半径。如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下: α λs in 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。上式表明分辨的最小距离与波长成正比。在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。。于是,人们用很长时间寻找波长短,又能聚焦成像的光波。后来的X

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院2008级物理学200801071293黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。图1透射电子显微镜结

透射电子显微镜的结构及成像

透射电子显微镜的结构及成像 913000730018鲁皓辰一、实验目的 1)了解透射电子显微镜的基本结构; 2)熟悉透射电子显微镜的成像原理; 3)了解基本操作步骤。 二、实验内容 1)了解透射电子显微镜的结构; 2)了解电子显微镜面板上各个按钮的位置与作用; 3)无试样时检测像散,如存在则进行消像散处理; 4)加装试样,分别进行衍射操作、成像操作,观察衍射花样和图像; 5)进行明场、暗场和中心暗场操作,分别观察明场像、暗场像和中心暗场像。 三、实验仪器设备与材料 JEM-2100F型TEM透射电子显微镜 四、实验原理 图1JEM-2100F型透射电子显微镜 一)透射电镜的基本结构 透射电镜主要由电子光学系统、电源控制系统和真空系统三大部分组成,其中电子光学系统为电镜的核心部分,它包括照明系统、成像系统和观察记录系统组成。 1)照明系统 照明系统主要由电子枪和聚光镜组成,电子枪发射电子形成照明光源,聚光

镜是将电子枪发射的电子会聚成亮度高、相干性好、束流稳定的电子束照射样品。2)成像系统 成像系统由物镜、中间镜和投影镜组成。 3)观察记录系统 观察记录系统主要由荧光屏和照相机构组成。 二)主要附件 1)样品倾斜装置(样品台) 样品台是位于物镜的上下极靴之间承载样品的重要部件,见图2,并使样品在极靴孔内平移、倾斜、旋转,以便找到合适的区域或位向,进行有效观察和分析。 2)电子束的平移和倾斜装置 电镜中是靠电磁偏转器来实现电子束的平移和倾斜的。图3为电磁偏转器的工作原理图,电磁偏转器由上下两个偏置线圈组成,通过调节线圈电流的大小和 方向可改变电子束偏转的程度和方向。 图3电磁偏转器的工作原理图

透射电子显微镜的结构、原理和衍衬成像观察

透射电子显微镜的结构、原理和衍衬成像观察实验报告 一、实验目的 1、了解透射电子显微电镜的基本结构; 2、熟悉透射电子显微镜的成像原理; 3、了解基本操作步骤。

二、实验内容 1、了解透射电子显微镜的结构; 2、了解电子显微镜面板上各个按钮的位置与作用; 3、无试样时检测像散,如存在则进行消像散处理; 4、加装试样,分别进行衍射操作、成像操作,观察衍射花样和图像; 5、进行明场、暗场和中心暗场操作,分别观察明场像、暗场像和中心暗场像。 三、实验设备和器材 JEM-2100F型TEM透射电子 显微镜 四、实验原理 (一)、透射电镜的基本结构 透射电镜主要由电子光学系统、电源控制系统和真空系统三大部分组成,其中电子光学系统为电镜的核心部分,它包括照明系统、成像系统和观察记录系统组成。 (1)照明系统 照明系统主要由电子枪和聚光镜组成。

电子枪就是产生稳定的电子束流的装置,电子枪发射电子形成照明光源,根据产生电子束的原理的不同,可分为热发射型和场发射型两种。 图1 热发射电子枪图2 场发射电子枪 聚光镜是将电子枪发射的电子会聚成亮度高、相干性好、束流稳定的电子束照射样品。电镜一般都采用双聚光镜系统。 图3 双聚光镜的原理图 (2)成像系统 成像系统由物镜、中间镜和投影镜组成。 物镜是成像系统中第一个电磁透镜,强励磁短焦距(f=1~3mm),放大倍数Mo一般为100~300倍,分辨率高的可达0.1nm左右。物镜的质量好坏直接影响到整过系统的成像质量。物镜未能分辨的结构细节,中间镜和投影镜同样不能分辨,它们只是将物镜的成像进一步放大而已。提高物镜分辨率是提高整个系统成像质量的关键。

