二维导热物体温度场的数值模拟(优选材料)
材料数值模拟——温度场模拟

H
25
2-4不稳定导热的有限差分法 解题步骤
• 内节点和边界节点差分方程的建立
– 内节点一般采用直接法:即由导热微分方程直接用差 商代替微商,导出递推公式,也可采用热平衡法;
– 边界节点一般采用热平衡法,视具体边界建立相应的 能量方程
• 选择求解差分方程组矩阵的计算方法 • 编写计算程序 • 计算 • 计算结果的处理和分析讨论
解题步骤
• 分析和简化物理模型
– 判断问题属于稳态问题还是非稳态问题 – 有无内热源 – 适宜的坐标 – 判断边界条件的类型
• 数学模型的建立 一般模型: c T [ ( T ) ( T ) ( T ) ] Q .
x x y y z z
物性参数为常数: 1 T ( x 2T 2 y 2T 2 2 zT 2)Q
– 第三类边界条件:已知物体周围介质温度Tf\ 物体表面温度( Tw )以及物体表面与周围 介质间的放热系数。 qw= ( Tw - Tf\ )
H
20
2-3传热问题的数值计算方法
• 分析解法
– 定义:以数学分析为基础,求解导热微分方程的定 解问题。
– 特点:求得的结果为精确解 – 不足:只能求解比较简单的导热问题,而对于几何
3
• 铸件凝固过程数值参模拟考,书陈海目清等,重庆大学出
版社,1991(TG21-C4-2)
• 焊接热过程数值分析,武传松,哈工大出版社, 1990(TG402-N74)
• 计算机在铸造中的应用,程军,机械工业出版社 ,1993(TG248-C73)
• 计算传热学,郭宽良,中国科学技术大学出版社 ,1988(TK124-43-G91)
dTT(xx)T(x)
二维导热物体温度场的数值模拟教程文件

维导热物体温度场的数值模拟Urwvorwty of 帥©fix T KhzIogy Beijing金属凝固过程计算机模拟题目二维导热物体温度场的数值模拟Solidworks十字接头的传热分析作者:张杰学号:S2*******学院:北京有色金属研究总院专业:材料科学与工程成绩:2015年12月二维导热物体温度场的数值模拟图1二维均质物体的网格划分用有限差分法模拟二维导热物体的温度场,首先将二维物体划分为如图1所示的网格,x 与y 可以是不变的常量,即等步长,也可以是变量(即在区域内 的不同处是不同的),即变步长?如果区域内各点处的温度梯度相差很大,则在温度 变化剧烈处,网格布得密些,在温度变化不剧烈处,网格布得疏些?至于网格多少,步长取多少为宜,要根据计算精度与计算工作量等因素而定 ?在有限的区域内,将二维不稳定导热方程式应用于节点(i , j )可写成:2T 2T ,jP十P 1 十PT T,j T.i ,j5工i ,j x 2i ,j当 时,即x 、PTx i . i ,jP PP T i 1 ,j 2T ,jTi 1 ,j2T P T Pi , j i ,j 1 2yy 较小时,忽略()、x)2y)2x)2、2y )项。
当X yx 、 y 方向网格划分步长相等?最后得到节点U ,j)的差分方程:T P 1T P匚 T PT P T P T P 4T P1 i ,jT i ,jF 0T i 1 ,jT i 1, j 1 i ,j 1 T i ,j 1 4l i ,j式中:F o 2C p x假设边界为对流和辐射边界,对流用以下公式计算:P 1 P P PPPT i , j T i , j F 0 2T i 1 ,j T i ,j 1 T i ,j 1 4T i ,jMATLAB 编程模拟表1计算机模拟参数在MATLAB 中编程求解,程序如下: clc; clear; format lo ng %%参数输入moni_canshu=xlsread 模拟参数输入.xlsx',1,'B2:B11'); %读取exceI 中的模拟参数 s=moni_canshu(1);%几何尺寸,m t0=moni_can shu(2);% 初始温度,°C tf=mo ni_can shu(3); % 辐射(空气)边界,C rou=mon i_ca nshu(4);% 密度,kg/m3 lamda=moni_canshu(5);%导热系数,w/(m C ) Cp=moni_can shu(6);% 比热,J/(kg C )n=moni_canshu(7);%工件节点数,个 <1000 dt=60*mo ni_can shu(8); % 时间步长,min to s m=moni_canshu(9);%时间步数,个 <100 dx=s/( n-1);% 计算 dx