数控机床的工作过程

数控机床的工作过程
数控机床的工作过程

数控机床的工作过程

(1)准备阶段(2)编程阶段(3)准备信息载体4、加工阶段

数控编程过程

工艺处理的内容:选择机床、确定装夹、划分工序、选择刀具、选择切削参数、拟定工艺点、确定走刀路径

增大工件与刀具之间距离的方向为坐标轴正方向。

机床坐标系是机床上固定的坐标第,具有固定的原点(机床零点)和坐标轴方向,机床零点位置在数控机床出厂时已经确定,数控装置内部的位置计算都是在机床坐标系内进行的。

机床原点又称为机械原点或机床零点,是机床坐标系的原点。该点是机床上的一个固定的点,其位置是由机床设计和制造单位确定的,通常不允许用户改变。机床原点是工件坐标系、机床参考点的基准点。数控车床的机床原点一般设在卡盘前端面或后端面的中心。数控铣床的机床原点,各生产厂不一致,有的设在机床工作台的中心,有的设在进给行程的终点,

机床参考点是机床坐标系中一个固定不变的位置点,机床参考点通常设置在机床各轴靠近正向极限的位置,有些数控机床机床原点与机床参考点重合。机床参考点对机床原点的坐标是一个已知定值,也就是说,可以根据机床参考点在机床坐标系中的坐标值间接确定机床原点的位置。

回零在机床接通电源后,通常都要做回零操作,即利用CRT/MDI控制面板上的有关按钮,使刀具或工作台退离到机床参考点。回零操作又称为返回参考点操作,当返回参考点的工作完成后,显示器即显示出机床参考点在机床坐标系中的坐标值,表明机床坐标系已自动建立。可以说回零操作是对基准的重新核定,可消除由于种种原因产生的基准偏差。

也称为编程坐标系,为描述工件各几何要素的位置而建立的坐标系,坐标轴及轴方向机床坐标系一致。

工件坐标系原点也称为工件原点(工件零点)或编程原点(编程零点),由编程人员设定,

工件原点选定的原则:一般为零件图上最重要的设计基准点。

方便编程简化计算、方便机床调整、方便对刀等

模态指令:也称续效指令,模态指令一经程序段中指定,便一直有效,直到出现同组另一指令或被其他指令取消时才失效,与上一段相同的模态指令可省略不写。

非模态指令:非续效指令,仅在出现的程序段中有效,下一段程序需要时须重新指定,不得省略。

模态指令:一经指定一直有效直到取消

非模态指令:一次有效

O0001

N10 G92 X70 Z30;

N40 G00 X52;

N50 G01 Z-80 F60;

N60 G01 X66;

N70 G00 Z2;

N80 G00 X44;

N90 G01 Z-80;

N100 G01 X66;

N110 G00 Z2;

N120 G00 X36;

N130 G01 Z-80;

N140 G01 X66;

N150 G00 Z2;

N160 X70 Z30;

N170 M05;

N180 M02;

S (70 30)1 (66 2)2 (52 2)2` (44 2)2`` (36 2)3 (52 -80)3` (44 -80)3`` (36 -80)4 (66 -80)

铣刀的种类及选择

铣刀为多齿回转刀具,其每一个刀齿都相当于一把车刀固定在铣刀的回转面上。铣削时同时参加切削的切削刃较长,且无空行程,Vc也较高,所以生产率较高。铣刀种类很多,结构不一,应用范围很广,按其用途可分为加工平面用铣刀、加工沟槽用铣刀、加工成形面用铣刀等三大类。通用规格的铣刀已标准化,一般均由专业工具厂生产

顺铣和逆铣

用圆柱铣刀铣平面有顺铣和逆铣两种方式。

在铣刀与工件已加工面的切点处,铣刀切削刃的旋转运动方向与工件进给方向相同的铣削称为顺铣,反之称为逆铣。

顺铣时,刀齿切入的切削厚度由大变小,易切入工件,工件受铣刀向下压分力FV,不易振动,切削平稳,加工表面质量好,刀具耐用度高,有利于高速切削。但这时的水平分力FH方向与进给方向相同,当工作台丝杆与螺母有间隙时,此力会引起工作台不断窜动,使切削不平稳,甚至打刀。所以只有消除了丝杆与螺母间隙才能采用顺铣,别外还要求工件表面无硬皮,方可采用这种方法。