扫描电镜的基本结构和工作原理

扫描电镜的基本结构和工作原理 扫描电子显微镜利用细聚焦电子束在样品表面逐点扫描,与样品相互作用产行各种物理 信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被 分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为电子光学系统、扫描系统、信号检测放大系统、图像显示 和记录系统、真空系统和电源及控制系统六大部分。这一部分的实验内容可参照教材第十二章,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备 扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可 以直接进行观察。但在有些情况下需对样品进行必要的处理。 1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些 表面形貌特征的细节,操作过程中应该注意。 3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5-10nm 为宜。 2.表面形貌衬度观察 二次电子信号来自于样品表面层5~l0nm,信号的强度对样品微区表面相对于入射束的 取向非常敏感,随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。 二次电子像的分辨率较高,一般约在3~6nm。其分辨率的高低主要取决于束斑直径,而 实际上真正达到的分辨率与样品本身的性质、制备方法,以及电镜的操作条件如高匝、扫描速度、光强度、工作距离、样品的倾斜角等因素有关,在最理想的状态下,目前可达的最佳分辩率为lnm。 扫描电镜图像表面形貌衬度几乎可以用于显示任何样品表面的超微信息,其应用已渗透 到许多科学研究领域,在失效分析、刑事案件侦破、病理诊断等技术部门也得到广泛应用。在材料科学研究领域,表面形貌衬度在断口分析等方面显示有突出的优越性。下面就以断口分析等方面的研究为例说明表面形貌衬度的应用。 利用试样或构件断口的二次电子像所显示的表面形貌特征,可以获得有关裂纹的起源、

扫描电子显微镜成像原理及基本操作

扫描电子显微镜成像原理及基本操作 一、基本结构组成: 1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。 2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。 3.信号探测放大系统:探测二次电子、背散射电子等电子信号。 4.图象显示和记录系统:SEM采用电脑系统进行图象显示和记录。 5.真空系统:常用机械真空泵、扩散泵、涡轮分子泵等使真空度高于10 -4 Torr 。 6.电源系统:高压发生装置、高压油箱。 二、扫描电子显微镜成像原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的能量为 5 ~35keV 的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。三、扫描电镜具有以下的特点

(1) 制样方法简单,对试样的尺寸、形态等无严格要求,可以观察直径为的大块试样以及粉末等。 (2) 场深大,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。 (3) 放大倍数变化范围大,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。 (4) 具有相当高的分辨率,可达到为3.5 ~6nm。 (5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。 (6) 可进行多种功能的分析。与X 射线谱仪配接,可在观察形貌的同时进行微区成分分析。 (7) 可使用,观察在不同环境条件下(加热、冷却和拉伸等样品台进行动态试验)的相变及形态变化等。 四、扫描电镜的用途 通过样品中的电子激发出的各种信号,扫描电镜可以做出电子图像分析,如可利用二次电子进行样品表面形貌及结构分析的分析;以两片探测器信号做积分运算,通过背散射电子可以分析样品表面成分像,以两片探测器信号做微分运算时,则可用于样品表面形貌像德分析;此外,通过透射电子则可对析晶体的内部结构及晶格信息进行分析。而且,其配上其它一些配套设备,还可做显微化学成份分析,显微晶体结构分析,显微阴极发光图像分析,这更加扩大的扫描电镜的广泛应用度。常见的扫描电镜配套设备主要有:x射线波谱仪、x射线能

高分辨电子显微实验报告

高分辨电子显微术实验报告 一、简述透射电镜(TEM)基本成像原理——衍射,衍衬,高分辨像;利用光学透镜的成像光路图,示意画出TEM 成像光路图。 个人陈述:其实投射电镜(TEM)的工作原理和光学显微镜的工作原理基本类似。二者不同的是用的成像工具不同,前者用电子束作为光源,用电磁透镜代替光学透镜汇聚电子束。根据De Broglie 关于电子也具有光子类似的波动的性质,可以得出电子的波长 ?-?+=+==A V V c m eV eV m h p h 2/162/12 /1200) 109778.01(26.12)]2/1(2[λλ 取电压为100KV 时,可以得出电子的波长为 A 0037.0,大约是可见光极限短波的 610-。根据Abbe 支出光学显微镜的分辨率本领受到光波衍射的限制,其分辨率极限为: α λsin 61.0n R = 由此可见要提高分辨率就要缩短光源的波长λ和增大数值孔径角αsin n 。数值孔径角的增幅是很有限的,所以必须采取波长短的光源来提高分辨率。从上边的分析可以看出,电子的波长是可见光波长的十万分之一,因此TEM 是一种高分辨率,高放大倍数的仪器。 电子衍射的原理: 当电子沿着一定方向射入试样后,在物质的电场作用下发生改变,发生所谓的弹性散射和非弹性散射。在弹性散射情况下,电子受原子集合体的散射后,各原子散射的电子波可相互干涉,使合成电子波的强度角分布受到调制,形成衍射。从衍射图的强度测量可得出原子相对位置的信息。如果衍射束的能量远远小于入射束的能量,就可运用一次散射近似理论。这时,衍射波振幅作为空间角分布的函数就是试样内部电场电势函数的傅里叶变换,观察到衬度与试样电势分布成比例的高分辨结构像,从而获得试样晶体结构及原子排列直观像的信息。