f0=lamda*dt/(rou*Cp*dx*dx); %计算f0 %%初始参数矩阵,初始温度 for iii=1: n for jjj=1: n Told(iii,jjj)=t0; end endTold(1,:)=tf; Told( n,:)=tf; Told(:,1)=tf; Told(:, n)=tf; %%写文件表头xlswrite('data.xlsx',{['坐标位置']}, 'sheet1:'A1'); asc=97; for ii=1: nbiaotou 仁{['第'nu m2str(ii)'点']};a cT fT j , jC p xasc=asc+1;xlswrite('data.xlsx',biaotou1:sheet1:[char(asc) '1']);xlswrite('data.xlsx',biaotou1:sheet1:['A' num2str(ii+1)]);end%%模拟运算for jj=1:2copyfile('data.xlsx:'data1.xlsx)Tn ew(1:1: n)=tf;Tn ew( n:1: n)=tf;Tn ew(1: n:1)=tf;Tn ew(1: n:n )=tf;for i=2: n-1for j=2: n-1Tn ew(i:j)=Told(i:j)+fO*(Told(i-1:j)-4*Told(i:j)+Told(i+1:j)+Told(i:j- 1)+Told(i:j+1));endendTold=T new;pcolor(Told);% 绘图shad ingin terpcolormap(jet)pause(O.I)saveas(gcf:[第' num2str(jj*0.1) 's温度图像.jpg']);xlswrite('data1.xlsx',Told,'sheet1:'B2');copyfile('data1.xlsx:['第'num2str(jj*0.1) 's数据.xlsx']) delete(datal.xlsx);end模拟结果:251010 15 20 25图3模拟物体的温度分布25201 J5 10 15 20 25图2模拟物体的温度等高线图和温度梯度分布图。
【2024版】传热学-期中考试(答案)

《传热学》—— 期中测试题(答案)一. 填空题(每空1分,共60分)1 某物体内温度分布的表达式为t = f(x,y,τ),此温度场为 二维 (填几维), 非稳态 (填稳态或非稳态)温度场。
2 傅里叶定律中的负号表示: 热量传递的方向与温度梯度的方向共线反向 。
3 一个给定的导热过程,其完整的数学描写包括 导热微分方程 和 定解 条件。
4 导热问题的常见边界条件有三类,写出三类边界条件的数学表达式:第一类边界条件为w 0,()t f ττ>= ,第二类边界条件为 w w 0,()()t q f nτλτ∂>=-=∂ ,第三类边界条件为 w w f 0,()()t h t t nτλ∂>-=-∂ 。
5 热阻的表示,通过平壁的导热热阻表示为:A δ ,通过圆筒壁的热阻表示为:)ln(2112d d l πλ ,通过球壁的热阻表示为:12111()4r r πλ-,肋片肋化表面侧的热阻表示为:001A h η 。
6 气体导热的机理是 气体分子不规则热运动和相互碰撞而产生的热量传递 。
7 按导热机理,水的三种状态,气态,液态和固态中, 固态 下导热系数最大。
8 导电性能好的金属,其导热性能也好,这是由于金属的导电和导热机理都是 依靠自由电子的迁移来完成的 。
9 按照导热机理,相同温度下下列材料:纯银,黄铜,纯铜中, 纯银 的导热系数最大。
10 我国国家标准规定:凡平均温度不高于350 ℃,导热系数不大于 0.12 W/(m ·k) 的材料,称为保温材料。
11 由多层等厚度平壁构成的传热壁面,若某层平壁所用材料的导热系数越大,则该壁面的热阻就越 小(填大或小) ,其两侧的温度差越 小 (填大或小)。
12 为了减小热损失,一蒸汽管道外包有两层隔热保温层,从材料利用的经济性出发,导热系数小的材料应设置在 内侧 (内侧还是外侧)。
13 工程上常采用肋片来 强化换热 。
对于一个传热过程,常常在表面传热系数 较小 (填较大或较小)的一侧,采用肋壁的形式。
热流体课程实验报告-二维导热物体温度场的计算机模拟实验

二维导热物体温度场的计算机模拟实验一、实验目的(1)学习电、热类比的原理及边界条件的处理;(2)通过计算机编程的方式求出墙角导热的离散温度场。
