二维导热物体温度场的数值模拟教程文件
维导热物体温度场的数值模拟

传热大作业二维导热物体温度场的数值模拟(等温边界条件)姓名:班级:学号:墙角稳态导热数值模拟(等温条件)一、物理问题有一个用砖砌成的长方形截面的冷空气空道,其截面尺寸如下图所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。
在下列两种情况下试计算:(1)砖墙横截面上的温度分布;(2)垂直于纸面方向的每米长度上通过砖墙的导热量。
外矩形长为,宽为;内矩形长为,宽为。
第一种情况:内外壁分别均匀地维持在0℃及30℃;第二种情况:内外表面均为第三类边界条件,且已知:外壁:30℃,h1=10W/m2·℃,内壁:10℃,h2= 4 W/m2·℃砖墙的导热系数λ= W/m·℃由于对称性,仅研究1/4部分即可。
二、数学描写对于二维稳态导热问题,描写物体温度分布的微分方程为拉普拉斯方程02222=∂∂+∂∂y t x t这是描写实验情景的控制方程。
三、方程离散用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为确定温度值的空间位置,即节点。
每一个节点都可以看成是以它为中心的一个小区域的代表。
由于对称性,仅研究1/4部分即可。
依照实验时得点划分网格:建立节点物理量的代数方程对于内部节点,由∆x=∆y ,有)(411,1,,1,1,-+-++++=n m n m n m n m n m t t t t t由于本实验为恒壁温,不涉及对流,故内角点,边界点代数方程与该式相同。
设立迭代初场,求解代数方程组。
图中,除边界上各节点温度为已知且不变外,其余各节点均需建立类似3中的离散方程,构成一个封闭的代数方程组。
以C t 000 为场的初始温度,代入方程组迭代,直至相邻两次内外传热值之差小于,认为已达到迭代收敛。
四、编程及结果1) 源程序#include <>#include <>int main(){int k=0,n=0; double t[16][12]={0},s[16][12]={0};double epsilon=;double lambda=,error=0; double daore_in=0,daore_out=0,daore=0;FILE *fp;fp=fopen("data3","w");for (int i=0;i<=15;i++)for (int j=0;j<=11;j++){if ((i==0) || (j==0)) s[i][j]=30;if (i==5)if (j>=5 && j<=11) s[i][j]=0;if (j==5)if (i>=5 && i<=15) s[i][j]=0;} for (int i=0;i<=15;i++)for(int j=0;j<=11;j++)t[i][j]=s[i][j];n=1;while(n>0){n=0;for(int j=1;j<=4;j++)t[15][j]=*(2*t[14][j]+t[15][j-1]+t[15][j+1]);for(int i=1;i<=4;i++)t[i][11]=*(2*t[i][10]+t[i-1][11]+t[i+1][11]);for(int i=1;i<=14;i++)for(int j=1;j<=4;j++)t[i][j]=*(t[i+1][j]+t[i-1][j]+t[i][j+1]+t[i][j-1]);for(int i=1;i<=4;i++)for(int j=5;j<=10;j++)t[i][j]=*(t[i+1][j]+t[i-1][j]+t[i][j+1]+t[i][j-1]);for(int i=0;i<=15;i++)for(int j=0;j<=11;j++)if(fabs(t[i][j]-s[i][j])>epsilon)n++;for(int i=0;i<=15;i++)for(int j=0;j<=11;j++)s[i][j]=t[i][j];k++;实验结果可知:等温边界下,数值解法计算结果与“二维导热物体温度场的电模拟实验“结果相似,虽然存在一定的偏差,但由于点模拟实验存在误差,而且数值解法也不可能得出温度真实值,同样存在偏差,但这并不是说数值解法没有可行性,相反,由于计算结果与电模拟实验结果极为相似,恰恰说明数值解法分析问题的可行性。
二维导热物体温度场的数值模拟教程文件