扫描电子显微镜基本原理和应用

扫描电子显微镜的基本原理和结构 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 扫描电镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。 1 电子光学系统 电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为产生物理信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。 <1>电子枪: 其作用是利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大多数扫描电镜采用热阴极电子枪。其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5-7nm,因此仪器分辨率受到限制。现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,使二次电子像的分辨率达到2nm。但这种电子枪要求很高的真空度。 扫描电子显微镜的原理和结构示意图

SEM(扫描电子显微镜)的原理

扫描电子显微镜(Scanning Electronic Microscopy, SEM) 扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。 电子束与固体样品的相互作用 扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得对是试样表面性貌的观察。 具有高能量的入射电子束与固体样品的原子核及核外电子发生作用后,可产生多种物理信号如下图所示。 电子束和固体样品表面作用时的物理现象 一、背射电子 背射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。 弹性背反射电子是指倍样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。 从数量上看,弹性背反射电子远比非弹性背反射电子所占的份额多。背反射电子的产生范围在100nm-1mm深度,如下图所示。 电子束在试样中的散射示意图 背反射电子产额和二次电子产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm (与电子束斑直径相当)。背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。 二、二次电子 二次电子是指背入射电子轰击出来的核外电子。由于原子核和外层价电子间的结合能很小,当原子的核外电子从入射电子获得了大于相应的结合能的能量后,可脱离原子成为自由电子。如果这种散射过程发生在比较接近样品表层处,那些能量大于材料逸出功的自由电子可从样品表面逸出,变成真空中的自由电子,即二次电子。

透射电子显微镜基本结构及功能

透射电子显微镜部分结构及功能 在光学显微镜下无法看清小于0.2µm的细微结构,这些结构称为亚显微结构(s ubmicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructur es)。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1 932年Ruska发明了以电子束为光源的透射电子显微镜(transmission electron mi croscope,TEM),电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。 电子显微镜与光学显微镜的成像原理基本一样,所不同的是前者用电子束作光源,用电磁场作透镜。另外,由于电子束的穿透力很弱,因此用于电镜的标本须制成厚度约50nm左右的超薄切片。这种切片需要用超薄切片机(ultramicrotome)制作。电子显微镜的放大倍数最高可达近百万倍、由电子照明系统、电磁透镜成像系统、真空系统、记录系统、电源系统等5部分构成,如果细分的话:主体部分是电子透镜和显像记录系统,由置于真空中的电子枪、聚光镜、物样室、物镜、衍射镜、中间镜、投影镜、荧光屏和照相机。 电子显微镜是使用电子来展示物件的内部或表面的显微镜。高速的电子的波长比可见光的波长短(波粒二象性),而显微镜的分辨率受其使用的波长的限制,因此电子显微镜的分辨率(约0.1纳米)远高于光学显微镜的分辨率(约200纳米)。 透射式显微镜的结构与原理 透射式电子显微镜(TEM)与投射式光学显微镜的原理很相近,它们的光源、透镜虽不相同,但照放大和成像的方式却完全一致。 在实际情况下无论是光镜还是电镜,其内部结构都要比图示复杂得多,图中的聚光镜(condonser lens)、物镜(object lens)和投影镜(projection lens)为光路中的主要透镜,实际制作中它们往往各是一组(多块透镜构成),在设计电镜时为达到所需的放大率、减少畸变和降低像差,又常在投影镜之上增加一至两级中间镜(in temediate lens)。 透射式电子显微镜的总体结构包括镜体和辅助系统两大部分,镜体部分包含:①照明系统(电子枪G,聚光镜C1、C2),②成像系统(样品室,物镜O,中间镜I1、