二、实验原理二维稳态过程,导热方程为∂2t ðx2+∂2tðy2=0二维稳态导热内部节点的差分方程为t i+1,j+t i−1,j+t i,j+1+t i,j−1−4t i,j=0于是内部节点的迭代计算式为t i,j=t i+1,j+t i−1,j+t i,j+1+t i,j−14对于恒温边界条件,除了绝热边界时使用对称性外,只使用上面一个迭代计算式即可。
但是对于对流边界,边界上的点,按位置分为内角点、外角点和平直边界,按类型分为对流边界、绝热边界,计算步骤相比恒温边界下更为复杂。
按位置:a)内角点:4个方向均有导热热流,有dx2+dy2面积的对流换热b)外角点:2个方向有导热,有dx2+dy2面积的对流换热c)平直边界:3个方向有导热,有dx或dy面积的对流换热按类型:a)绝热边界:该点的绝热一侧没有热流量,基尔霍夫定律中,此方向的热流量代入0计算b)对流边界:该点该方向的对流换热量由牛顿冷却公式q=hA(t∞−t i,j)计算得出综上所述:对流边界下的差分方程为:Φi−1,j+Φi+1,j+Φi,j−1+Φi,j+1+Φ对流=0其中,Φi−1,j,Φi+1,j,Φi,j−1,Φi,j+1为导热量,q对流为对流边界换热量。
Φi−1,j=λA(t i−1,j−t i,j)dx,Φ对流=ℎA(t∞−t i,j)。
代入所有q的计算式,可解得t i,j=∑λA k t kdxk+ℎ对流A对流t∞∑λA kdxk+ℎ对流A对流注意:a)k为实际参与导热的几个方向,对于内角点有4项,外角点有2项,平直边界有3项,绝热边界还要去掉这一方向的那一项b)A k的值根据实际位置确定,内角点得两个方向为0.5dx两个方向为1dx,外角点的两实验名称个方向均为0.5dx,平直边界有两个0.5dx和一个1dxc)内外测流体的ℎ不相等,对流面积为该网格实际与流体接触的面积角点为0.5dx,平直边界为1dx。
《2024年基于ANSYS的焊接温度场和应力的数值模拟研究》范文

《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言随着科技的发展,焊接技术作为制造行业中的关键工艺之一,其质量和效率直接关系到产品的性能和寿命。
因此,对焊接过程中的温度场和应力分布进行精确的数值模拟显得尤为重要。
ANSYS作为一种功能强大的工程仿真软件,被广泛应用于焊接过程的数值模拟。
本文将基于ANSYS,对焊接温度场和应力进行数值模拟研究,以期为实际生产提供理论依据。
二、焊接温度场的数值模拟1. 模型建立在ANSYS中建立焊接过程的有限元模型,包括焊件、焊缝、热源等部分。
其中,焊件采用实体单元进行建模,焊缝则通过线单元进行描述。
热源模型的选择对于模拟结果的准确性至关重要,应根据具体的焊接工艺选择合适的热源模型。
2. 材料属性及边界条件根据实际材料,设定焊件和焊缝的热导率、比热容、热扩散率等物理参数。
同时,设定初始温度、环境温度等边界条件。
3. 数值模拟过程根据焊接过程的实际情况,设定加载步和时间步长,模拟焊接过程中的温度变化。
通过ANSYS的热分析模块,得到焊接过程中的温度场分布。
三、焊接应力的数值模拟1. 耦合分析焊接过程中,温度场的变化会导致应力的产生。
因此,在ANSYS中,需要将在热分析中得到的温度场结果作为应力分析的输入条件,进行热-结构耦合分析。
2. 本构关系与材料模型根据材料的本构关系和力学性能,设定材料的弹性模量、泊松比、热膨胀系数等参数。
同时,选择合适的材料模型,如各向同性模型或各向异性模型。
3. 应力分析通过ANSYS的结构分析模块,结合耦合后的温度场结果,进行应力分析。
得到焊接过程中的应力分布和变化情况。
四、结果与讨论1. 温度场结果分析通过ANSYS的后处理功能,可以得到焊接过程中的温度场分布图。
分析温度场的分布情况,可以了解焊接过程中的热传导和热扩散情况,为优化焊接工艺提供依据。
2. 应力结果分析同样,通过后处理功能可以得到焊接过程中的应力分布图。
分析应力的分布和变化情况,可以了解焊接过程中产生的残余应力和变形情况。
西安交通大学传热学大作业---二维温度场热电比拟实验

二维导热物体温度场的数值模拟一、物理问题有一个用砖砌成的长方形截面的冷空气通道,其截面尺寸如下图1-1所示,假设在垂直于纸面方向上用冷空气及砖墙的温度变化很小,可以近似地予以忽略。
在下列两种情况下试计算: 砖墙横截面上的温度分布;垂直于纸面方向的每米长度上通过砖墙的导热量。
第一种情况:内外壁分别均匀维持在0℃及30℃; 第二种情况:内外壁均为第三类边界条件,且已知:Km K m W h C t Km W h C t ∙=∙=︒=∙=︒=∞∞/35.0/93.3,10/35.10,30222211λ砖墙导热系数二、数学描写由对称的界面必是绝热面,可取左上方的四分之一墙角为研究对象,该问题为二维、稳态、无内热源的导热问题。
