高中数学解题的基本规律(三)
高中数学必修三古典概型的几种解题技巧

高中数学必修三古典概型的几种解题技巧古典概型是概率论中最基本的概率模型之一,它涉及到对已知的随机试验的多种可能结果和其对应概率的求解。
在高中数学必修三中,古典概型的解题技巧是学生必须掌握的一部分内容。
下面将介绍几种常见的古典概型解题技巧。
1. 直接计数法直接计数法是指通过对试验结果的数量进行计数,从而求解概率。
该方法一般适用于试验结果较少且容易确定的情况。
有5个小球,其中2个红色,3个蓝色,求从中任意抽取2个小球,抽到两个红色小球的概率。
按照直接计数法,我们可以将这个问题转化为从5个小球中抽取2个小球的问题,同时我们知道其中2个小球是红色的。
我们可以计算红色小球和非红色小球的组合数,然后除以所有小球的组合数来求解概率。
2. 互补事件法互补事件法是指通过求解事件的互补事件概率来求解事件的概率。
互补事件是指与事件A互补的事件,即事件A不发生的事件。
对于互补事件,其概率加上事件的概率必然等于1。
有一个盒子中有3个红球和2个蓝球,从中任意抽取一个球,求抽到一个红球的概率。
按照互补事件法,我们可以将该事件的互补事件定义为抽到一个蓝球的事件。
我们可以先求解抽到一个蓝球的概率,然后用1减去该概率来求解抽到一个红球的概率。
3. 排列组合法排列组合法是指通过排列组合的知识来求解概率。
它适用于试验结果较多且不易直接计数的情况。
有8个字母a,b,c,d,e,f,g,h,从中任意抽取3个字母,求抽取的三个字母都是元音字母的概率。
按照排列组合法,我们可以先计算所有情况的数量,即从8个字母中任意抽取3个字母的组合数,然后计算抽取的三个字母都是元音字母的情况数量,并将其除以所有情况的数量来求解概率。
4. 事件的分解法通过掌握以上几种古典概型解题技巧,可以帮助高中数学学生更好地理解和应用古典概型,在解决实际问题时能够灵活运用这些技巧,提高解题能力。
高中数学各内容专题命题规律

高中数学各内容专题命题规律专题一、集合、简易逻辑考向(一)集合1、规律小结集合作为高中数学的预备知识内容,每年高考都将其作为必考题,题目分布在选择题1,2,以集合的运算为主,多与解不等式等交汇,新定义运算也有较小的可能出现,属于基础性题目,主要基本考生的运算求解能力,学科素养主要考查理性思维和数学探索。
2、考点频度高频考点:集合的概念及表示和集合间的基本运算。
低频考点:集合间的基本关系。
3、备考策略集合主要以课程学习情境为主,备考应以常见的选择题目为主训练,难度通常不大,在备考中注意与一元二次不等式,绝对值不等式的解法相结合。
在备考时要注意以下两点:(1)在注重集合定义的基础上,牢固掌握集合的基本概念与运算,加强与其他数学知识的联系,借助数轴和Venn图突出集合的工具性;(2)适当地加强与函数、不等式的联系,注意小题目的综合化。
考向(二)简易逻辑1、规律小结简易逻辑主要要求考生理解其中蕴含的逻辑思想,并且容易与函数、不等式、数列、三角函数、立体几何交汇。
考查的热点是充要条件和全称量词命题与存在量词命题。
要注意,本部分内容出错原因主要是与其他知识交汇部分,其次是充要条件的判断容易出错。
2、考点频度高频考点:充分条件与必要条件。
3、备考策略常用逻辑用语是数学学习和思维的工具,要通过具体的例子让学生切实理解其中的基本概念和思维方法。
由于该内容与函数、立体几何、不等式、数列等知识结合紧密,在立体几何、函数、不等式、数列等内容备考过程中注重渗透充分必要条件、全称量词命题和存在量词命题。
专题二、平面向量与复数考向(一)平面向量1、规律小结三年三考,向量题考的比较基础,突出向量的几何运算或代数运算,不侧重于与其他知识交汇,难度不大。
这样有利于考查向量的基本运算,符合课标要求。
2、考点频度高频考点:线性运算、夹角计算、数量积。
中频考点:模的计算、向量的垂直与平行。
低频考点:综合问题。
(从2021年中频考点降为低频考点)3、备考策略纵观近几年高考,平面向量重点考查向量的概念、共线、垂直、线性运算及标运算等知识,侧重考查数量积的坐标运算,难度较低,同时也有可能出现在解答题中,突出其工具功能。
高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧数列求和的七种解法1.公式法:顾名思义就是通过等差、等比数列或者其他常见的数列的求和公式进行求解。
2.倒序相加:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于同一个常数,则求该数列的前n项和即可用倒序相加法。
例如等差数列的求和公式,就可以用该方法进行证明。
3.错位相减:形如An=Bn∙Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。
对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q∙Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。
这种数列求和方式叫做错位相减。
4.裂项相消:把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。
5.分组求和:有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。
6.周期数列:一般地,若数列{an}满足:存在一个最小的正整数T,使得an+T=an对于一切正整数n都成立,则数列{an}称为周期数列,其中T叫做数列{an}的周期,接下来根据数列的周期性进行求和。
7.数学归纳法:是一种重要的数学方法,其对求数列通项,求和的归纳猜想证明起到了关键作用。
高中数学解题方法实用技巧1解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
高中数学30条解题公式-2023届高三数学一轮复习

高中数学30条解题公式1.直线过焦点必有e cos A =x -1x +1,其中A 为直线与焦点所在轴夹角,A 是锐角. x 为分离比,必须大于1.注:上述公式适合一切圆锥曲线.如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),等式右边为x +1x -1其他不变. 2.函数的周期性问题(记忆三个)(1)若f (x )=-f (x +k ),则T =2k ;(2)若f (x )=m x +k(m 不为0),则T =2k ; (3)若f (x )=f (x +k )+f (x -k ),则T =6k .注意点:a.周期函数,周期必无限;b.周期函数未必存在最小周期,如:常数函数.c.周期函数加周期函数未必是周期函数,如:y =sin x ,y =sin πx 相加不是周期函数.3.关于对称问题总结如下(1)若在R 上(下同)满足:f (a +x )=f (b -x )恒成立,对称轴为x =a +b 2; (2)函数y =f (a +x )与y =f (b -x )的图像关于x =b -a 2对称; (3)若f (a +x )+f (a -x )=2b ,则f (x )图像关于(a ,b )中心对称4.函数奇偶性(1)对于属于R 上的奇函数有f (0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项;(3)奇偶性作用不大,一般用于选择填空5.数列常用定律(1)等差数列中:S 2n -1=na n (n >0),例如S 13=13a 7(2)等差数列中:S (n )、S (2n )-S (n )、S (3n )-S (2n )成等差(3)等比数列中,上述2中各项在公比不为-1时成等比,在q =-1时,未必成立(4)等比数列中,S (n +m )=S (m )+q 2mS (n )可以迅速求q6.数列的特征根方程对于a n +1=pa n +q ,a 1已知,那么特征根x =q 1-p,则数列通项公式为a n =(a 1-x )p 2(n -1)+x .当然这种类型的数列可以构造(两边同时加数)7.复合函数奇偶性、单调性(1)复合函数奇偶性:内偶则偶,内奇同外(2)复合函数单调性:同增异减8.适用于圆锥曲线标准方程(焦点在x 轴)的公式k 椭=-b 2x 0a 2y 0,k 双=b 2x 0a 2y 0,k 抛=p y 0注:(x 0,y 0)均为直线过圆锥曲线所截段的中点.9.两直线垂直或平行的条件已知直线L 1:a 1x +b 1y +c 1=0直线L 2:a 2x +b 2y +c 2=0若它们垂直:(充要条件)a 1a 2+b 1b 2=0;若它们平行:(充要条件)a 1b 2=a 2b 1且a 1c 2≠a 2c 1(这个条件为了防止两直线重合)10.