扫描电镜工作原理

扫描电镜工作原理 一、电子束与样品的相互作用 扫描电镜是对样品表面形态进行测试的一种大型仪器。电子枪发射的电子束在扫描电镜镜筒中,通过电磁透镜聚焦和电场加速,入射到样品中,束电子与样品原子核或核外电子发生多种相互作用,而被散射,引起束电子的运动方向或能量(或两者同时)发生变化,从而产生各种反映样品特征的信号。这些信号包括二次电子、背散射电子、吸收电子、透射电子、俄歇电子、电子电动势、阴极荧光、X射线等,这些信号能够表征固体表面或内部的某些物理或化学性质。它们是各类电子束显微分析的物理基础(图1)。 电子与样品的相互作用过程可分成弹性散射和非弹性散射过程两类。弹性散射与非弹性散射过程是同时发生的,前者使束电子偏离原来运动方向,并使电子在样品内部罗三,后者使电子能量逐渐减少直至被样品全部吸收,因此限制了电子束的扩散范围,电子束的能量完全沉积在扩散区内,同时产生大量可检测的二次辐射,这个区域称为相互作用区。 图 1 电子束轰击固体发生的各种信号及深度 相互作用区可以通过实验直接观察或由Monte Calro计算法得到。通常,电子束能量越强,电子入射深度越深,相互作用区越大(图2)。样品的原子序数越大,束电子在每走过单位距离所经受的弹性散射事件越多,其平均散射角度大,在样品中的穿透深度越浅(图3)。

图2. 不同加速电压下,蒙德卡罗(Monte Carlo)电子轨迹模拟图 图3. 同样加速电压下,不用材料,蒙德卡罗(Monte Carlo)电子轨迹模拟图 二、扫描电镜工作原理 由图4可以看出,从电子枪阴极发出的直径20-30nm的电子束,受到阴阳极之间的加速电压的作用,射向镜筒。经过聚光镜和物镜聚焦后,形成一个具有一定能量、强度和斑点直径的入射电子束。在物镜上部扫描线圈产生的磁场作用下,入射电子束按一定时间、空间顺序作光栅式扫描。由于入射电子与样品之间的相互作用,从样品中激发出的信号被不同的检测器收集,并成像。 本台扫描电镜配备有检测二次电子的SE2和Inlens检测器,形成样品形貌像;检测背散射电子的ASB检测器,形成样品成分衬度像;检测特征X射线能量的X射线能谱仪,用于元素定性、定量分析。详细介绍见:各种检测器成像效果;X射线能谱仪工作原理及谱图解析

电子显微镜知识整理

电子显微镜知识整理 电子显微镜与光学显微镜的成像原理基本一样,所不同的是前者用电子束作光源,用电磁场作透镜。另外,由于电子束的穿透力很弱,因此用于电镜的标本须制成厚度约50nm左右的超薄切片。这种切片需要用超薄切片机(ultramicrotome)制作。电子显微镜的放大倍数最高可达近百万倍,有意思的是最初发明电子显微镜的时候,它的放大倍数还不如普通的光学显微镜。 光学显微镜、TEM、SEM成像原理比较 莱卡超薄切片机

制样技术中还需要负染技术。负染就是用重金属盐(如磷钨酸、醋酸双氧铀)对铺展在载网上的样品进行染色;吸去染料,样品干燥后,样品凹陷处铺了一薄层重金属盐,而凸的出地方则没有染料沉积,从而出现负染效果。下图是肌动蛋白纤维的负染电镜照片 肌动蛋白纤维的负染电镜照片 除了上述两个技术外还有冰冻蚀刻技术(freeze-etching)亦称冰冻断裂(freeze-fracture)。标本置于-100?C 的干冰或-196?C的液氮中,进行冰冻。然后用冷刀骤然将标本断开,升温后,冰在真空条件下迅即升华,暴露出断面结构,称为蚀刻(etching)。蚀刻后,向断面以45度角喷涂一层蒸汽铂,再以90度角喷涂一层碳,加强反差和强度。然后用次氯酸钠溶液消化样品,把碳和铂的膜剥下来,此膜即为复膜(replica)。复膜显示出了标本蚀刻面的形态,在电镜下得到的影像即代表标本中细胞断裂面处的结构下图是冰冻蚀刻电镜照片,可以看到线粒体、细胞核和细胞膜的几个结构。

冰冻蚀刻电镜照片 关于电子显微镜的制样技术还有很多,下面简单介绍下电子显微镜常见的几个种类。 (一)透射电子显微镜 在光学显微镜下无法看清小于0.2μm的细微结构,这些结构称为亚显微结构(submicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructures)。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜(transmission electron microscope,TEM),电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。