维导热物体温度场的数值模拟Urwvorwty of 帥©fix T KhzIogy Beijing金属凝固过程计算机模拟题目二维导热物体温度场的数值模拟Solidworks十字接头的传热分析作者:张杰学号:S2*******学院:北京有色金属研究总院专业:材料科学与工程成绩:2015年12月二维导热物体温度场的数值模拟图1二维均质物体的网格划分用有限差分法模拟二维导热物体的温度场,首先将二维物体划分为如图1所示的网格,x 与y 可以是不变的常量,即等步长,也可以是变量(即在区域内 的不同处是不同的),即变步长?如果区域内各点处的温度梯度相差很大,则在温度 变化剧烈处,网格布得密些,在温度变化不剧烈处,网格布得疏些?至于网格多少,步长取多少为宜,要根据计算精度与计算工作量等因素而定 ?在有限的区域内,将二维不稳定导热方程式应用于节点(i , j )可写成:2T 2T ,jP十P 1 十PT T,j T.i ,j5工i ,j x 2i ,j当 时,即x 、PTx i . i ,jP PP T i 1 ,j 2T ,jTi 1 ,j2T P T Pi , j i ,j 1 2yy 较小时,忽略()、x)2y)2x)2、2y )项。
当X yx 、 y 方向网格划分步长相等?最后得到节点U ,j)的差分方程:T P 1T P匚 T PT P T P T P 4T P1 i ,jT i ,jF 0T i 1 ,jT i 1, j 1 i ,j 1 T i ,j 1 4l i ,j式中:F o 2C p x假设边界为对流和辐射边界,对流用以下公式计算:P 1 P P PPPT i , j T i , j F 0 2T i 1 ,j T i ,j 1 T i ,j 1 4T i ,jMATLAB 编程模拟表1计算机模拟参数在MATLAB 中编程求解,程序如下: clc; clear; format lo ng %%参数输入moni_canshu=xlsread 模拟参数输入.xlsx',1,'B2:B11'); %读取exceI 中的模拟参数 s=moni_canshu(1);%几何尺寸,m t0=moni_can shu(2);% 初始温度,°C tf=mo ni_can shu(3); % 辐射(空气)边界,C rou=mon i_ca nshu(4);% 密度,kg/m3 lamda=moni_canshu(5);%导热系数,w/(m C ) Cp=moni_can shu(6);% 比热,J/(kg C )n=moni_canshu(7);%工件节点数,个 <1000 dt=60*mo ni_can shu(8); % 时间步长,min to s m=moni_canshu(9);%时间步数,个 <100 dx=s/( n-1);% 计算 dx f0=lamda*dt/(rou*Cp*dx*dx); %计算f0 %%初始参数矩阵,初始温度 for iii=1: n for jjj=1: n Told(iii,jjj)=t0; end endTold(1,:)=tf; Told( n,:)=tf; Told(:,1)=tf; Told(:, n)=tf; %%写文件表头xlswrite('data.xlsx',{['坐标位置']}, 'sheet1:'A1'); asc=97; for ii=1: nbiaotou 仁{['第'nu m2str(ii)'点']};a cT fT j , jC p xasc=asc+1;xlswrite('data.xlsx',biaotou1:sheet1:[char(asc) '1']);xlswrite('data.xlsx',biaotou1:sheet1:['A' num2str(ii+1)]);end%%模拟运算for jj=1:2copyfile('data.xlsx:'data1.xlsx)Tn ew(1:1: n)=tf;Tn ew( n:1: n)=tf;Tn ew(1: n:1)=tf;Tn ew(1: n:n )=tf;for i=2: n-1for j=2: n-1Tn ew(i:j)=Told(i:j)+fO*(Told(i-1:j)-4*Told(i:j)+Told(i+1:j)+Told(i:j- 1)+Told(i:j+1));endendTold=T new;pcolor(Told);% 绘图shad ingin terpcolormap(jet)pause(O.I)saveas(gcf:[第' num2str(jj*0.1) 's温度图像.jpg']);xlswrite('data1.xlsx',Told,'sheet1:'B2');copyfile('data1.xlsx:['第'num2str(jj*0.1) 's数据.xlsx']) delete(datal.xlsx);end模拟结果:251010 15 20 25图3模拟物体的温度分布25201 J5 10 15 20 25图2模拟物体的温度等高线图和温度梯度分布图。