隔项相消公式对于S n =11×3+12×4+13×5+…+1n (n +2)=12[1+12-1n +1-1n +2] 注:隔项相加保留四项,即首两项,尾两项.11.三角形面积公式S =12|mq -np |其中→AB =(m ,n ),向量→BC =(p ,q ) 这个公式可以解决已知三角形三点坐标求面积的问题12.空间立体几何中,以下命题均错(1)空间中不同三点确定一个平面(2)垂直同一直线的两直线平行(3)两组对边分别相等的四边形是平行四边形(4)如果一条直线与平面内无数条直线垂直,则直线垂直平面(5)有两个面互相平行,其余各面都是平行四边形的几何体是棱柱(6)有一个面是多边形,其余各面都是三角形的几何体都是棱锥13.f (x )=|x -1|+|x -2|+|x -3|+…+|x -n |(n 为正整数)的最小值当n 为奇数,最小值为n 2-14,在x =n +12时取到;当n 为偶数时,最小值为n 24,在x =n 2或n 2+1时取到.14.几个不等式 a 2+b 22≥a +b 2/2≥ab ≥2ab a +b(a 、b 为正数,当且仅当a =b 时,等号成立) 15.椭圆中焦点三角形面积公式在椭圆中:S =b ²tan A 2,在双曲线中:S =b 2tan A 2说明:适用于焦点在x 轴,且标准的圆锥曲线.A 为两焦半径夹角.16.空间向量余弦公式(1)A 为线线夹角cos A =a ·b |a ||b |(2)A 为线面夹角sin A =a ·b |a ||b |(3)A 为面面夹角cos A =a ·b |a ||b |注:以上角范围均为[0,π2] 17.平方求和、立方求和公式12+22+32+…+n ²=16n (n +1)(2n +1);13+23+33+…+n 3=14n ²(n +1)² 18.(a +b +c )n 的展开式合并之后的项数为:C 2n +219.对于y 2=2px ,过焦点的互相垂直的两弦AB 、CD ,它们的和最小为8p .证明:对于y 2=2px ,设过焦点的弦倾斜角为A .那么弦长可表示为2p sin 2 A,所以与之垂直的弦长为2p cos 2 A,所以求和再据三角知识可知. 20.一个重要绝对值不等式||a |-|b ||≤|a ±b |≤|a |+|b |21.关于解决证明含ln 的不等式的一种思路例:证明1+12+13+ (1)>ln(n +1) 思路:把左边看成是1n 求和,右边看成是Sn . 解:令a n =1n,令S n =ln(n +1),则b n =ln(n +1)-ln n ,那么只需证a n >b n 即可,根据定积分知识画出y =1x 的图.a n =1n=矩形面积>曲线下面积=bn .当然前面要证明1>ln 2. 22.向量射影公式a 在b 上的射影为a ·b |b |23.易错点提示若f (x +a )为奇函数,那么得到的结论是f (x +a )=-f (-x +a ),同理如果f (x +a )为偶函数,可得f (x +a )=f (-x +a ).24.离心率速算公式e =sin A sin M +sin N注:P 为椭圆上一点,其中A 为角F 1PF 2, M ,N 为△F 1PF 2与x 轴所成的夹角.25.椭圆的参数方程解决一些最值问题例如x 24+y ²=1,求z =x +y 的最值. 解:令x =2cos α,y =sin α再利用三角有界即可.26.和差化积积化和差公式和差化积sin θ+sin φ=2sin θ+φ2cos θ-φ2sin θ-sin φ=2cos θ+φ2sin θ-φ2cos θ+cos φ=2cos θ+φ2cos θ-φ2cos θ-cos φ=-2sinθ+φ2sin θ-φ2积化和差sin αsin β=cos(α-β)-cos(α+β)2cos αcos β=cos(α+β)+cos(α-β)2sin αcos β=sin(α+β)+sin(α-β)2cos αsin β=sin(α+β)-sin (α-β)227.三角形垂心定理(1)→OH =→OA +→OB +→OC (O 为三角形外心,H 为垂心)(2)若三角形的三个顶点都在函数y =1x的图象上,则它的垂心也在这个函数图象上. 28.抛物线常用结论过(2p ,0)的直线交抛物线y 2=2px 于A 、B 两点.O 为原点,连接AO ,BO .必有∠AOB =90°29.放缩常用公式ln(x +1)≤x (x >-1)例:ln 122+1+ln 132+1+…+ln 1n 2+1<1(n ≥2) 证明如下:令x =1n 2,根据ln(x +1)≤x 有左右累和右边再放缩得:左和<1-1n<1. 30.椭圆等式A 、B 为椭圆x 2a 2+y 2b 2=1上任意两点,若OA ⊥OB ,则有1|OA |2+1|OB |2=1a 2+1b 2.。
新教材 人教A版高中数学必修第二册 第六章 平面向量及其应用 知识点汇总及解题规律方法提炼

6.1 平面向量的概念1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素. (2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b .■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.典型例题1向量的相关概念给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.【解析】 AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB→|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a=b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.【答案】 ②③(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可. (2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向. 典型例题2向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 【解】 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB→|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC→|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.用有向线段表示向量的步骤典型例题3共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA→=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?【解】 (1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF→,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.[变问法]本例条件不变,与AD→共线的向量有哪些?解:与AD→共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意]对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.6.2.1向量的加法运算1.向量加法的定义及运算法则(1)两个法则的使用条件不同.三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和.(2)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量起点相同.(3)位移的合成可以看作向量加法三角形法则的物理模型.力的合成可以看作向量加法平行四边形法则的物理模型.2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 3.向量加法的运算律交换律 a +b =b +a 结合律 (a +b )+c =a +(b +c )典型例题1平面向量的加法及其几何意义如图,已知向量a ,b ,c ,求作和向量a +b +c .【解】 法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC →=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA→=a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE ,则OE→=OC →+c =a +b +c .OE →即为所求.