ZT 高分辨电子显微学中常用的图像处理和图像模拟方法

高分辨电子显微学中常用的图像处理和图像模拟方法 Tina(2010-09-28 11:29:48) 降低噪音: (1)傅立叶变换过滤法:布拉格滤波、环形滤波和孪生滤波,用Gatan 的DigitalMicrograph都可以搞定 布拉格滤波:选择周期性的布拉格点,主要是突出周期性信息; 环形滤波:选择感兴趣的频率信息,可以用来处理界面和多次孪晶等的高 分辨像; 孪生滤波:选择两个布拉格点。 (2)实空间平均法 主要用于处理生物大分子的图像,也有人用来处理沸石的低剂量高分辨像,主要有两个过程:相关计算和图像强度的叠加。 图像模拟: 用的最多的就是C-M多层法了,现在国内常用的程序有EMS,JEMS,Cerius2, 在线模拟:http://cimewww.epfl.ch和https://www.360docs.net/doc/c32839251.html,/default.asp 图像处理(透过图像处理可以直接得到样品的出射波或投影势分布): 解卷法:最大熵解卷和直接法解卷,代表人物:物理所的李方华先生和范 海福先生,国内专业做高分辨像处理的独此一家,使用的软件:VEC(完整晶体)和DEC(缺陷),这两个软件都是李老师和范老师他们那个组自己发展起来的,厉害!! 波函数重构:

(1)TIE/MEM(强度等效传递/最大熵),代表人物:陈福荣等 (2)抛物面法(Van Dyck方法),代表人物:M.Op de Beeck和D.Van Dyck(比利时) (3)最大似然法,代表人物:W.M.J.Coene和A.Thust(荷兰) (4)Wiener过滤,代表人物:A.I.Kirkland(Oxford) 前三种方法要求有20张高分辨像,而且这些像必须是系列焦点的,如果有一张像因为震动或其他原因而模糊,那么这个系列就不能用了。这三种方法中最大似然的方法比较成熟,可以处理完整晶体和缺陷的高分辨像,已经有商业化的程序TrueImage。

扫描电镜原理、方法及操作

一、分析测试步骤 开机 1、接通循环水(流速~2.0L/min ) 2、打开主电源开关。 3、在主机上插入钥匙,旋至“Start ”位置。 松手后钥匙自动回到“on ”的位置,真空系统开始工作。 4、等待10秒钟,打开计算机运行。 5、点击桌面的开始程序。 6、点击[JEOL ·SEM ]及[JSM-5000主菜单]。 7、约20分钟仪器自动抽高真空,真空度达到后,电子枪自动加高压,进入工作状态。 8、通过计算机可以进行样品台的移动,改变放大倍数、聚焦、象散的调整, 直到获得满意的图像 9、对于满意的图像可以进行拍照、存盘和打印。 10、若需进行能谱分析,要提前1小时加入液氮,并使探测器进入工作状态。 11、打开能谱部分的计算机进行谱收集和相应的分析。 12、需观察背散射电子像时,工作距离调整为15mm ,然后插入背散射电子探测器,用完后 随时拔出。 更换样品 1、点击“HT on ”,出现“HT Ready ”。 2、点击“Sample ”,再点击“Vent ”。 3、50秒后拉出样品台,从样品台架上取出样品台. 4、更换样品后,关上样品室门,再点击“EVAC ”,真空系统开始工作,重复开机10.1.8、。 关机 1、点击[EXIT ],再点击[OK ],扫描电镜窗口关闭,回到视窗桌面上. 2、电击桌面上的[Start ]。

3、退出视窗,关闭计算机. 4、关闭控制面板上的电源开关. 5、等待15分钟后关掉循环水. 6、关掉总电源. 二. 方法原理 1、扫描电镜近况及其进展 扫描电子显微镜的设计思想和工作原理,早在1935年已经被提出来了,直到1956年才开始生产商品扫描电镜。商品扫描电镜的分辨率从第一台的25nm提高到现在的,已经接近于透射电镜的分辨率,现在大多数扫描电镜都能同X 射线波谱仪、X 射线能谱仪和自动图像分析仪等组合,使得它是一种对表面微观世界能够进行全面分析的多功能的电子光学仪器。数十年来,扫描电镜已广泛地应用在材料学、冶金学、地矿学、生物学、医学以及地质勘探,机械制造、生产工艺控制、产品质量控制等学科和领域中,促进了各有关学科的发展。随着纳米材料的出现,原有的钨灯丝扫描电镜由于分辨率低,不能满足纳米材料分析检测的要求,之后,电镜生产厂家推出了场发射扫描电子显微镜,使扫描电镜的分辨率提高到了。场发射扫描电子显微镜又分为冷场场发射扫描电子显微镜和热场场发射扫描电子显微镜,它们的共性是分辨率高。热场发射扫描电镜的束流大且稳定,适合进行能谱分析,但维护成本和要求高;冷场发射扫描电镜的束流小且不稳定,适合于做表面形貌观察,不适合能谱分析,相对而言维护成本和要求要低一些。环境扫描电镜的特点是对于生物样品、含水样品、含油样品,既不需要脱水,也不必进行导电处理,可在自然的状态下直接观察二次电子图像并分析元素成分。 2、扫描电镜的特点 能够直接观察样品表面的微观结构,样品制备过程简单,对样品的形状没有任何限制,粗糙表面也可以直接观察; 样品在样品室中可动的自由度非常大,可以作三度空间的平移和旋转,这对观察不规则形状样品的各个区域细节带来了方便; 图象富有立体感。扫描电镜的景深是光学显微镜的数百倍,是透射电镜的数十倍,故所得到的图象立体感比较强; 放大倍数范围大,从几倍到几十万倍连续可调。分辨率也比较高,介于光学显微镜和