逆铣时,刀齿切入切削厚度是由零逐渐变到最大,由于刀齿切削刃有一定的钝圆,所以刀齿要滑行一段距离才能切入工件,刀刃与工件摩擦严重,工件已加工表面粗糙度增大,且刀具易磨损。但其切削力始终使工作台丝杆与螺母保持紧密接触,工作台不会窜动,也不会打刀。因铣床纵向工作台丝杆与螺母间隙不易消除,所以在一般生产中多用逆铣进行铣削。

从提高刀具耐用度和工件表面质量以及增加工件夹持的稳定性等观点出发,一般以采用顺铣法为宜。但需要注意的是,铣床必须具备丝杠与螺母的间隙调整机构,且间隙为零时才能采取顺铣。目前,除万能升降台铣床外,尚没有消除丝杠与螺母之间间隙的机构,所以,在生产中仍多采用逆铣法。另外,当铣削带有黑皮的工件表面时,如对铸件或锻件表面进行粗加工,若用顺铣法,因刀齿首先接触黑皮将会加剧刀齿的磨损,所以应采用逆铣法。

铣削用量选择的原则

通常粗加工为了保证必要的刀具耐用度,应优先采用较大的侧吃刀量或背吃刀量,其次是加大进给量,最

后才是根据刀具耐用度的要求选择适宜的切削速度,这样选择是因为切削速度对刀具耐用度影响最大,进给量次之,侧吃刀量或背吃刀量影响最小;

精加工时为减小工艺系统的弹性变形,必须采用较小的进给量,同时为了抑制积屑瘤的产生。对于硬质合金铣刀应采用较高的切削速度,对高速钢铣刀应采用较低的切削速度,如铣削过程中不产生积屑瘤时,也应采用较大的切削速度。