(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合;②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和.(2)应用平行四边形法则求向量和的基本步骤 ①平移两个不共线的向量使之共起点; ②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和. 典型例题2平面向量的加法运算化简: (1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.【解】 (1)BC →+AB →=AB →+BC →=AC →. (2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0.向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简. 典型例题3向量加法的实际应用某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?【解】 如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA→,OB →为邻边作▱OACB ,则此人的实际速度为OA →+OB →=OC →. 由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题. (2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.6.2.2 向量的减法运算1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. ■名师点拨相反向量与相等向量一样,从“长度”和“方向”两方面进行定义,相反向量必为平行向量.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. ■名师点拨(1)减去一个向量相当于加上这个向量的相反向量.(2)在用三角形法则作向量减法时,只要记住“连接向量终点,箭头指向被减向量”即可.(3)对于任意两个向量a ,b ,都有||a |-|b ||≤|a +b |≤|a |+|b |. 典型例题1向量的减法运算化简下列各式: (1)(AB→+MB →)+(-OB →-MO →); (2)AB→-AD →-DC →.【解】 (1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB→=AB →. 法二:原式=AB→+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB→-(AD →+DC →)=AB →-AC →=CB →.向量减法运算的常用方法典型例题2向量的减法及其几何意义如图,已知向量a ,b ,c 不共线,求作向量a +b -c . 【解】 法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC→=c ,连接BC , 则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB→=a +b -c . 法三:如图③,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a -b ,可以先作-b ,然后作a +(-b )即可.(2)可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量. 典型例题3用已知向量表示其他向量如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB→=a ,AC →=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.【解】 因为四边形ACDE 是平行四边形, 所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD→=BC →+CD →=b -a +c .用已知向量表示其他向量的三个关注点(1)搞清楚图形中的相等向量、相反向量、共线向量以及构成三角形的三个向量之间的关系,确定已知向量与被表示向量的转化渠道.(2)注意综合应用向量加法、减法的几何意义以及向量加法的结合律、交换律来分析解决问题.(3)注意在封闭图形中利用向量加法的多边形法则. 例如,在四边形ABCD 中,AB →+BC →+CD →+DA →=0.6.2.3 向量的数乘运算1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.■名师点拨λ是实数,a 是向量,它们的积λa 仍然是向量.实数与向量可以相乘,但是不能相加减,如λ+a ,λ-a 均没有意义.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a . (2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb .3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . ■名师点拨若将定理中的条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa . 典型例题1向量的线性运算(1)计算:①4(a +b )-3(a -b )-8a ; ②(5a -4b +c )-2(3a -2b +c ); ③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ).(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ).【解】 (1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b=53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .向量线性运算的基本方法(1)类比方法:向量的数乘运算可类似于代数多项式的运算.例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是在这里的“同类项”“公因式”指向量,实数看作是向量的系数.(2)方程方法:向量也可以通过列方程来解,把所求向量当作未知数,利用代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算.典型例题2向量共线定理及其应用已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.【解】 (1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线. (2)因为k e 1+e 2与e 1+k e 2共线,所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1.向量共线定理的应用(1)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行. (2)若b =λa (a ≠0),且b 与a 所在的直线有公共点,则这两条直线重合.例如,若AB→=λAC →,则AB →与AC →共线,又AB →与AC →有公共点A ,从而A ,B ,C 三点共线,这是证明三点共线的重要方法. 典型例题3用已知向量表示其他向量如图,ABCD 是一个梯形,AB→∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB →=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________;(2)MN →=________.【解析】 因为AB →∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB → =-14e 1-e 2+12e 1=14e 1-e 2. 【答案】 (1)e 2+12e 1 (2)14e 1-e 2[变条件]在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →, MN→=MC →+CB →+BN →, 所以2MN→=(MD →+MC →)+DA →+CB →+(AN →+BN →).