控制方程:02222=∂∂+∂∂y tx t边界条件: 第一种情况:由对称性知边界1绝热: 0=w q ; 边界2为等温边界,满足第一类边界条件: C t w ︒=0;1-1图2-1图边界3为等温边界,满足第一类边界条件: C t w ︒=30。
第一种情况:由对称性知边界1绝热: 0=w q ;边界2为对流边界,满足第三类边界条件: )()(2f w w w t t h n tq -=∂∂-=λ; 边界3为对流边界,满足第三类边界条件: )()(2f w w w t t h ntq -=∂∂-=λ。
三、方程离散用一系列与坐标轴平行的间隔0.1m 的二维网格线将温度区域划分为若干子区域,如图1-3所示。
采用热平衡法,利用傅里叶导热定律和能量守恒定律,按照以导入元体(m,n )方向的热流量为正,列写每个节点代表的元体的代数方程,第一种情况: 边界点:边界1(绝热边界):5~2)2(411,11,12,1,m =++=+-m t t t t m m m , 11~8)2(411,161,16,15,16=++=+-n t t t t n n n n,3-1图边界2(等温内边界): 7,16~7;7~1,6,0,=====n m n m t nm边界3(等温外边界): 12,16~2;12~1,1,30,=====n m n m t n m内节点:11~8,15~6;11~2,5~2)(411,1,,1,1,====+++=-+-+n m n m t t t t t n m n m n m n m n m第二种情况 边界点:边界1(绝热边界): 5~2)2(411,11,12,1,m =++=+-m t t t t m m m , 11~8)2(411,161,16,15,16=++=+-n t t t t n n n n ,边界2(内对流边界):6~1)2(222111,61,6,5,6=++++=∆∆-+n Bi t Bi t t t t n n n n ,16~7)2(2221117,17,18,7,=++++=∆∆-+m Bi t Bi t t t t m m m m ,边界3(外对流边界):11~1)2(2222221,11,1,2,1=++++=∆∆-+n Bi t Bi t t t t n n n n,16~2)2(22222212,112,111,12,=++++=∆∆-+m Bi t Bi t t t t m m m m ,内角点: )3(22)(21116,67,78,67,57,6+++++=∆∆Bi t Bi t t t t t外角点:)1(222211,112,212,1+++=∆∆Bi t Bi t t t内节点:11~8,15~6;11~2,5~2);(411,1,,1,1,====+++=-+-+n m n m t t t t t n m n m n m n m n m(10,22121==∆=∞∆t t xh Bi λ;30,21212==∆=∞∆t t xh Bi λ)四、编程思路及流程图编程思路为设定两个二维数组t(i,j)、ta(i,j)分别表示本次迭代和上次迭代各节点的温度值,iter (实际编程时并未按照此名称来命名迭代步长)表示迭代进行的次数, 1Q 、2Q 分别表示外边界、内边界的散热量。
二维导热物体温度场的数值模拟

二维导热物体温度场的数值模拟班级:建环11姓名:谢庄璞学号:2110701017物理问题:一个长方形截面的冷空气通道的尺寸如图1所示。
假设在垂直于纸面的方向上冷空气及通道墙壁的温度变化很小,可以忽略。
试用数值方法计算下列两种情况下通道壁面中的温度分布及每米长度上通过壁面的冷量损失:(1).内、外壁分别维持在0摄氏度及30摄氏度;(2).内、外壁与流体发生对流传热,且已知:(由于本人实验做的是对流边界条件,专门编写了第三类的程序,第一类边界条件参考的是别人的程序,节点设计有所不同)T1=30,h1=10(实验值是10.34)T2=10,h2=4(实验值是3.93)(图1)(图2)分析问题:因为截面材料均匀,且边界条件对称,故截面上的温度分布也对称,可去1/4的截面如图2,本题采用数值法求解,将截面上的点进行划分,如图3所示,网格的交点为所选取的节点。
