陕西省2019届高三上学期四校联考试题11月文科理科数学2套试题含答案

合集下载

陕西省2019届高三第一次模拟联考理科数学试卷附答案解析

陕西省2019届高三第一次模拟联考理科数学试卷附答案解析

陕西省2019届高三第一次模拟联考理科数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|-1≤x<2},B={x|0≤x≤3},则A∩B=()A. B. C. D.【答案】B【解析】【分析】利用集合的交集的定义,直接运算,即可求解.【详解】由题意,集合A={x|-1≤x<2},B={x|0≤x≤3},∴A∩B={x|0≤x<2}.故选:B.【点睛】本题主要考查了集合的交集运算,其中解答中熟记集合的交集定义和准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.2.复数的模是()A. B. C. D.【答案】D【解析】【分析】先将复数化成形式,再求模。

【详解】所以模是故选D.【点睛】本题考查复数的计算,解题的关键是将复数化成形式,属于简单题。

3.若抛物线y2=2px的焦点坐标为(2,0),则准线方程为()A. B. C. D.【答案】A【解析】【分析】抛物线y2=2px的焦点坐标为(2,0),求得的值,即可求解其准线方程.【详解】由题意,抛物线y2=2px的焦点坐标为(2,0),∴,解得p=4,则准线方程为:x=-2.故选:A.【点睛】本题主要考查了抛物线的标准方程及其性质,其中解答中熟记抛物线的标准方程,及其简单的几何性质,合理计算是解答的关键,着重考查了运算与求解能力,属于基础题.4.一个空间几何体的三视图如图所示,则该几何体的表面积为()A. 64B.C. 80D.【答案】B【解析】【分析】根据三视图画出几何体的直观图,判断几何体的形状以及对应数据,代入公式计算即可.【详解】几何体的直观图是:是放倒的三棱柱,底面是等腰三角形,底面长为4,高为4的三角形,棱柱的高为4,所求表面积:.故选:B.【点睛】本题主要考查了几何体的三视图,以及几何体的体积计算,其中解答中判断几何体的形状与对应数据是解题的关键,着重考查了推理与计算能力,属于基础题。

5.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:sin15°=0.2588,sin7.5°=0.1305)A. 12B. 24C. 48D. 96【答案】B【解析】【分析】列出循环过程中S与n的数值,满足判断框的条件,即可结束循环,得到答案.【详解】模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.【点睛】本题主要考查了循环框图的应用,其中解答中根据给定的程序框图,逐次循环,注意判断框的条件的应用是解答的关键,着重考查了运算与求解能力,属于基础题。

陕西省四校联考2019届高三12月模拟数学试卷(文科)试题(解析版)

陕西省四校联考2019届高三12月模拟数学试卷(文科)试题(解析版)