又因为M ,N 分别是DC ,AB 的中点, 所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →,所以MN →=12(-AD →-BC →)=-12e 2-12e 1.用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.6.2.4 向量的数量积1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向; ②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. ■名师点拨按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与AB →的夹角.作AD →=CA →,则∠BAD 才是向量CA →与AB →的夹角.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. ■名师点拨(1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.(2)两个向量的数量积记作a ·b ,千万不能写成a ×b 的形式. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b投影(project),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM→=a ,ON →=b ,过点M作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e .■名师点拨当θ=0时,OM 1→=|a |e ;当θ=π2时,OM 1→=0;当θ∈⎣⎢⎡⎭⎪⎫0,π2时,OM 1→与b 方向相同;当θ∈⎝ ⎛⎦⎥⎤π2,π时,OM 1→与b 方向相反;当θ=π时,OM 1→=-|a |e .4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则 (1)a ·e =e ·a =|a |cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a . (4)|a·b |≤|a ||b |. ■名师点拨对于性质(2),可以用来解决有关垂直的问题,即若要证明某两个非零向量垂直,只需判定它们的数量积为0即可;若两个非零向量的数量积为0,则它们互相垂直.5.向量数量积的运算律 (1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律). (3)(a +b )·c =a·c +b·c (分配律). ■名师点拨(1)向量的数量积不满足消去律;若a ,b ,c 均为非零向量,且a·c =b·c ,但得不到a =b .(2)(a·b )·c ≠a·(b·c ),因为a·b ,b·c 是数量积,是实数,不是向量,所以(a·b )·c与向量c 共线,a·(b·c )与向量a 共线,因此,(a·b )·c =a·(b·c )在一般情况下不成立.(3)(a ±b )2=a 2±2a ·b +b 2. 典型例题1平面向量的数量积运算(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD→·BC →;②AB →·DA →. 【解】 (1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2=|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192. (2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120° =4×3×⎝ ⎛⎭⎪⎫-12=-6.[变问法]若本例(2)的条件不变,求AC →·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC→·BD →=(AB →+AD →)·(AD →-AB →) =AD→2-AB →2=9-16=-7.向量数量积的求法(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法运算.典型例题2向量模的有关计算(1)已知平面向量a与b的夹角为60°,|a|=2,|b|=1,则|a+2b|=()A.3B.23C.4 D.12(2)向量a,b满足|a|=1,|a-b|=32,a与b的夹角为60°,则|b|=()A.13 B.12C.15 D.14【解析】(1)|a+2b|=(a+2b)2=a2+4a·b+4b2=|a|2+4|a||b|cos 60°+4|b|2=4+4×2×1×12+4=2 3.(2)由题意得|a-b|2=|a|2+|b|2-2|a||b|·cos 60°=34,即1+|b|2-|b|=34,解得|b|=12.【答案】(1)B(2)B求向量的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.典型例题3向量的夹角与垂直命题角度一:求两向量的夹角(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.【解析】 (1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2 =|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12, 所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3. 【答案】 (1)π3 (2)π3 命题角度二:证明两向量垂直已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a+t b ).【证明】 因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值. 此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b-a·b=0.所以b⊥(a+t b).命题角度三:利用夹角和垂直求参数(1)已知a⊥b,|a|=2,|b|=3且向量3a+2b与k a-b互相垂直,则k 的值为()A.-32B.32C.±32D.1(2)已知a,b,c为单位向量,且满足3a+λb+7c=0,a与b的夹角为π3,则实数λ=________.【解析】(1)因为3a+2b与k a-b互相垂直,所以(3a+2b)·(k a-b)=0,所以3k a2+(2k-3)a·b-2b2=0.因为a⊥b,所以a·b=0,又|a|=2,|b|=3,所以12k-18=0,k=3 2.(2)由3a+λb+7c=0,可得7c=-(3a+λb),即49c2=9a2+λ2b2+6λa·b,而a,b,c为单位向量,则a2=b2=c2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.【答案】(1)B(2)-8或5求向量a与b夹角的思路(1)求向量a与b夹角的关键是计算a·b及|a||b|,在此基础上结合数量积的定义或性质计算cos θ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.(2)在个别含有|a|,|b|与a·b的等量关系中,常利用消元思想计算cos θ的值.6.3.1 平面向量基本定理平面向量基本定理(1)e 1,e 2是同一平面内的两个不共线的向量,{e 1,e 2}的选取不唯一,即一个平面可以有多个基底.(2)基底{e 1,e 2}确定后,实数λ1,λ2是唯一确定的. 典型例题1平面向量基本定理的理解设e 1,e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎨⎧λ=1,1=0,无解,所以e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎨⎧1+2λ=0,2+λ=0,无解,所以e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底.③因为e 1-2e 2=-12(4e 2-2e 1), 所以e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎨⎧1-λ=0,1+λ=0,无解,所以e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③对基底的理解(1)两个向量能否作为一个基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以用这个基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则⎩⎨⎧x 1=x 2,y 1=y 2.