图30.53程序内容:(1)PROGRAM MAINIMPLICIT NONEINTEGER::I,J,KREAL::V=0.53,TF1=10,TF2=30REAL::M1=0,M2=0,N1=0,N2=0,Q1=0,Q2=0REAL::T(16,12)=0 !初设节点温度均为0摄氏度!设置内壁温度为10摄氏度DO I=6,16T(I,6)=TF1END DODO J=6,12T(6,J)=TF1END DO!设置外壁温度为30摄氏度T(I,1)=TF2END DODO J=1,12T(1,J)=TF2END DO!设置其他节点DO K=1,1000!设置内部节点DO I=2,5DO J=2,11T(I,J)=(T(I-1,J)+T(I+1,J)+T(I,J-1)+T(I,J+1))/4 END DOEND DODO I=6,15DO J=2,5T(I,J)=(T(I-1,J)+T(I+1,J)+T(I,J-1)+T(I,J+1))/4 END DOEND DO!设置对称线上的节点DO J=2,5T(16,J)=(2*T(15,J)+T(16,J-1)+T(16,J+1))/4END DODO I=2,5T(I,12)=(2*T(I,11)+T(I-1,12)+T(I+1,12))/4END DOEND DODO I=1,16DO J=1,12WRITE(*,*)I,J,T(I,J)OPEN(1,FILE='T01.txt')WRITE(1,*)T(I,J)END DOEND DODO J=6,11M1=M1+V*(T(5,J)-T(6,J))END DOM2=M2+V*(T(I,5)-T(I,6))END DOQ1=0.5*V*(T(5,12)-T(6,12))+0.5*V*(T(16,5)-T(16,6))+M1+M2 !内壁面能放出的热量DO J=2,11N1=N1+V*(T(1,J)-T(2,J))END DODO I=2,15N2=N2+V*(T(I,1)-T(I,2))END DOQ2=0.5*V*(T(1,12)-T(2,12))+0.5*V*(T(16,1)-T(16,2))+N1+N2 !外壁面能吸收的热量WRITE(*,*)"Q1=",Q1,"Q2=",Q2,"冷量损失为:",(Q1+Q2)/2END PROGRAM MAIN(2)program mainimplicit nonereal h1,h2,lenda,tf1,tf2real t(16,12)integer i,j,xh1=10.34h2=3.93lenda=0.53tf1=30tf2=10h1=h1/10 !注:由于下面未算节点长度,在次进行修正h2=h2/10open(01,file='CH.dat')!zhengti fu chuzhido j=1,12,1do i=1,16,1t(i,j)=10end doend dodo x=1,1000000do j=2,11,1!dui yu di 1 lie j cong 2 dao 11------------------------------------------------------1t(1,j)=1./(h1+2*lenda)*(h1*tf1+lenda/2*t(1,j+1)+lenda/2*t(1,j-1)+lenda*t(2,j)) end do!dui yu wai jiao dian t(1,12)---------------------------------------------------------2t(1,12)=1./(h1+lenda)*(h1*tf1+lenda/2*(t(2,12)+t(1,11)))do i=2,15,1!dui yu di 12 hang i cong 2 dao 15----------------------------------------------------3t(i,12)=1./(h1+2*lenda)*(lenda/2*(t(i-1,12)+t(i+1,12))+lenda*t(i,11)+h1*tf1) end dodo i=7,15,1!dui yu di 7 hang i cong 7 dao 15-----------------------------------------------------4t(i,7)=1./(h2+2*lenda)*(lenda*t(i,8)+lenda/2*(t(i-1,7)+t(i+1,7))+h2*tf2)end dodo j=2,6,1!dui yu di 6 lie j cong 2 dao 6-------------------------------------------------------5t(6,j)=1./(h2+2*lenda)*(lenda*t(5,j)+lenda/2*(t(6,j+1)+t(6,j-1))+h2*tf2)end