简单的二维热传导模拟-c_c++ code

HANDLE_ERROR(cudaMalloc((void**)&data.dev_constSrc,bitmap.image_size()));
float *temp=(float*)malloc(bitmap.image_size());
}
int main(void)
{
DataBlock data;
CPUAnimBitmap bitmap(DIM,DIM,&data);
data.bitmap=&bitmap;
data.totalTime=0;
data.frames=0;
HANDLE_ERROR(cudaEventCreate(&data.start));
//将作为热源的单元温度值复制到网格中相应的单元中,
__global__ void copy_const_kernel(float *iptr,const float *cptr){
//
int x=threadIdx.x+blockIdx.x*blockDim.x;
int y=threadIdx.y+blockIdx.y*blockDim.y;
{
for(int x=400;x<500;x++)
{
temp[x+y*DIM]=MIN_TEMP;
}
}
HANDLE_ERROR(cudaMemcpy(data.dev_constSrc,temp,bitmap.image_size(),cudaMemcpyHostToDevice));
二维稳态导热问题 数值解法

{for(n=1;n<4;n++)
9
二维稳态导热问题的数值解法 t[m][n]=0; } for(i=0;i<90;i++) {for(m=1;m<6;m++) {for(n=1;n<4;n++) t[m][n]=0.25*(t[m+1][n]+t[m-1][n]+t[m][n+1]+t[m][n-1]); } } for(n=0;n<5;n++) {for(m=0;m<7;m++) printf("%10f",t[m][n]); printf("\n"); } }
n=5 60.000000 69.999992 77.320499 80.000000 77.320526 70.000038 60.000000
n=4 60.000000 65.811876 70.066472 71.623769 70.066489 65.811899 60.000000
n=3 60.000000 63.181051 65.509751 66.362121 65.509766 63.181070 60.000000
0.9987
0.9912
0.956
0.93
0.912
2.第一题
1
二维稳态导热问题的数值解法
热流体课程实验报告-二维导热物体温度场的计算机模拟实验

二维导热物体温度场的计算机模拟实验一、实验目的(1)学习电、热类比的原理及边界条件的处理;(2)通过计算机编程的方式求出墙角导热的离散温度场。
二、实验原理二维稳态过程,导热方程为∂2t ðx2+∂2tðy2=0二维稳态导热内部节点的差分方程为t i+1,j+t i−1,j+t i,j+1+t i,j−1−4t i,j=0于是内部节点的迭代计算式为t i,j=t i+1,j+t i−1,j+t i,j+1+t i,j−14对于恒温边界条件,除了绝热边界时使用对称性外,只使用上面一个迭代计算式即可。
但是对于对流边界,边界上的点,按位置分为内角点、外角点和平直边界,按类型分为对流边界、绝热边界,计算步骤相比恒温边界下更为复杂。
按位置:a)内角点:4个方向均有导热热流,有dx2+dy2面积的对流换热b)外角点:2个方向有导热,有dx2+dy2面积的对流换热c)平直边界:3个方向有导热,有dx或dy面积的对流换热按类型:a)绝热边界:该点的绝热一侧没有热流量,基尔霍夫定律中,此方向的热流量代入0计算b)对流边界:该点该方向的对流换热量由牛顿冷却公式q=hA(t∞−t i,j)计算得出综上所述:对流边界下的差分方程为:Φi−1,j+Φi+1,j+Φi,j−1+Φi,j+1+Φ对流=0其中,Φi−1,j,Φi+1,j,Φi,j−1,Φi,j+1为导热量,q对流为对流边界换热量。
Φi−1,j=λA(t i−1,j−t i,j)dx,Φ对流=ℎA(t∞−t i,j)。
代入所有q的计算式,可解得t i,j=∑λA k t kdxk+ℎ对流A对流t∞∑λA kdxk+ℎ对流A对流注意:a)k为实际参与导热的几个方向,对于内角点有4项,外角点有2项,平直边界有3项,绝热边界还要去掉这一方向的那一项b)A k的值根据实际位置确定,内角点得两个方向为0.5dx两个方向为1dx,外角点的两实验名称个方向均为0.5dx,平直边界有两个0.5dx和一个1dxc)内外测流体的ℎ不相等,对流面积为该网格实际与流体接触的面积角点为0.5dx,平直边界为1dx。