Z方向路径

1)下刀路径:安全高度G00 ?临界高度G01 ?加工深度。2)抬刀路径:加工深度G00 ?安全高度

进刀与退刀

切削之前在零件轮廓附近用G01或G02G03 进刀

切削之后用G01或G02G03使刀具逐渐脱离工件

O0001

N10 G54 G17G90G00 Z200

N20 X-20 Y0

N30 M03 S400

N40 G00 Z5 M08

N50 G01 Z-6 F100

N60 X0 F60

N70 X60

N80 G03 X80 Y20 J20

N90 X40 Y60 I-40

N100 G01 X0 Y40

N110 Y0

N120 Y-20

N130 G00 Z200 M09

N140 M05

N150 M02

O0001

N10 G54 G17G90G00 Z200

N20 X-20 Y0

N30 M03 S400

N40 G00 Z5 M08

N50 G01 Z-6 F100

N60 G42 X0 F60

N70 X60

N80 G03 X80 Y20 J20

N90 X40 Y60 I-40

N100 G01 X0 Y40

N110 Y0

N120 G40 Y-20

N130 G00 Z200 M09

N140 M05

N150

M02

数控机床的组成及基本工作原理

1.2 数控机床的组成及基本工作原理 一、数控机床组成 数控机床由:程序、输人/输出装置、CNC单元、伺服系统、位置反馈系统、机床本体组成。 1、程序的存储介质,又称程序载体 1)穿孔纸带(过时、淘汰); 2)盒式磁带(过时、淘汰); 3)软盘、磁盘、U盘; 4)通信。 2、输人/输出装置 1)对于穿孔纸带,配用光电阅读机;(过时、淘汰); 2)对于盒式磁带,配用录放机;(过时、淘汰); 3)对于软磁盘,配用软盘驱动器和驱动卡; 4)现代数控机床,还可以通过手动方式(MDI方式); 5)DNC网络通讯、RS232串口通讯。 3、CNC单元 CNC单元是数控机床的核心,CNC单元由信息的输入、处理和输出三个部分组成。 CNC单元接受数字化信息,经过数控装置的控制软件和逻辑电路进行译码、插补、逻辑处理后,将各种指令信息输出给伺服系统,伺服系统驱动执行部件作进给运动。其它的还有主运动部件的变速、换向和启停信号;选择和交换刀具的刀具指令信号,冷却、润滑的启停、工件和机床部件松开、夹紧、分度台转位等辅助指令信号等。 准备功能:G00,G01,G02,G03, 辅助功能:M03,M04 刀具、进给速度、主轴:T,F,S 4、伺服系统 由驱动器、驱动电机组成,并与机床上的执行部件和机械传动部件组成数控机床的进给系统。它的作用是把来自数控装置的脉冲信号转换成机床移动部件的运动。对于步进电机来说,每一个脉冲信号使电机转过一个角度,进而带动机床移动部件移动一个微小距离。每个进给运动的执行部件都有相应的伺服驱动系统,整个机床的性能主要取决于伺服系统。如三轴联动的机床就有三套驱动系统。 脉冲当量:每一个脉冲信号使机床移动部件移动的位移量。常用的脉冲当量为0.001mm/脉冲。 5、位置反馈系统(检测反馈系统) 伺服电动机的转角位移的反馈、数控机床执行机构(工作台)的位移反馈。包括光栅、旋转编码器、激光测距仪、磁栅等。(作业:让同学们网上查找反馈元件,下节课用5分钟自述所查内容) 反馈装置把检测结果转化为电信号反馈给数控装置,通过比较,计算实际位置与指令位置之间的偏差,并发出偏差指令控制执行部件的进给运动。 反馈系统包括半闭环、闭环两种系统。 6、机床的机械部件 1)主运动部件

数控机床的工作原理及基本结构

数控机床的工作原理及基本结构 一、程序编制及程序载体 数控程序是数控机床自动加工零件的工作指令。在对加工零件进行工艺分析的基础上,确定零件坐标系在机床坐标系上的相对位置,即零件在机床上的安装位置;刀具与零件相对运动的尺寸参数;零件加工的工艺路线、切削加工的工艺参数以及辅助装置的动作等。得到零件的所有运动、尺寸、工艺参数等加工信息后,用由文字、数字和符号组成的标准数控代码,按规定的方法和格式,编制零件加工的数控程序单。编制程序的工作可由人工进行;对于形状复杂的零件,则要在专用的编程机或通用计算机上进行自动编程(APT)或CAD/CAM设计。 编好的数控程序,存放在便于输入到数控装置的一种存储载体上,它可以是穿孔纸带、磁带和磁盘等,采用哪一种存储载体,取决于数控装置的设计类型。 数控机床的基本结构

二、输入装置 输入装置的作用是将程序载体(信息载体)上的数控代码传递并存入数控系统内。根据控制存储介质的不同,输入装置可以是光电阅读机、磁带机或软盘驱动器等。数控机床加工程序也可通过键盘用手工方式直接输入数控系统;数控加工程序还可由编程计算机用RS232C或采用网络通信方式传送到数控系统中。 零件加工程序输入过程有两种不同的方式:一种是边读入边加工(数控系统内存较小时),另一种是一次将零件加工程序全部读入数控装置内部的存储器,加工时再从內部存储器中逐段逐段调出进行加工。 三、数控装置 数控装置是数控机床的核心。数控装置从内部存储器中取出或接受输入装置送来的一段或几段数控加工程序,经过数控装置的逻辑电路或系统软件进行编译、运算和逻辑处理后,输出各种控制信息和指令,控制机床各部分的工作,使其进行规定的有序运动和动作。 零件的轮廓图形往往由直线、圆弧或其他非圆弧曲线组成,刀具在加工过程中必须按零件形状和尺寸的要求进行运动,即按图形轨迹移动。但输入的零件加工程序只能是各线段轨迹的起点和终点坐标值等数据,不能满足要求,因此要进行轨迹插补,也就是在线段的起点和终点坐标值之间进行“数据点的密化”,求出一系列中间点的坐标值,并向相应坐标输出脉冲信号,控制各坐标轴(即进给运动的各执行元件)的进给速度、进给方向和进给位移量等。 四、驱动装置和位置检测装置