[提醒] 一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样. 典型例题2用基底表示平面向量如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE与BF 交于点G ,若AB→=a ,AD →=b ,试用基底{a ,b }表示向量DE →,BF →.【解】 DE →=DA →+AB →+BE →=-AD→+AB →+12BC → =-AD→+AB →+12AD →=a -12b . BF→=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .1.[变问法]本例条件不变,试用基底{a ,b }表示AG →.解:由平面几何知识知BG =23BF , 故AG→=AB →+BG →=AB →+23BF → =a +23⎝ ⎛⎭⎪⎫b -12a =a +23b -13a =23a +23b .2.[变条件]若将本例中的向量“AB →,AD →”换为“CE →,CF →”,即若CE →=a ,CF →=b ,试用基底{a ,b }表示向量DE→,BF →. 解:DE→=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF→=BC →+CF →=2EC →+CF → =-2CE→+CF →=-2a +b .用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止.(2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解. 典型例题3平面向量基本定理的应用如图,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN .【解】 设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-3e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-3λe 2,BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2. 而BA →=BC →+CA →=2e 1+3e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨⎪⎧λ=45,μ=35.所以AP→=45AM →,BP →=35BN →, 所以AP ∶PM =4∶1,BP ∶PN =3∶2.1.[变问法]在本例条件下,若CM→=a ,CN →=b ,试用a ,b 表示CP →.解:由本例解析知BP ∶PN =3∶2,则NP→=25NB →,CP→=CN →+NP →=CN →+25NB →=b +25(CB →-CN →) =b +45a -25b =35b +45a .2.[变条件]若本例中的点N 为AC 的中点,其他条件不变,求AP ∶PM 与BP ∶PN .解:如图,设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-2e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-2λe 2, BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(2λ+μ)e 2. 而BA →=BC →+CA →=2e 1+2e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,2λ+μ=2,解得⎩⎪⎨⎪⎧λ=23,μ=23.所以AP→=23AM →,BP →=23BN →, 所以AP ∶PM =2,BP ∶PN =2.若直接利用基底表示向量比较困难,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示 6.3.4 平面向量数乘运算的坐标表示第1课时 平面向量的分解及加、减、数乘运算的坐标表示1.平面向量坐标的相关概念■名师点拨(1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e 1和e 2互相垂直.(2)由向量坐标的定义知,两向量相等的充要条件是它们的横、纵坐标对应相等,即a =b ⇔x 1=x 2且y 1=y 2,其中a =(x 1,y 1),b =(x 2,y 2).2.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则 ①a +b =(x 1+x 2,y 1+y 2); ②a -b =(x 1-x 2,y 1-y 2); ③λa =(λx 1,λy 1).(2)一个向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标. ■名师点拨(1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关. (2)已知向量AB →的起点A (x 1,y 1),终点B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). 典型例题1平面向量的坐标表示已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,(1)求向量OA→的坐标;(2)若B (3,-1),求BA→的坐标.【解】 (1)设点A (x ,y ),则x =|OA →|cos 60°=43cos 60°=23,y =|OA →|sin60°=43sin 60°=6,即A (23,6),所以OA→=(23,6). (2)BA→=(23,6)-(3,-1)=(3,7).求点和向量坐标的常用方法(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置的坐标. (2)求一个向量的坐标时,可以首先求出这个向量的始点坐标和终点坐标,再运用终点坐标减去始点坐标得到该向量的坐标. 典型例题2平面向量的坐标运算(1)已知向量a =(5,2),b =(-4,-3),若c 满足3a -2b +c =0,则A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)(2)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3 CA →,CN →=2 CB →,求点M ,N 的坐标.【解】 (1)选A.因为a =(5,2),b =(-4,-3),且c 满足3a -2b +c =0,所以c =2b -3a =2(-4,-3)-3(5,2)=(-8-15,-6-6)=(-23,-12).(2)法一:因为A (-2,4),B (3,-1),C (-3,-4), 所以CA→=(-2,4)-(-3,-4)=(1,8), CB→=(3,-1)-(-3,-4)=(6,3). 因为CM→=3 CA →,CN →=2 CB →, 所以CM→=3(1,8)=(3,24),CN →=2(6,3)=(12,6). 设M (x 1,y 1),N (x 2,y 2),所以CM →=(x 1+3,y 1+4)=(3,24), CN →=(x 2+3,y 2+4)=(12,6), 所以⎩⎨⎧x 1+3=3,y 1+4=24,⎩⎨⎧x 2+3=12,y 2+4=6.解得⎩⎨⎧x 1=0,y 1=20,⎩⎨⎧x 2=9,y 2=2.所以M (0,20),N (9,2).法二:设O 为坐标原点,则由CM→=3 CA →,CN →=2 CB →, 可得OM→-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →), 所以OM→=3 OA →-2 OC →,ON →=2 OB →-OC →. 所以OM→=3(-2,4)-2(-3,-4)=(0,20), ON→=2(3,-1)-(-3,-4)=(9,2). 所以M (0,20),N (9,2).平面向量坐标(线性)运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则(2)若已知有向线段两端点的坐标,则必须先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可类比数的运算进行. 