二维稳态导热实验报告材料.doc

实用标准文案传热学二维导热物体温度场的数值模拟作者:陈振兴学号:10037005 学院 ( 系) :化工学院专业:过程装备与控制工程班级:装备01指导教师:李增耀实验时间:2012-10二维导热物体温度场的数值模拟一、物理描述有一个用砖砌成的长方形截面的冷空气通道,其截面尺寸和示意图如图1-1 所示,假设在垂直纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。
在以下情况下试计算:(1)砖墙横截面上的温度分布;(2)垂直于纸面方向的每米长度上通过砖墙的导热量。
1、内外表面均为第三类边界条件,且已知:t 1 30 C, h1 10 .33 W / m2 Ct 2 10 C,h2 3.93 W / m2 C砖墙的导热系数0.53W / m C2、内外壁分布均匀地维持在 0 C及 30C;图1-1二、数学描述该结构的导热问题可以作为二维问题处理,并且其截面如图1-1 所示,由于对称性,仅研究其 1/4 部分即可。
其网络节点划分如图2-1 ;上述问题为二维矩形域内的稳态、无内热源、常物性的导热问题,对于这样的物理问题,我们知道,描写其的微分方程即控制方程,就是导热微分方程:2 t 2 tx2 y 2第三类边界条件:内外表面均为第三类边界条件,且已知:t 1 30 C, h1 10.33 W / m2 Ct 2 10 C, h2 3.93 W / m2 C砖墙的导热系数0.53W / m Ca f( m, n)c bx = yxn ye m d图 2-1三:方程的离散如上图2-1 所示,用一系列与坐标轴平行的网络线把求解区域划分成许多子区域,以网格线的交点作为需要确定温度值的空间位置,即节点,节点的位置已该点在两个方向上的标号m、n 来表示。
每一个节点都可以看成是以它为中心的小区域的代表,如上(m,n):对于( m,n)为内节点时:由级数展开法或热平衡法都可以得到,当x = y时:t m,n 1(t m 1,n t m 1,ntm,n 1tm ,n 1) 4对于( m,n)为边界节点时:位于平直边界上的节点:t m, n 1(t m 1,n 2t m 1,ntm,n 1) 4外部角点:如图 2-1 中 a、 b、 d、 e、 f 点,t m,n 1(t m 1,ntm,n 1) 2内部角点:如图 2-1 中 c 点,t m,n 1( t m 1,n2tm 1,n2tm,n 1tm,n 1) 6由已知条件有,当 m=1或 n=13 时的节点的温度衡为t w1 =30 C )和(n=8 ,当( m=6且 n<9且6<m<17)时的节点的温度为 t w2 =10 C。
二维导热物体温度场的数值模拟

金属凝固过程计算机模拟题目:二维导热物体温度场的数值模拟Solidworks十字接头的传热分析作者:张杰学号:S2*******学院:北京有色金属研究总院专业:材料科学与工程成绩:2015 年12 月二维导热物体温度场的数值模拟图1 二维均质物体的网格划分用有限差分法模拟二维导热物体的温度场,首先将二维物体划分为如图1所示的网格,x ∆与y ∆可以是不变的常量,即等步长,也可以是变量(即在区域内的不同处是不同的),即变步长。如果区域内各点处的温度梯度相差很大,则在温度变化剧烈处,网格布得密些,在温度变化不剧烈处,网格布得疏些。至于网格多少,步长取多少为宜,要根据计算精度与计算工作量等因素而定。在有限的区域内,将二维不稳定导热方程式应用于节点,)i j (可写成: ,2222 ,i jPPp i j T T T C x y ρλτ⎛⎫∂∂∂=+ ⎪∂∂∂⎝⎭,1 , ,()i jP P Pi j i jT T T οτττ+-∂⎛⎫=+∆ ⎪∂∆⎝⎭ (), 1 , , 1 ,222()i j P P P Pi j i j i j T T T T x x x ο+--+∂⎛⎫=+∆ ⎪∂⎝⎭∆ () , ,1 , ,1222()i jPP P Pi j i j i j T T T T y y y ο+--+⎛⎫∂=+∆ ⎪∂∆⎝⎭τ∆、x ∆、y ∆ 当τ∆、x ∆、y ∆较小时,忽略()οτ∆、2()x ο∆、2()y ο∆项。