光学显微镜成像原理

■光学显微镜成像原理 光学显微镜成像原理 使用无限远光学系统的显微镜主要由物镜、管镜和目镜组成。标本经物镜和管镜放大后,形成放大倒立的实象;实象经目镜再次放大后,形成放大的虚象。 标本(AB)在物镜(Lo)焦点上,通过物镜(Lo)和管镜(Le)在象方形成放大倒立的实象(A’B’);靠近人眼一方的目镜(Le)对中间象(A’B’)再次放大,在明视距离(对人眼来说约为250mm)处形成一个虚象(A”B”)。 人眼通过显微镜所观察到的象就是一个被放大了的虚象A”B”。 ■电子显微镜成像原理 电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。 电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示。20世纪70年代,透射式电子显微镜的分辨率约为0.3纳米(人眼的分辨本领约为0.1毫米)。现在电子显微镜最大放大倍率超过300万倍,而光学显微镜的最大放大倍率约为2000倍,所以通过电子显微镜就能直接观察到某些重金属的原子和晶体中排列整齐的原子点阵 一、折射望远镜用透镜作物镜的望远镜。分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱。在满足一定设计条件时,还可消去球差和彗差。由于剩余色差和其他像差的影响,双透镜物镜的相对口径较小,一般为1/15-1/20,很少大于1/7,可用视场也不大。口径小于8厘米的双透镜物镜可将两块透镜胶合在一起,称双胶合物镜,留有一定间隙未胶合的称双分离物镜。为了增大相对口径和视场,可采用多透镜物镜组。折射望远镜的成像质量比反射望远镜好,视场大,使用方便,易于维护,中小型天文望远镜及许多专用仪器多采用折射系统,但大型折射望远镜制造起来比反射望远镜困难得多。

CdGd2(WO2)4晶体的高分辨电子显微研究

电子显微学报J.Chh Electr.Microsc.Soc 337 cdGd2(w02)4晶体的高分辨电子显微研究 孙 威1,孙桂芳2,张泽1,侯碧辉2 (北京工业大学1固体微结构研究所,2数理学院,北京100022) 闪烁晶体材料用于探测丫、x射线的能量和强度,在安全检测、各种射线检测装置的运行中起着关键性的作用。、例如cdw()。是良好的闪烁晶体,对x射线吸收系数大,辐射长度短,可使高能物理探测器做得十分密集,从而降低整个谱仪的造价。近年来,由于(:11w0。晶体具有优越的光学性能,使它成为了应用在Ⅺ:T探测器l:的首选闪烁体材料。众所周知,晶体材料的物理性质与其结构有密切的联系,为了寻找提高发光效率的有效途径,人们还尝试向cdw0。晶体中搀杂各种稀土离子,系统地测定和比较发光性质的变化,、此外,还生长出了含有稀土组成元素的晶体,,(:tlGd,(wo,)。晶体是否具有和cdw0。晶体相同的结构尚未搞清。本研究的目的就是应用高分辨电子显微技术研究这种新人工cdw【)。晶体的结构. 电镜试样的制备采用粉碎法,将粉碎的细小碎 片分散到覆盖有多孔碳膜的铜网上。电子衍射实验和高分辨电子显微观察在加速电压为200kV的JEOL一2010F电镜上完成。cdGd:(wO:);是新的人工生长晶体,其结构未知。首先通过电子衍射的系统大角度倾转实验,确定了cdGd,(wO:)。晶体具有体心正方结构。晶格常数为Ⅱ=6=0.52 nm,c=1.13 nm。图la及1b分别给出了cdGd:(wO,)。晶体[010]方向的电子衍射和同方向的高分辨电子显微结构像。从图1b(右上角的薄区部分)可以看到cdG也(w0。)。晶体由近似正方型的小结构单元的排列构成。通过高分辨观察和理论像计算,建立了cdGd2(w0:)。的原子结构模型。实际上cdGd:(wO,)。晶体十分复杂,在沿[001]方向还清楚地观察到相互垂直的调制结构。本研究还对调制结构特征进行了分析,指出这样的结构将对cdGd:(w0:)。晶体的物性产生重要影响。 图1 cdGd:(w0:)。晶体沿[010]方向的电子衍射谱(a)和高分辨电子显微结构像(b)。Bar=1nm   万方数据