数控机床的基本组成与工作原理

数控车床的基本组成和工作原理 一、任务描述 了解CAK40100VL的基本组成和工作原理 二、任务准备 (一)、安全文明生产(播放插件) (二)、机床结构和工作原理 1、机床结构 数控机床一般由输入输出设备、CNC装置(或称CNC单元)、伺服单元、驱动装置(或称执行机构)、可编程控制器PLC及电气控制装置、辅助装置、机床本体及测量反馈装置组成。如下图是数控机床的组成框图。 数控机床的机床本体与传统机床相似,由主轴传动装置、进给传动装置、床身、工作台以及辅助运动装置、液压气动系统、润滑系统、冷却装置等组成。但数控机床在整体布局、外观造型、传动系统、刀具系统的结构以及操作机构等方面都已发生了很大的变化,这种变化的目的是为了满足数控机床的要求和充分发挥数控机床的特点。 ⑵、CNC单元 CNC单元是数控机床的核心,CNC单元由信息的输入、处理和输出三个部分组成。CNC

单元接受数字化信息,经过数控装置的控制软件和逻辑电路进行译码、插补、逻辑处理后,将各种指令信息输出给伺服系统,伺服系统驱动执行部件作进给运动。 ⑶输入/输出设备 输入装置将各种加工信息传递于计算机的外部设备。在数控机床产生初期,输入装置为穿孔纸带,现已淘汰,后发展成盒式磁带,再发展成键盘、磁盘等便携式硬件,极大方便了信息输入工作,现通用DNC网络通讯串行通信的方式输入。 输出指输出内部工作参数(含机床正常、理想工作状态下的原始参数,故障诊断参数等),一般在机床刚工作状态需输出这些参数作记录保存,待工作一段时间后,再将输出与原始资料作比较、对照,可帮助判断机床工作是否维持正常。 ⑷伺服单元 伺服单元由驱动器、驱动电机组成,并与机床上的执行部件和机械传动部件组成数控机床的进给系统。它的作用是把来自数控装置的脉冲信号转换成机床移动部件的运动。对于步进电机来说,每一个脉冲信号使电机转过一个角度,进而带动机床移动部件移动一个微小距离。每个进给运动的执行部件都有相应的伺服驱动系统,整个机床的性能主要取决于伺服系统。 ⑸驱动装置 驱动装置把经放大的指令信号变为机械运动,通过简单的机械连接部件驱动机床,使工作台精确定位或按规定的轨迹作严格的相对运动,最后加工出图纸所要求的零件。和伺服单元相对应,驱动装置有步进电机、直流伺服电机和交流伺服电机等。 伺服单元和驱动装置可合称为伺服驱动系统,它是机床工作的动力装置,CNC装置的指令要靠伺服驱动系统付诸实施,所以,伺服驱动系统是数控机床的重要组成部分。 ⑹可编程控制器 可编程控制器 (PC,Programmable Controller) 是一种以微处理器为基础的通用型自动控制装置,专为在工业环境下应用而设计的。由于最初研制这种装置的目的是为了解决生产设备的逻辑及开关控制,故把称它为可编程逻辑控制器( PLC, Programmable Logic Controller)。当PLC用于控制机床顺序动作时,也可称之为编程机床控制器( PMC,Programmable Machine Controller )。PLC己成为数控机床不可缺少的控制装置。CNC 和PLC协调配合,共同完成对数控机床的控制。 ⑺测量反馈装置 测量装置也称反馈元件,包括光栅、旋转编码器、激光测距仪、磁栅等。通常安装在机床的工作台或丝杠上,它把机床工作台的实际位移转变成电信号反馈给CNC装置,供CNC 装置与指令值比较产生误差信号,以控制机床向消除该误差的方向移动。 2、工作原理 使用数控机床时,首先要将被加工零件图纸的几何信息和工艺信息用规定的代码和格式