do!dui yu nei jiao dian t(6,7)----------------------------------------------------------6t(6,7)=1./(3*lenda+h2)*(lenda*(t(6,8)+t(5,7))+lenda/2*(t(7,7)+t(6,6))+h2*tf2)do i=2,5,1!dui yu di 1 hang i cong 2 dao 5------------------------------------------------------7t(i,1)=1./4*(t(i-1,1)+t(i,2)+t(i+1,1)+t(i,2))end dodo j=8,11,1!duiyu di 16 lie j cong 8 dao11------------------------------------------------------8t(16,j)=1./4*(t(15,j)+t(15,j)+t(16,j+1)+t(16,j-1))end do!dui yu jiedian t(1,1)----------------------------------------------------------------9t(1,1)=1./(2*lenda+h1)*(lenda*(t(2,1)+t(1,2))+h1*tf1)!duiyu jiedian t(6,1)-----------------------------------------------------------------10t(6,1)=1./(2*lenda+h2)*(lenda*(t(6,2)+t(5,1))+h2*tf2)!duiyu jiedian t(16,7)----------------------------------------------------------------11t(16,7)=1./(2*lenda+h2)*(lenda*(t(16,8)+t(15,7))+h2*tf2)!dui yu jiedian t(16,12)--------------------------------------------------------------12t(16,12)=1./(2*lenda+h1)*(lenda*(t(16,11)+t(15,12))+h1*tf1)do j=2,7,1do i=2,5,1!dui yu niebujiedian------------------------------------------------------------------1 3t(i,j)=1./4*(t(i-1,j)+t(i+1,j)+t(i,j+1)+t(i,j-1))end doend dodo j=8,11,1do i=2,15,1!dui yu niebujiedian------------------------------------------------------------------1 4t(i,j)=1./4*(t(i-1,j)+t(i+1,j)+t(i,j+1)+t(i,j-1))end doend doend doprint*,tdo j=1,12do i=1,16write(01,*) i,j,t(i,j)1 !用于导出数据方便作图end doend doclose(01)do i=2,11q1=q1+10.34*0.1*(30-t(1,i)) end doq1=q1+10.34*0.05*(30-t(1,1)) do i=2,15q1=q1+10.34*0.1*(30-t(i,12)) end doq1=q1+10.34*0.05*(30-t(16,12)) q1=q1+10.34*0.1*(30-t(1,12)) print*,q1do i=2,6q2=q2+3.93*0.1*(t(6,i)-10)end dodo i=7,15q2=q2+3.93*0.1*(t(i,7)-10)end doq2=q2+3.93*0.1*(t(6,7)-10)q2=q2+3.93*0.05*(t(6,1)-10)q2=q2+3.93*0.05*(t(16,7)-10) print*,q2q=(q1+q2)/2print*,qEndprogram由于有4个部分,所以总热量是q=28.24457*4=112.97828 w编程思路:对整个区域进行节点离散化,写出各个节点与周围节点的关系式,然后进行迭代,直到前后两次算出来的结果相差符合误差要求为止(本实验中循环次数足够多后数值基本不变,故没有设计判断的部分)。