GaN缺陷晶体高分辨电子显微像的解卷处理

电子显微学报J chinEkctrMiclosc.S0c 23(4):361~36l2004年 361 GaN缺陷晶体高分辨电子显微像的解卷处理 万威,唐春艳,王玉梅,李方华 (中国科学院物理研究所,北京100080) 拍摄高分辨电子显微像时未必总靠近scherzer聚焦条件w,且晶体有一定厚度,致使像未必反映晶体结构。对高分辨像进行解卷处理”一是校正像中畸变的晶体结构信息并提高图像分辨率的有效方法。本文用高分辨像图像解卷处理方法”1研究G酬材料中缺陷核心的原子配置。 图l是一张六方GaN的[1l20]高分辨电子显微像,其中可见晶体缺陷,像的右上角嵌入对应区域的电子衍射花样,实验所用电镜为JEM.2010。沿[1120]方向Ga和N原子最近的距离为o.112 nm。 认为缺陷处的离焦量和其附近完整晶体区域的离焦量基本相同,选取缺陷附近的完整晶体区域用最大熵方法解卷,得像的离焦量为一63nm。再用此离焦量对图l中包含晶体缺陷区和完整区较大面积(矩形框内)的显微像进行解卷,结果示于如图2a。解卷处理后像上黑点对应于Ga原子,像的分辨率 不足以显示轻原子N。选取图2a的局部区域(矩形框内)放大得图2b,图中黑点的排布与六方晶系晶体中L内禀层错模型(图2c)相符合,由上至下堆垛顺序为ABABABcAcAcA。于是,图2a中的缺陷右端是I:内禀层错,层错左端消失处为一不全位错。层错右端消失在晶体较厚且结构复杂的区域,难以分析。 以上结果说明,即使电镜分辨率本领不足以分辨开全部原子,解卷处理仍不失为研究晶体缺陷的有效方法。 参考文献: [1]sch删O J A pplPhy8,1949.20:20 【2]“FH,wangO.Hewz,Ji8ngH.Joumd《Electron Micro∞oPy,2000,49:17?24 [3]HuJJ,u F H ultmmicr0虻opy,199l,35:339.350 图lGaN缺陷的高分辨电子显微像,电子沿[11_0]方向入射,右上角嵌入的是其电子衍射花样。B舡=2nm 图2 a:对应图l自框部分的解卷像;b:对应(a)白线框内的放大图,矩形框为一单胞;c:六方晶体中的L层错沿[11iO]的 投影模型.矩形框为一单胞。 基盒项目:国家自然科学基金资助项目(No 50072043)   万方数据

透射电子显微镜原理

第二章透射电子显微镜 【教学内容】 1.透射电子显微镜的构造与成像原理 2.透射电镜图像的成像过程 3.透射电镜主要性能 4.表面复型技术 5.透射电镜观察内容 【重点掌握内容】 1.透射电子显微镜构造 2.表面复型技术 3.复型电子显微镜图像的分析。 【教学难点】 表面复型技术 2.1 透射电子显微镜的结构与成像原理 透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨率、高放大倍数的电子光学仪器。 There are four main components to a transmission electron microscope: 1.an electron optical column 2. a vacuum system 3.the necessary electronics (lens supplies for focusing and deflecting the beam and the high voltage generator for the electron source) 4.software 电子光学系统(镜筒)(an electron optical column)是其核心,它的光路图与透射光学显微镜相似,如图所示,包括:照明系统,成像系统,观察记录系统。

图2-1 投射显微电镜构造原理和光路 2.1.1 照明系统 组成:由电子枪、聚光镜(1、2级)和相应的平移对中、倾斜调节装置组成。 作用:提供一束亮度高、照明孔径角小、平行度高、束斑小、束流稳定的照明源。为满足明场和暗场成像需要,照明束可在20-30范围内倾斜。 1. 电子枪 电子枪是电镜的电子源。其作用是发射并加速电子,并会聚成交叉点。目前电子显微镜使用的电子源有两类: 热电子源——加热时产生电子,W丝,LaB6 场发射源——在强电场作用下产生电子,场发射电镜FE 热阴极电子源电子枪的结构如图2-2所示,形成自偏压回路,栅极和阴极之间存在数百伏的电位差。电子束在栅极和阳极间会聚为尺寸为d0的交叉点,通常为几十um。栅极的作用:限制和稳定电流。 图2-2 电子枪结构