当x y ∆=∆时,即x 、y 方向网格划分步长相等。最后得到节点,)i j (的差分方程: ()1 , ,0 1 , 1 , ,1 ,1 ,4P P P P P P Pi j i j i j i j i j i j i j T T F T T T T T ++-+-=++++-式中:()02p F C x λτρ∆=∆。假设边界为对流和辐射边界,对流用以下公式计算:()(),1 , ,0 1 , ,1 ,1 ,24Pc f i j P P P P P P i j i j i j i j i j i j p a T T T T F T T T T C xτρ+-+-∆-=+++-+∆MATLAB 编程模拟clc; clear;format long %% 参数输入moni_canshu=xlsread('模拟参数输入.xlsx',1,'B2:B11'); %读取excel 中的模拟参数 s=moni_canshu(1); %几何尺寸,m t0=moni_canshu(2); %初始温度,℃tf=moni_canshu(3); %辐射(空气)边界,℃ rou=moni_canshu(4); %密度,kg/m3lamda=moni_canshu(5); %导热系数,w/(m ℃) Cp=moni_canshu(6); %比热,J/(kg ℃)n=moni_canshu(7); %工件节点数,个<1000 dt=60*moni_canshu(8); %时间步长,min to s m=moni_canshu(9); %时间步数,个<100 dx=s/(n-1);%计算dxf0=lamda*dt/(rou*Cp*dx*dx);%计算f0 %% 初始参数矩阵,初始温度 for iii=1:n for jjj=1:nTold(iii,jjj)=t0; end endTold(1,:)=tf; Told(n,:)=tf; Told(:,1)=tf;Told(:,n)=tf;%% 写文件表头xlswrite('data.xlsx',{['坐标位置']},'sheet1','A1');asc=97;for ii=1:nbiaotou1={['第' num2str(ii) '点']};asc=asc+1;xlswrite('data.xlsx',biaotou1,'sheet1',[char(asc) '1']);xlswrite('data.xlsx',biaotou1,'sheet1',['A' num2str(ii+1)]);end%% 模拟运算for jj=1:2copyfile('data.xlsx','data1.xlsx')Tnew(1,1:n)=tf;Tnew(n,1:n)=tf;Tnew(1:n,1)=tf;Tnew(1:n,n)=tf;for i=2:n-1for j=2:n-1Tnew(i,j)=Told(i,j)+f0*(Told(i-1,j)-4*Told(i,j)+Told(i+1,j)+Told(i,j-1)+Told(i,j+1)); endendTold=Tnew;pcolor(Told);%绘图shading interpcolormap(jet)pause(0.1)saveas(gcf,['第' num2str(jj*0.1) 's温度图像.jpg']);xlswrite('data1.xlsx',Told,'sheet1','B2');copyfile('data1.xlsx',['第' num2str(jj*0.1) 's数据.xlsx'])delete('data1.xlsx');end图3 模拟物体的温度分布图2 模拟物体的温度等高线图和温度梯度分布图。
二维导热物体温度场的数值模拟

二维导热物体温度场的数值模拟班级:建环11姓名:谢庄璞学号:2110701017物理问题:一个长方形截面的冷空气通道的尺寸如图1所示。
假设在垂直于纸面的方向上冷空气及通道墙壁的温度变化很小,可以忽略。
试用数值方法计算下列两种情况下通道壁面中的温度分布及每米长度上通过壁面的冷量损失:(1).内、外壁分别维持在0摄氏度及30摄氏度;(2).内、外壁与流体发生对流传热,且已知:(由于本人实验做的是对流边界条件,专门编写了第三类的程序,第一类边界条件参考的是别人的程序,节点设计有所不同)T1=30,h1=10(实验值是10.34)T2=10,h2=4(实验值是3.93)(图1)(图2)分析问题:因为截面材料均匀,且边界条件对称,故截面上的温度分布也对称,可去1/4的截面如图2,本题采用数值法求解,将截面上的点进行划分,如图3所示,网格的交点为所选取的节点。