典型例题3向量坐标运算的综合应用已知点O (0,0),A (1,2),B (4,5),及OP→=OA →+tAB →.(1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限? (2)四边形OABP 能为平行四边形吗?若能,求出t 的值;若不能,请说明理由.【解】 (1)OP→=OA →+tAB →=(1,2)+t (3,3)=(1+3t ,2+3t ).若点P 在x 轴上,则2+3t =0,所以t =-23. 若点P 在y 轴上,则1+3t =0,所以t =-13. 若点P 在第二象限,则⎩⎨⎧1+3t <0,2+3t >0,所以-23<t <-13.(2)OA→=(1,2),PB →=(3-3t ,3-3t ).若四边形OABP 为平行四边形, 则OA →=PB →,所以⎩⎨⎧3-3t =1,3-3t =2,该方程组无解.故四边形OABP 不能为平行四边形.[变问法]若保持本例条件不变,问t 为何值时,B 为线段AP 的中点? 解:由OP→=OA →+tAB →,得AP →=tAB →.所以当t =2时,AP→=2AB →,B 为线段AP 的中点.向量中含参数问题的求解策略(1)向量的坐标含有两个量:横坐标和纵坐标,如果纵坐标或横坐标是一个变量,则表示向量的点的坐标的位置会随之改变.(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.第2课时 两向量共线的充要条件及应用两向量共线的充要条件设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b (b ≠0)共线的充要条件是x 1y 2-x 2y 1=0.■名师点拨(1)两个向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例.(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有x 1y 2-x 2y 1=0⇔a ∥b . 典型例题1向量共线的判定(1)已知向量a =(1,-2),b =(3,4).若(3a -b )∥(a +k b ),则k =________.(2)已知A (-1,-1),B (1,3),C (2,5),判断AB →与AC →是否共线?如果共线,它们的方向相同还是相反?【解】 (1)3a -b =(0,-10),a +k b =(1+3k ,-2+4k ), 因为(3a -b )∥(a +k b ),所以0-(-10-30k )=0, 所以k =-13.故填-13.(2)因为AB→=(1-(-1),3-(-1))=(2,4),AC→=(2-(-1),5-(-1))=(3,6), 因为2×6-3×4=0,所以AB→∥AC →,所以AB →与AC →共线.又AB →=23AC →,所以AB →与AC →的方向相同.[变问法]若本例(1)条件不变,判断向量(3a -b )与(a +k b )是反向还是同向? 解:由向量(3a -b )与(a +k b )共线,得k =-13, 所以3a -b =(3,-6)-(3,4)=(0,-10), a +k b =a -13b =(1,-2)-13(3,4) =⎝ ⎛⎭⎪⎫0,-103=13(0,-10), 所以向量(3a -b )与(a +k b )同向.向量共线的判定方法典型例题2三点共线问题(1)已知OA→=(3,4),OB →=(7,12),OC →=(9,16),求证:点A ,B ,C 共线;(2)设向量OA →=(k ,12),OB →=(4,5),OC →=(10,k ),求当k 为何值时,A ,B ,C 三点共线.【解】 (1)证明:由题意知AB→=OB →-OA →=(4,8),AC→=OC →-OA →=(6,12),所以AC →=32AB →, 即AB→与AC →共线. 又因为AB→与AC →有公共点A ,所以点A ,B ,C 共线.(2)法一:因为A ,B ,C 三点共线,即AB →与AC →共线,所以存在实数λ(λ∈R ),使得AB→=λAC →.因为AB →=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k ,-7)=λ(10-k ,k -12), 即⎩⎨⎧4-k =λ(10-k ),-7=λ(k -12),解得k =-2或k =11. 所以当k =-2或k =11时,A ,B ,C 三点共线. 法二:由已知得AB→与AC →共线,因为AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k )(k -12)+7(10-k )=0, 所以k 2-9k -22=0,解得k =-2或k =11. 所以当k =-2或k =11时,A ,B ,C 三点共线.判断向量(或三点)共线的三个步骤典型例题3向量共线的应用如图所示,在△AOB 中,A (0,5),O (0,0),B (4,3),OC→=14OA →,OD →=12OB →,AD 与BC 相交于点M ,求点M 的坐标. 【解】 因为OC →=14OA →=14(0,5)=⎝ ⎛⎭⎪⎫0,54, 所以C ⎝ ⎛⎭⎪⎫0,54. 因为OD →=12OB →=12(4,3)=⎝ ⎛⎭⎪⎫2,32, 所以D ⎝ ⎛⎭⎪⎫2,32.设M (x ,y ),则AM→=(x ,y -5),AD →=⎝ ⎛⎭⎪⎫2-0,32-5=⎝ ⎛⎭⎪⎫2,-72.因为AM→∥AD →, 所以-72x -2(y -5)=0, 即7x +4y =20.①又CM →=⎝ ⎛⎭⎪⎫x ,y -54,CB →=⎝ ⎛⎭⎪⎫4,74,因为CM →∥CB →,所以74x -4⎝ ⎛⎭⎪⎫y -54=0,即7x -16y =-20.②联立①②解得x =127,y =2,故点M 的坐标为⎝ ⎛⎭⎪⎫127,2.应用向量共线的坐标表示求解几何问题的步骤1.平面向量数量积的坐标表示已知a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. 即两个向量的数量积等于它们对应坐标的乘积的和. ■名师点拨公式a ·b =|a ||b |cos 〈a ,b 〉与a ·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.2.两个公式、一个充要条件(1)向量的模长公式:若a =(x ,y ),则|a |(2)向量的夹角公式:设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是。
高中数学证明题技巧

高中数学证明题技巧(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高中数学证明题技巧高中数学推导和证明问题历来是学生数学学习中的难点,其实只要掌握其中的规律和策略,下面是本店铺为大家整理的关于高中数学证明题技巧,希望对您有所帮助。
高中数学中的三角函数的基本变换规律
高中数学中的三角函数的基本变换规律在高中数学的学习过程中,三角函数是一个重要的内容。
它们在解决几何问题、物理问题以及工程问题中发挥着重要的作用。
而要理解三角函数的性质和应用,我们首先需要掌握它们的基本变换规律。
一、平移变换规律平移是指将函数图像沿着横坐标或纵坐标方向进行平移。
对于三角函数而言,平移变换规律可以用以下形式表示:1. 正弦函数的平移变换规律:y = a*sin(b(x-c)) + d其中,a表示振幅的变化,b表示周期的变化,c表示横坐标方向的平移量,d表示纵坐标方向的平移量。
2. 余弦函数的平移变换规律:y = a*cos(b(x-c)) + d同样地,a、b、c、d分别表示振幅、周期、横坐标方向平移量和纵坐标方向平移量。
通过平移变换规律,我们可以将函数图像在平面上进行移动,从而观察到函数图像的变化。
二、伸缩变换规律伸缩是指将函数图像沿着横坐标或纵坐标方向进行拉伸或压缩。
对于三角函数而言,伸缩变换规律可以用以下形式表示:1. 正弦函数的伸缩变换规律:y = a*sin(b(x-c)) + d其中,a表示纵坐标方向的伸缩倍数,b表示横坐标方向的伸缩倍数,c表示横坐标方向的平移量,d表示纵坐标方向的平移量。
2. 余弦函数的伸缩变换规律:y = a*cos(b(x-c)) + d同样地,a、b、c、d分别表示纵坐标方向的伸缩倍数、横坐标方向的伸缩倍数、横坐标方向平移量和纵坐标方向平移量。
通过伸缩变换规律,我们可以观察到函数图像在平面上的形状发生变化,从而更好地理解函数的性质。
三、反射变换规律反射是指将函数图像沿着横坐标或纵坐标方向进行镜像。