数控机床工作原理及组成

数控机床工作原理及组成 1.1.1 数控机床工作原理 数控机床是采用了数控技术的机床,它是用数字信号控制机床运动及其加工过程。具体地说,将刀具移动轨迹等加工信息用数字化的代码记录在程序介质上,然后输入数控系统,经过译码、运算,发出指令,自动控制机床上的刀具与工件之间的相对运动,从而加工出形状、尺寸与精度符合要求的零件,这种机床即为数控机床。 1.1.2 数控机床的种类 由于数控系统的强大功能,使数控机床种类繁多.其按用途可分为如下三类。 ①金属切削类数控机床。金属切削类数控机床包括数控车床、数控铣床、数控磨床、数控钻床、数控镗床、加工中心等。 ②金属成形类数控机床。金属成形类数控机床有数控折弯机、数控弯管机、数控冲床和数控压力机等。 ③数控特种加工机床。数控特种加工机床包括数控线切割机床、数控电火花加工机床、数控激光加工机床,数控淬火机床等。 1.1.3 数控机床的组成 数控机床一般由输入输出设备、数控装置(CNC)、伺服单元、驱动装置(或称执行机构)、可编程控制器(PLC)及电气控制装置、辅助装置、机床本体及测量装置组成。图1—1是数控机床的硬件构成。 (1)输入和输出装置 输入和输出装置是机床数控系统和操作人员进行信息交流、实现人机对话的交互设备. 输入装置的作用是将程序载体上的数控代码变成相应的电脉冲信号,传送并存入数控装置内。目前,数控机床的输入装置有键盘、磁盘驱动器、光电阅读机等,其相应的程序载体 第1页

为磁盘、穿孔纸带。输出装置是显示器,有CRT显示器或彩色液晶显示器两种。输出装置的作用是:数控系统通过显示器为操作人员提供必要的信息。显示的信息可以是正在编辑的程序、坐标值,以及报警信号等。 (2)数控装置(CNC装置) 数控装置是计算机数控系统的核心,是由硬件和软件两部分组成的。它接受的是输入装置送来的脉冲信号,信号经过数控装置的系统软件或逻辑电路进行编译、运算和逻辑处理后,输出各种信号和指令,控制机床的各个部分,使其进行规定的、有序的动作。这些控制信号中最基本的信号是各坐标轴(即作进给运动的各执行部件)的进给速度、进给方向和位移量指令(送到伺服驱动系统驱动执行部件作进给运动),还有主轴的变速、换向和启停信号,选择和交换刀具的刀具指令信号,控制切削液、润滑油启停、工件和机床部件松开、夹紧、分度工作和转位的辅助指令信号等。 数控装置主要包括微处理器(CPU)、存储器、局部总线、外围逻辑电路以及与CNC系统其他组成部分联系的接口等。 (3)可编程逻辑控制器(PLC) 数控机床通过CNC和PLC共同完成控制功能,其中CNC主要完成与数字运算和管理等有关的功能,如零件程序的编辑、插补运算、译码、刀具运动的位置伺服控制等;而PLC主要完成与逻辑运算有关的一些动作,它接收CNC的控制代码M(辅助功能)、S(主轴转速)、T(选刀、换刀)等开关量动作信息,对开关量动作信息进行译码,转换成对应的控制信号,控制辅助装置完成机床相应的开关动作,如工件的装夹、刀具的更换、切削液的开关等一些辅助动作。它还接收机床操作面板的指令,一方面直接控制机床的动作(如手动操作机床),另一方面将一部分指令送往数控装置用于加工过程的控制。 在FANUC系统中专门用于控制机床的PLC,记作PMC,称为可编程机床控制器。 (4)伺服单元 伺服单元接收来自数控装置的速度和位移指令。这些指令经伺服单元变换和放大后,通过驱动装置转变成机床进给运动的速度、方向和位移。因此,伺服单元是数控装置与机床本体的联系环节,它把来自数控装置的微弱指令信号放大成控制驱动装置的大功率信号。伺服单元分为主轴单元和进给单元等,伺服单元就其系统而言又有开环系统、半闭环系统和闭环系统之分。 (5)驱动装置 驱动装置把经过伺服单元放大的指令信号变为机械运动,通过机械连接部件驱动机床工作台,使工作台精确定位或按规定的轨迹作严格的相对运动,加工出形状、尺寸与精度符合要求的零件。目前常用的驱动装置有直流伺服电动机和交流伺服电动机,且交流伺服电动机正逐渐取代直流伺服电动机。 伺服单元和驱动装置合称为伺服驱动系统,它是机床工作的动力装置,计算机数控装置的指令要靠伺服驱动系统付渚实施,伺服驱动装置包括主轴驱动单元(主要控制主轴的速度),进给驱动单元(主要是进给系统的速度控制和位置控制)。伺服驱动系统是数控机床的重要组成部分。从某种意义上说,数控机床的功能主要取决于数控装置,而数控机床的性能主要取决于伺服驱动系统。 (6)机床本体 机床本体即数控机床的机械部件,包括主运动部件、进给运动执行部件