图30.53程序内容:(1)PROGRAM MAINIMPLICIT NONEINTEGER::I,J,KREAL::V=0.53,TF1=10,TF2=30REAL::M1=0,M2=0,N1=0,N2=0,Q1=0,Q2=0REAL::T(16,12)=0 !初设节点温度均为0摄氏度!设置内壁温度为10摄氏度DO I=6,16T(I,6)=TF1END DODO J=6,12T(6,J)=TF1END DO!设置外壁温度为30摄氏度T(I,1)=TF2END DODO J=1,12T(1,J)=TF2END DO!设置其他节点DO K=1,1000!设置内部节点DO I=2,5DO J=2,11T(I,J)=(T(I-1,J)+T(I+1,J)+T(I,J-1)+T(I,J+1))/4 END DOEND DODO I=6,15DO J=2,5T(I,J)=(T(I-1,J)+T(I+1,J)+T(I,J-1)+T(I,J+1))/4 END DOEND DO!设置对称线上的节点DO J=2,5T(16,J)=(2*T(15,J)+T(16,J-1)+T(16,J+1))/4END DODO I=2,5T(I,12)=(2*T(I,11)+T(I-1,12)+T(I+1,12))/4END DOEND DODO I=1,16DO J=1,12WRITE(*,*)I,J,T(I,J)OPEN(1,FILE='T01.txt')WRITE(1,*)T(I,J)END DOEND DODO J=6,11M1=M1+V*(T(5,J)-T(6,J))END DOM2=M2+V*(T(I,5)-T(I,6))END DOQ1=0.5*V*(T(5,12)-T(6,12))+0.5*V*(T(16,5)-T(16,6))+M1+M2 !内壁面能放出的热量DO J=2,11N1=N1+V*(T(1,J)-T(2,J))END DODO I=2,15N2=N2+V*(T(I,1)-T(I,2))END DOQ2=0.5*V*(T(1,12)-T(2,12))+0.5*V*(T(16,1)-T(16,2))+N1+N2 !外壁面能吸收的热量WRITE(*,*)"Q1=",Q1,"Q2=",Q2,"冷量损失为:",(Q1+Q2)/2END PROGRAM MAIN(2)program mainimplicit nonereal h1,h2,lenda,tf1,tf2real t(16,12)integer i,j,xh1=10.34h2=3.93lenda=0.53tf1=30tf2=10h1=h1/10 !注:由于下面未算节点长度,在次进行修正h2=h2/10open(01,file='CH.dat')!zhengti fu chuzhido j=1,12,1do i=1,16,1t(i,j)=10end doend dodo x=1,1000000do j=2,11,1!dui yu di 1 lie j cong 2 dao 11------------------------------------------------------1t(1,j)=1./(h1+2*lenda)*(h1*tf1+lenda/2*t(1,j+1)+lenda/2*t(1,j-1)+lenda*t(2,j)) end do!dui yu wai jiao dian t(1,12)---------------------------------------------------------2t(1,12)=1./(h1+lenda)*(h1*tf1+lenda/2*(t(2,12)+t(1,11)))do i=2,15,1!dui yu di 12 hang i cong 2 dao 15----------------------------------------------------3t(i,12)=1./(h1+2*lenda)*(lenda/2*(t(i-1,12)+t(i+1,12))+lenda*t(i,11)+h1*tf1) end dodo i=7,15,1!dui yu di 7 hang i cong 7 dao 15-----------------------------------------------------4t(i,7)=1./(h2+2*lenda)*(lenda*t(i,8)+lenda/2*(t(i-1,7)+t(i+1,7))+h2*tf2)end dodo j=2,6,1!dui yu di 6 lie j cong 2 dao 6-------------------------------------------------------5t(6,j)=1./(h2+2*lenda)*(lenda*t(5,j)+lenda/2*(t(6,j+1)+t(6,j-1))+h2*tf2)end do!dui yu nei jiao dian