对于三角函数而言,反射变换规律可以用以下形式表示:1. 正弦函数的反射变换规律:y = -a*sin(b(x-c)) + d其中,a表示振幅的变化,b表示周期的变化,c表示横坐标方向的平移量,d表示纵坐标方向的平移量。
2. 余弦函数的反射变换规律:y = -a*cos(b(x-c)) + d同样地,a、b、c、d分别表示振幅、周期、横坐标方向平移量和纵坐标方向平移量。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧概率论是数学中的一个重要分支,而“古典概型”是其中的基础概念之一。
在高中课程中,学生需要学习古典概型的概念、基本公式及其在实际问题中的应用。
本文将介绍一些古典概型的解题技巧,供学生参考。
一、古典概型的定义和公式古典概型是指试验所有可能的结果都是等可能发生的概率问题。
具体来说,古典概型要求试验的结果具有以下两个特点:1.试验的所有结果都是确定的;2.试验的每个结果发生的可能性相等。
对于一个具有n个等可能结果的试验,其中发生某一事件A的可能性为:P(A)=m/n其中m为事件A包含的有利结果数。
这个公式是古典概型的基础公式。
二、解题技巧1.画出样本空间对于一个古典概型问题,首要任务是确定样本空间。
样本空间是指试验中可能发生的所有结果的集合。
一个简单的技巧是画出样本空间的图形。
例如,在一次抛硬币的试验中,样本空间为{正面,反面},可以通过画出一张抛硬币的图像来形象地表示出来。
2.确定事件A一旦确定了样本空间,就需要确定事件A。
事件A是指样本空间中发生某种结果的集合。
它通常是通过一些自然语言描述的。
在确定事件A时,需要明确其含义,确定其范围和有价值的信息。
3.计算概率一旦确定了事件A和样本空间,就可以使用古典概型的基础公式计算概率。
需要包括以下步骤:2.计算事件A的有利结果数;例如,在一次掷骰子的试验中,样本空间为{1,2,3,4,5,6},事件A是小于等于4的结果,有利结果数为4,因此:4.注意问题描述的精确性在解题过程中,需要注意问题描述的精确性。
有些问题并不是古典概型问题,而是其他概率问题,如条件概率、贝叶斯公式等。
因此,在解题时需要仔细阅读问题,理解问题所涉及的概念和知识点。
5.利用公式简化计算根据古典概型的基础公式,可以利用数学计算和逻辑推理来简化计算,例如通过分式的化简和比例的运用等。
同时,需要注意计算中的精度和舍入误差。
6.灵活应用法则古典概型涉及到的概率基本概念和公式被广泛应用于各个领域和实际问题中。
高中数学答题技巧100个绝招知识点大全
高中数学答题技巧100个绝招知识点大全高中数学答题技巧100个绝招知识点高考前注意事项高考复习方法高中数学答题技巧100个绝招知识点1.三个“基本”:基本的概念要清楚,基本的规律要熟悉,基本的方法要熟练。
2.做完题目后一定要认真总结,做到举一反三,这样,以后遇到同一类的问题是就不会花费太多的时间和精力了。
3.一定要全面了解数学概念,不能以偏概全。
4.学习概念的最终目的是能运用概念来解决具体问题,因此,要主动运用所学的数学概念来分析,解决有关的数学问题。
5.要掌握各种题型的解题方法,在练习中有意识的地去总结,慢慢地培养适合自己的分析习惯。
6.要主动提高综合分析问题的能力,借助文字阅读去分析理解。
7.在学习中,要有意识地注意知识的迁移,培养解决问题的能力。
8.要将所学知识贯穿在一起形成系统,我们可以运用类比联系法。
9.将各章节中的内容互相联系,不同章节之间互相类比,真正将前后知识融会贯通,连为一体,这样能帮助我们系统深刻地理解知识体系和内容。
10.在数学学习中可以利用口诀将相近的概念或规律进行比较,搞清楚它们的相同点,区别和联系,从而加深理解和记忆。
弄清数学知识间的相互联系,透彻理解概念,知道其推导过程,使知识条理化,系统化。
11.学习数学,不仅要关注题型,更要关注典型题型。
12.对于数学学科中的某些原理,定理,公式,不仅要记住它的结论,而且要了解这个结论是如何得出的。
13.学习数学,要熟记并正确地叙述概念和规律性内容。
14.在学习中要注意理解,开拓思路,变抽象为具体,逐渐培养自己学习数学的兴趣。
15.适当地对概念进行分类,可以使所学的内容化繁为简,重点突出,脉络分明,便于进行分析,比较,综合,概念。
16.数学学习最忌讳的就是对所学的知识模糊不清,各知识点混淆在一起,为了避免这一状况,同学们要学会写“知识结构小结”。
17.学会对题型题目的拆分和组合,学会从多角度,多方面来分析和解决典型题目,从中概括出基本题型和基本规律方法。
高考数学各种题型解题方法和技巧分析
高考数学各种题型解题方法和技巧分析浅析高考数学解题的方法和技巧随着高考的临近,学习是一门注重技能的学科。
同样,我们考场也讲究技巧。
想要在高考考场上取得优异的成绩,不仅需要扎实的基础知识和较高的数学解题能力作为基础,还需要多了解一些解题方法和技巧。
让我们一起了解他们。
几何文章高考立体几何一般有4道试题(3道选择题和填空题,1道答题),总分27分左右,知识点不到20个。
选择填空题检查数学中的计算题,而答题重点是数学中的逻辑推理题。
当然,两者都要基于正确的空间想象。
随着xx课程改革的进一步实施,立体几何试题正朝着“多思考、少计算”的方向发展。
从历年试题的变化来看,以简单几何为载体的线与平面位置关系的论证,角度与距离的探索,是常考的热点。
知识整合1.与平行度和垂直度(线、线、面、面)相关的问题在求解立体几何问题的过程中反复遇到,是各种问题(包括论证、计算角度、距离等)中不可缺少的内容。
).因此,在学科几何的总复习中,首先要从解决平行度和垂直度的相关问题入手,并通过更基础的问题。
通过分析总结问题,掌握立体几何解题规律——充分利用线-线平行(垂直)、线-面平行(垂直)、面-面平行(垂直)相互转化的思想,提高逻辑思维能力和空间想象能力。
2.判断两平面平行度的方法:(1)根据定义——证明两个平面没有公共点;(2)判断定理——证明一个平面上的两条相交直线平行于另一个平面;(3)证明两个平面垂直于一条直线。
3.两个平行平面的主要性质:(1)从定义可知“两个平行平面没有公共点”。
(2)由定义导出:“两个平面平行,一个平面内的直线必须与另一个平面平行。
(3)两个平面平行的性质定理:“如果两个平行平面同时与第三个平面相交,那么它们的交线是平行的”。
(4)直线垂直于两个平行平面中的一个,也垂直于另一个平面。
(5)夹在两个平行平面之间的平行线段相等。
(6)通过平面外的点时,只有一个平面与已知平面平行。
上述性质(2)、(3)、(5)、(6)虽然在文中没有直接列为“性质定理”,但在解题过程中可以直接引用为性质定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解题的基本规律(三)
"无间道(二)"让大家初步体会到数学解题基本规律带来的一丝轻松和宽
慰,那真是享受"海阔天空"的必经之路。相信大家还是有疑问的,如:难道立
体几何问题的解题规律与代数问题的解题规律是一样的吗?肯定会有同学说:"
荒唐!这怎么可能呢?!"ok,本老师现在就告诉你,还真是一样的,不是想不
到,而是你可能没有意识到!本次讲解将完成本单元尚未完成的所有任务,让我
们掌握解题规律,从战略高度上来指导你将来的学习。
第一节 解题基本规律(终结版)
这一次,我举两个例题,一个是平面几何问题,另一个是立体几何问题。由
于解析几何问题是用代数方法解几何问题,其解题规律是连续化简是容易理解
的,在这里就我就略去不讲,请原谅。
例3、ABC中,已知2,2,BCBCAB求证:A=90………问题一
分析:这是一个平面几何问题,我现在就给大家讲清楚,此问题的思考方法
肯定是遵循解题基本规律,即:连续化简!
首先看一个"聪明"的做法:
想:要证明90,A先证明什么呢?
假如考虑延长BAD到,去证明CADA………………(A)
问你:怎样证明(A) ?太难说!如果说使,,ADABCDCB去证明推想
去证明CABCAD。
此时只能考虑用(SSS),再问:如何证明CDCB?这时你又傻眼啦!
哈哈哈哈…………。
假如你不服输:回答说可作BCD的中位线AM,去证明AMBM,哦!
My God!…………无间道,你怎么总是和我相伴呢?!
为什么?因为你违背解题的基本原则了!!!如果你这样都能成功,无异于
是在向全世界说:此结论如此简单,我可以不要条件也可以证明了!这才是:荒
唐!
你不能只是单纯的从结论出发,要联系条件呀!这正是"多导一"的雏形,
不说是多导一,至少应该是二导一才对呀!
吸取上述经验,请看下述思维方法,当然是海阔天空!
此题条件在两项以上,所以你应该考虑条件与结论是否有直接的(许多时候
是非因果关系的联系)联系。此乃我之名言,没有我你花钱也买不到哦!关于这
一点,我会在以后的讲解中娓娓道来。到时候,我会教你把所有数学题分成几类
而已!不管它是几何还是代数,也不管它是小学的还是大学的,统统地消灭掉!