原子分辨率晶体结构的高分辨电子显微学研究

第24卷第3期2005年6月 电子显微学报 Jo岫lofC璇m∞日优tmn腼cm∞opyS∞ie锣Vol-24.No.3 2005—6 文章编号:1000.6281(2005)03.0165.06 原子分辨率晶体结构的高分辨电子显微学研究 唐春艳,李方华” (中国科学院物理研究所,北京凝聚态物理国家实验室,北京100080) 摘要:本文以GaP{111}孪晶界面高分辨电子显微像为例,将解卷处理和动力学散射效应校正相结合的技术应用于晶体界面处显微像的研究。椭圆窗口作为一种新的手段用于含有面缺陷晶体的傅里叶滤波和衍射振幅校正。 所用GaP{111}高分辨像的模拟参数对应于200kV场发射高分辨电子显微镜。经过图像处理之后,不同样品厚度的模拟像均转变成结构像,其中原子柱均显示在正确的位置上。对GaP进行解卷处理的临界厚度做了详细的讨论。 关键词:界面结构;解卷处理;动力学散射效应校正 中图分类号:0766文献标识码:A 晶体中的界面对材料的力学、物理和化学性质等有重要的影响,而界面处的原子组态与晶体生长过程的温度、气压、生长速度等密切相关,所以研究界面的特性,如晶界、面缺陷、裂纹及吸收层等,能更好地控制晶体的生长,而对界面特性的了解在很大程度上依赖于对晶体界面原子分布信息的了解n’21。 自上世纪70年代以来,随着高分辨电子显微学技术的发展,当所研究的样品足够薄时,在高分辨电镜的(以下简称电镜)scherzer聚焦¨o附近获得的高分辨电子显微像(以下简称高分辨像)可以直接反映晶体的结构。然而,最常用的中等电压电镜(200~300kV)点分辨本领较低,如200kV的电镜,其点分辨本领约0.2nm,不足以分辨开所有的原子。另一方面,由于受电镜衬度传递函数(contmstt姗sferfunction(cTF))的影响,所得的高分辨像未必反映晶体结构。用超高压电镜¨]、球差校正电镜b1或透射扫描电镜的z衬度像模式№o等,均可以直接观察原子级分辨率的晶体结构。另外,可以用传统的中等电压透射电镜,再通过事后的图像处理技术来提高像的分辨率。出射波重构方法(exit_wavereconstmction)。L副和解卷方法(i眦gedeconvolution)∽’1例可以将最常用的中等电压场发射电镜显微像分辨率提高至电镜的信息分辨极限,同时把像转换为晶体的结构像。 基于赝弱相位物体近似¨川的解卷方法发展于上世纪80年代,最初将单张高分辨像与相应的电子衍射数据相结合,测定完整晶体的未知结构¨2“4|。近年来,为使解卷技术应用于研究晶体的缺陷结构¨0’151,发展了一项用于减少动力学散射效应的衍射振幅校正方法(dyllaIIlicscatteringe雎ctcomction)¨…。用这种方法,已经成功地研究了si和黝Ge晶体中不同类型的位错核心n7’18|。 本文的目的是进一步发展衍射振幅校正方法,使之适用于晶体的面缺陷附近原子组态的研究。重点在于改进傅里叶滤波和动力学散射效应校正的方法,应用于GaP{11l}孪晶界面的模拟场发射高分辨像。 1方法 1.1解卷原理 在赝弱相位物体近似下[1“,当晶体的厚度超出弱相位物体的厚度而小于一定的临界值时,像的强度表达为: J(r)=1+2占妒7(,)*旷1[r(日)](1)式中,J(r)表示像强度,少“和*分别为反傅里叶变换和卷积符号,r和日分别是正空间和倒空间中的坐标矢量,r(日)为衬度传递函数,97(r)为晶体的赝投影势分布函数n…,它正确地反映投影结构的原子位置,但是重原子的衬度比在弱相位物体近似下所得到的衬度弱,轻原子的衬度则相反。对(1)式作傅里叶变换得: i(日)=d(日)+2盯F7(日)r(日)(2)式中,巧=丌,Au为相互作用常数,A表示电子波长,u为电镜加速电压,i(日)是像强度的傅里叶变换, 收稿日期:2005—03.10 基金项目:国家自然科学基金资助项目(No.10474122). Fhmda6蚰item:Nati叩alNaIuralScienceFOIllldaⅡonofcllina(No.10474122).作者简介:唐春艳(1978一),女(汉族),四川遂宁人,博士. *通讯作者:李方华(1932一),女(汉族),广东德庆人,教授,博士研究生导师

相关文档
最新文档