t(6,7)----------------------------------------------------------6t(6,7)=1./(3*lenda+h2)*(lenda*(t(6,8)+t(5,7))+lenda/2*(t(7,7)+t(6,6))+h2*tf2)do i=2,5,1!dui yu di 1 hang i cong 2 dao 5------------------------------------------------------7t(i,1)=1./4*(t(i-1,1)+t(i,2)+t(i+1,1)+t(i,2))end dodo j=8,11,1!duiyu di 16 lie j cong 8 dao11------------------------------------------------------8t(16,j)=1./4*(t(15,j)+t(15,j)+t(16,j+1)+t(16,j-1))end do!dui yu jiedian t(1,1)----------------------------------------------------------------9t(1,1)=1./(2*lenda+h1)*(lenda*(t(2,1)+t(1,2))+h1*tf1)!duiyu jiedian t(6,1)-----------------------------------------------------------------10t(6,1)=1./(2*lenda+h2)*(lenda*(t(6,2)+t(5,1))+h2*tf2)!duiyu jiedian t(16,7)----------------------------------------------------------------11t(16,7)=1./(2*lenda+h2)*(lenda*(t(16,8)+t(15,7))+h2*tf2)!dui yu jiedian t(16,12)--------------------------------------------------------------12t(16,12)=1./(2*lenda+h1)*(lenda*(t(16,11)+t(15,12))+h1*tf1)do j=2,7,1do i=2,5,1!dui yu niebujiedian------------------------------------------------------------------1 3t(i,j)=1./4*(t(i-1,j)+t(i+1,j)+t(i,j+1)+t(i,j-1))end doend dodo j=8,11,1do i=2,15,1!dui yu niebujiedian------------------------------------------------------------------1 4t(i,j)=1./4*(t(i-1,j)+t(i+1,j)+t(i,j+1)+t(i,j-1))end doend doend doprint*,tdo j=1,12do i=1,16write(01,*) i,j,t(i,j)1 !用于导出数据方便作图end doend doclose(01)do i=2,11q1=q1+10.34*0.1*(30-t(1,i)) end doq1=q1+10.34*0.05*(30-t(1,1)) do i=2,15q1=q1+10.34*0.1*(30-t(i,12)) end doq1=q1+10.34*0.05*(30-t(16,12)) q1=q1+10.34*0.1*(30-t(1,12)) print*,q1do i=2,6q2=q2+3.93*0.1*(t(6,i)-10)end dodo i=7,15q2=q2+3.93*0.1*(t(i,7)-10)end doq2=q2+3.93*0.1*(t(6,7)-10)q2=q2+3.93*0.05*(t(6,1)-10)q2=q2+3.93*0.05*(t(16,7)-10) print*,q2q=(q1+q2)/2print*,qEndprogram由于有4个部分,所以总热量是q=28.24457*4=112.97828 w编程思路:对整个区域进行节点离散化,写出各个节点与周围节点的关系式,然后进行迭代,直到前后两次算出来的结果相差符合误差要求为止(本实验中循环次数足够多后数值基本不变,故没有设计判断的部分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。