290,90.BCAA已知,需要证明也就是最后肯定有
。联系这两
个条件你会想到什么?也就是由它们能推出什么结论?
对!就是必有:30C。试问:如果已证明30C,能得到90A吗?
这个问题太小儿科了吧!
到此为止,结论已转化为证明:30C。再来一次联系条件,即此结论
与另一个条件2BCAB相互怎样起作用呢?
想:边、角、关系?在哪里学过?对!就是三角函数中学的正弦定理:
sinsinsinabcABC
为了便于运用此定理,设1,2ABBC则。则有下述推理:
21,212sinsin(1803)sinsin1802sinsin3BCABBCABBCCCCAABCCC
这不是解方程吗?这时,问题已经大大简化了!下面简述证明过程:
22
2sinsin32sinsin(2)2sinsincos2cossin22sinsin(12sin)2sincosCCCCCCCCCCCCCCC
……………全部用sinC表示出来,你们肯定会做,我就偷一会
儿懒吧!最后化为:2sin(4sin1)0CC。
因为sinC≠0,(为什么?)
所以24sin10C,易得到1sin2C,结合……?肯定会得到30C。以后
的,嘿嘿,我不讲了。
另外,如果你还是一个初中生,或只会用纯粹的平面几何的知识来解决该问
题,怎么办?还是那句话:
你不能只是单纯的从结论出发,要联系条件呀!不说是"多导一",至少应该
是二导一才对呀!
但是,用纯几何的知识,则上述思路已不能用也!这时,我们是井底观天,
不能将条件与结论直接挂钩(这是所有数学难题的共同特点),目前就只有一条
路了,即充分应用条件,找条件之间的联系,从而得到一个与结论有联系的过渡
性结论。请看下面的思路,这对许多学习数学有困难的同学有指导性意义。
怎么用2BC呢?为此,作ABC中B的平分线BD,如下图所示,则
12C
,于是BD=CD。
DCB是等腰三角形
。此时我们已将问
题转变为下面问题:
ABC
中,已知12,2,DCBBCAB是等腰三角形,求证:A=90
……………………问题二
联想到等腰三角形的三线合一以及BC=2AB,我们选取BC的中点E,连接ED,
则有下述推理:
1
22EBCBCBCABABBC
1
是中点BE=CE=
2
BA=BE,再由"三线合一"知90DEB,结
合12,需求证"90A"。(问题三)
你是否已吃惊的发现上述阴影部分已经是一个最基础的平面几何问题?到
此为止,我再点拨一下你,我们是不是把一个较难的问题转化成了一个较简单的
基本问题?难道不是吗?
什么几何题困难?当然是那些所要求的结论与我们掌握的知识实在难以联
系的问题,这是"难、繁";怎样化解困难?就是将问题转化为其结论与我们掌
握的知识联系紧密的问题,这是"易、简"。
这就是化简嘛!只不过它不同于一般的代数化简,它是不断地将问题转化为
我们较为熟悉的问题,直到它成为一个基本问题为止!你看由"问题一"到"问
题二"直至"问题三",不正是这样吗?
上次我说过这样一句话:¨化繁寸步难行,化简海阔天空。¨下面,让我们
再一次享受这美好的意境:
有了第二种分析的经验,我们知道,将一个陌生问题转化为熟悉问题是我们
解几何题的一种化简思路,经过推敲,你会觉得下面的思路也十分有趣!
如图,2BCAB,
,BCABBACC进而可得:
。
为了运用2BC,在A内作CAMC,点M在BC上。这时可用:
CAMCAMCMCMA是等腰三角形
……(1);
再用:2122212CCBMAABCBC……(2);
用(1)、(2)可推出:MC=AB
此条件用充分了,可还有条件没用呢!用:
又122BCABABBC
12CMBC,结合BC=MC+MB就有:1
2
MBBC
MCMAMB
,12MABC。
我可以结束了吧!结论就自己下吧。
例4、三棱锥S—ABC中,,SAABCABBC面,DE垂直平分SC于E,D
在AC内。SA=AB,SB=BC,求二面角E-BD-C的度数。
分析:如果你这么想,求二面角E-BD-C的度数,可以过E点作EH⊥BD,垂足
为H……。好似正确无比,实则谬以千里!为什么?
我问你:垂足究竟在哪里?这种抛开条件提供的信息,糊糊涂涂乱跳的方法
怎么能够成功呢?实际上数学很美!可我们糊糊涂涂地能感受到她地美吗?如果
这样,岂不是变成了癞蛤蟆想吃天鹅肉吗?
吸取例3的经验,我们来推敲和品味该题:
∵DE垂直平分SC于E,味道如何呀?这道菜的味道是:
DE⊥SC,且E是SC的中点。只是这道菜可吃不饱哟,我说过,起码要二导一
嘛!(当然菜鸟题可能是一导一哦)好,再来一道菜,SB=BC,看两棵绿菜,好吃!
由"三线合一"知道:BE⊥SC。你瞧SC,前面也有它,真是到处调皮!前后
联系(看颜色),有:SC⊥平面DEB,当然进一步有:SC⊥BD。嘿,你看,这菜
越吃越有味!别忙!慢慢吃。
现在吃到了BD,请问BD何许人也?呀呀呀呀………他是二面角E—BD—C的
棱呀!你知道二面角的平面角的概念吗?对,少不了棱哦!结合平面角的概念来
想,BD⊥SC似乎不太重要,我们做梦都想这棱和什么线条垂直呀?至少现在这
结论好像还用不上耶。
龙门阵要摆,别忘了还有一道菜没吃呢。SA⊥面ABC,你一看到面ABC,看
图,原来BD在平面ABC内,∴SC⊥BD,结合BD⊥SC(哈哈,唐僧和八戒一块儿
吃!)得:
BD⊥面SAC,直线和平面垂直,该想什么?当然是直线垂直于平面内任何直
线。
∴BD⊥ED, BD⊥CD。我的天,原来品味的结果是EDC就是要求的平面角!
以后的计算就不用我讲了,提醒同学们仔细回味一下刚才的分析过程,我们
会发现:
不断地用两条或两条以上的信息综合起来,得到一条与结论相对较近的新信
息是至关重要的!这就是化简,这也正是多导一的影子,但还不够………。