2二维流动与传热模拟实验报告

实验课程名称:计算机在材料科学与工程中的应用五、实验原始记录(程序设计类实验:包括原程序、输入数据、运行结果、实验过程发现的问题及解决方法等;分析与设计、软件工程类实验:编制分析与设计报告,要求用标准的绘图工具绘制文档中的图表。
系统实施部分要求记录核心处理的方法、技巧或程序段;其它实验:记录实验输入数据、处理模型、输出数据及结果分析)1、进入GANBIT软件主控画面,进行→→操作创建坐标网格图,如下图1所示:图1 坐标网格图2、由节点创建直线、圆弧边,并有线组成面后,确定边界线的内部节点分布。
然后进行→→操作创建结构化网格,如下图2所示:3、进入FIUENT软件中,建立求解模型、设置流体属性、设置边界条件后,求解点击Solver →Iterate进行300次迭代后得到出口界面上的平均温度变化曲线,再进行200次迭代运算后,监视器曲线为一条直线,说明出口处平均温度已经达到稳定状态,如下图3所示。
4、显示实验结果。
在进行Display →Contours操作后,分别得到速度分布图,如下图4;温度分布图,如下图5;温度等值曲线图,如下图6;速度矢量图,如下图7;混合器内等压线图,如下图8;混合器内速度水头等值线图,如下图9。
在进行Plot →XY Plot操作后,得到出流口截面上温度、压力、速度分布图,分别如下图10、图11、图12所示。
图2 换热器的网格图图3 出口平均温度变化曲线(左为300次后,右为再200次后)图4 速度分布图图5 温度分布图图6 温度等值曲线图图7 速度矢量图图8 混合器内等压线图图9 混合器内速度水头等值线图图10 出流口截面上温度分布图图11 出流口截面上速度分布图图12 出流口截面上压力分布图5、利用二阶离散化方法重新计算得到混合器内温度分布图,如下图13所示。
图13 二阶离散化法得到混合器内温度分布图上图13与图5比较,可以看出温度分布得到较好的改善,说明使用二阶离散化方法计算结果更合理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传热大作业
二维导热物体温度场的数值模拟(等温边界条件)
姓名:
班级:
学号:
墙角稳态导热数值模拟(等温条件)
一、物理问题
有一个用砖砌成的长方形截面的冷空气空道,其截面尺寸如下图所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。
在下列两种情况下试计算:
(1)砖墙横截面上的温度分布;
(2)垂直于纸面方向的每米长度上通过砖墙的导热量。
外矩形长为3.0m ,宽为2.2m ;内矩形长为2.0m ,宽为1.2m 。
第一种情况:内外壁分别均匀地维持在0℃及30℃;
第二种情况:内外表面均为第三类边界条件,且已知:
外壁:30℃ ,h1=10W/m2·℃,
内壁:10℃ ,h2= 4 W/m2·℃
砖墙的导热系数λ=0.53 W/m ·℃
由于对称性,仅研究1/4部分即可。
二、数学描写
对于二维稳态导热问题,描写物体温度分布的微分方程为拉普拉斯方程 02222=∂∂+∂∂y t x t
这是描写实验情景的控制方程。
三、方程离散
用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为确定温度值的空间位置,即节点。
每一个节点都可以看成是以它为中心的一个小区域的代表。
由于对称性,仅研究1/4部分即可。
依照实验时得点划分网格:
建立节点物理量的代数方程
对于内部节点,由∆x=∆y ,有 )(411,1,,1,1,-+-++++=n m n m n m n m n m t t t t t
由于本实验为恒壁温,不涉及对流,故内角点,边界点代数方程与该式相同。
设立迭代初场,求解代数方程组。
图中,除边界上各节点温度为已知且不变外,其余各节点均需建立类似3中的离散方程,构成一个封闭的代数方程组。
以C t 000=为场的初始温度,代入方程组迭代,直至相邻两次内外传热值之差小于0.01,认为已达到迭代收敛。
四、编程及结果
1) 源程序
#include <stdio.h>
#include <math.h>
int main()
{
int k=0,n=0; double t[16][12]={0},s[16][12]={0};
double epsilon=0.001;。