数控机床的工作流程及每个过程详解

数控机床的工作过程 数控机床的主要任务是利用数控系统进行刀具和工件之间相对运动的控制,完成零件的数控加工。图1-2显示了数控机床的主要工作过程。 1.工作前准备 数控机床接通电源后,数控系统将对各组成部分的工作状况进行检测和诊断,并设置为初始状态。 2.零件加工程序编制与输入 零件加工程序的编制可以是脱机编程,也可以是联机编程。前者利用计算机进行手工编 程或自动编程,生成的数控程序记录在信息载体上通过系统输入装置输入数控系统,或通过通信方式直接传送到数控系统。后者是利用数控系统本身的编辑器由操作员直接通过操作面板编写、输入或修改数控加工程序。 为了使加工程序适应实际的工件与刀具位置,加工前还应输入实际使用刀具的参数,及工件坐标系原点相对机床坐标系的坐标值。 3?数控加工程序的译码和预处理 加工程序输入后,数控机床启动运行,数控系统对加工程序进行译码和预处理。 数控加丄程序 r数is轴入" 内部:思序煽辑器 』卜部:磁倉[讣革机通鱼 图1-2数控机床的主要工作过程 进行译码时,加工程序被分成几何数据、工艺数据和开关功能。几何数据是刀具相对工(数控创丁紀序译玛)可编楼控卅 (PLC > ”何数舲丁” 数据主 X. }\ Z…. F, <7 r C 插补)同步 位宣反馈处理卜---------

件的运动路径数据,如G指令和坐标字等,利用这些数据可加工出要求的工件几何形状。工艺数据是主轴转速(s指令)和进给速度(F指令)及部分G指令等功能。开关功能是对机床电器的开关命令(辅助M指令和刀具选择T指令),例如主轴起动或停止、刀具选择和交换、切削液的开启或停止等。 编程时,一般不考虑刀具实际几何数据而直接以工件轮廓尺寸编程,数控系统根据工件几何数据和加工前输入的实际刀具参数,进行刀具长度补偿和刀具半径补偿计算。为了方便编程,数控系统中存在着多种坐标系,故数控系统还要进行相应的坐标变换计算。 4.插补计算 数控系统完成加工控制信息预处理后,开始逐步运行数控加工程序。系统中的插补器根据程序中给出的几何数据和工艺数据进行插补计算,逐点计算并确定各曲线段起、终点之间 一系列中间点的坐标及坐标轴运动的方向、大小和速度,分别向各坐标轴发出运动序列指令。 5.位置控制 进给伺服单元将插补计算结果作为位置调节器的指令值,机床上位置检测元件测得的位 移作为实际位置值。位置调节器将两者进行比较、调节,输出误差补偿后的位置和速度控制信号,控制各坐标轴精确运动。各坐标轴的合成运动产生了数控加工程序所要求的零件外形轮廓和尺寸。 6?程序管理 数控系统在进行一个程序段的插补计算和位置控制的同时,又对下一程序段作译码和预 处理,为逐段运行数控加工程序做准备。这样的过程一直持续到整个零件加工程序执行完毕。 数控系统根据程序发出的开关指令由PLC进行处理。在系统程序的控制下,在各加工 程序段捕补处理开始前或完成后,开关指令和由机床反馈的信号一起被处理并转换为机床开关设备的控制指令,实现程序段所规定的T功能、M功能和s功能。

相关文档
最新文档