2018-2019学年陕西省四校联考高三(上)12月模拟数学试卷(文科)一、选择题(本大题共12小题,共60.0分)1.已知,,则A.或 B.C. D.【答案】D【解析】【分析】首先化简集合A,B,然后求二者并集即可.【详解】,,则.故应选D.【点睛】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解;在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.已知复数是虚数单位,则z的实部为A. B. C. D.【答案】B【解析】【分析】利用复数的除法运算化简复数z,从而得到其实部.【详解】∵,∴z的实部为.故应选B.【点睛】数的运算,难点是乘除法法则,设,则,.3.函数的图象可能是A. B.C. D.【答案】C【解析】【分析】利用已知函数的对称性及特殊点进行判断即可.【详解】函数为奇函数,图象关于原点对称,排除B,当时,,排除A;当时,,排除D.故应选C.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.4.已知向量,,则与的夹角为A. B. C. D.【答案】A【解析】【分析】直接由向量的夹角公式代入求解即可得出答案.【详解】;;又;与的夹角为.故选:A.【点睛】本题主要考查了向量的夹角公式,属于基础题.5.在1,2,3,6这组数据中随机取出三个数,则数字2是这三个不同数字的平均数的概率是A. B. C. D.【答案】A【解析】在1, 2, 3, 6中随机取出三个数,所有的可能结果为(1,2,3), (1,2,6), (1,3,6),(2,3,6),共4种,其中数字2是这三个不同数字的平均数的结果有(1, 2, 3) ,共1种.有古典概型概率公式可得所求概率为.即数字2是这三个不同数字的平均数的概率是.选A.6.直线与圆的位置关系是A. 相交B. 相切C. 相离D. 不能确定【答案】B【解析】【分析】利用圆心到直线的距离与半径比较,判断二者位置关系.【详解】将圆的方程化为标准方程得,∴圆心坐标为,半径,∵圆心到直线的距离,则圆与直线的位置关系是相切.故应选B.【点睛】本题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,直线与圆相切时,圆心到直线的距离等于圆的半径,熟练掌握此性质是解本题的关键.7.在中,a,b,c分别是角A,B,C的对边,,则角A. B. C. D.【答案】B【解析】【分析】由,可得,结合余弦定理即可得到B的大小.【详解】由,可得,根据余弦定理得,∵,∴.故应选B.【点睛】对于余弦定理一定要熟记两种形式:(1);(2).另外,在解与三角形、三角函数有关的问题时,还要记住,,等特殊角的三角函数值,以便在解题中直接应用.8.执行如图所示的程序框图,输出的A. 25B. 9C. 17D. 20【答案】C【解析】【分析】直接利用循环结构,计算循环各个变量的值,当,不满足判断框的条件,退出循环输出结果即可.【详解】按照程序框图依次执行为,,;,,;,,,退出循环,输出.故应选C.【点睛】解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9.长方体,,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】A【解析】【分析】由题,找出,故为异面直线与所成角,然后解出答案即可.【详解】如图,连接,由,为异面直线与所成角,由已知可得,则..即异面直线与所成角的余弦值为.故选:A.【点睛】本题考查了异面直线的夹角问题,找平行线,找出夹角是解题的关键,属于较为基础题.10.设函数,则A.在单调递增,其图象关于直线对称B. 在单调递增,其图象关于直线对称C. 在单调递减,其图象关于直线对称D. 在单调递减,其图象关于直线对称【答案】D【解析】,由得,再由,所以.所以y=f(x)在在单调递减,其图象关于直线对称,故选D.11.设椭圆C:的左、右焦点分别为、,P是C上的点,,,则C的离心率为A. B. C. D.【答案】A【解析】设又∴的离心率为故选A.12.已知函数,且,则实数a的值是A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据表达式及,解得实数a的值【详解】由题意知,,又,则,又,解得.故选:B【点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.二、填空题(本大题共4小题,共20.0分)13.已知函数,则函数的图象在处的切线方程为______.【答案】【解析】【分析】求出导函数求出,从而利用点斜式得到切线的方程.【详解】∵,∴,∴,又,∴所求切线方程为,即.故答案为:【点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.14.若x,y满足约束条件,则的最小值为______.【答案】-11【解析】【分析】画出可行域如图,平移动直线根据纵截距的变化情况得到最小值.【详解】画出可行域如图所示,可知目标函数过点时取得最小值,.故答案为:-11【点睛】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15.已知,则的值是______.【答案】【解析】【分析】由已知得到,巧用“1”及弦化切得到所求的结果.【详解】由已知得,.故答案为:【点睛】1.利用sin2+cos2=1可以实现角的正弦、余弦的互化,利用=tan可以实现角的弦切互化.2.应用公式时注意方程思想的应用:对于sin+cos,sin cos,sin-cos这三个式子,利用(sin±cos)2=1±2sin cos,可以知一求二.3.注意公式逆用及变形应用:1=sin2+cos2,sin2=1-cos2,cos2=1-sin2.16.直三棱柱的底面是直角三角形,侧棱长等于底面三角形的斜边长,若其外接球的体积为,则该三棱柱体积的最大值为______.【答案】【解析】【分析】由题意可知三棱柱上下底面三角形斜边的中点连线的中点是该三棱柱的外接球的球心,利用勾股定理建立变量间的关系,结合均值不等式得到最值.【详解】设三棱柱底面直角三角形的直角边为a,b,则棱柱的高,设外接球的半径为r,则,解得,∵上下底面三角形斜边的中点连线的中点是该三棱柱的外接球的球心,∴.∴,∴,∴.当且仅当时“=”成立.∴三棱柱的体积.故答案为:【点睛】空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.三、解答题(本大题共7小题,共82.0分)17.已知正项等比数列满足,.求数列的通项公式;记,求数列的前n项和.【答案】(1).(2).【解析】【分析】(1)由题意得,解出基本量即可得到数列的通项公式;(2)由(1)知,,利用裂项相消法求和.【详解】(1)设数列的公比为q ,由已知,由题意得,所以.解得,.因此数列的通项公式为.(2)由(1)知,,∴.【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18.经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:其中:,,请画出上表数据的散点图;请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;的值精确到若规定,一个人的收缩压为标准值的倍,则为血压正常人群;收缩压为标准值的倍,则为轻度高血压人群;收缩压为标准值的倍,则为中度高血压人群;收缩压为标准值的倍及以上,则为高度高血压人群一位收缩压为180mmHg的70岁的老人,属于哪类人群?【答案】(1)见解析;(2).(3)见解析.【解析】【分析】(1)根据表中数据即可得散点图;(2)由题意求出,,,,代入公式求值,从而得到回归直线方程;(3)将x=70带入计算,根据题干已知规定即可判断70岁的老人,属于哪类人群.【详解】(1)(2),.∴..∴回归直线方程为.(3)根据回归直线方程的预测,年龄为70岁的老人标准收缩压约为,∵.∴收缩压为的70岁老人为中度高血压人群.【点睛】本题主要考查线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.19.如图,正三棱柱的所有棱长都为2,D 为的中点.求证:平面;求三棱锥的体积.【答案】(1)见解析;(2)【解析】【分析】取BC中点E ,连接,证明平面,得,由直线与平面垂直的判定定理,可得所证结论.连接,则三棱锥的体积可以通过求三棱锥的体积得到.【详解】证明:由正三棱柱的所有棱长都相等可知:如图,取BC的中点E ,连接,则≌由平面平面,平面平面,且得,平面,平面,平面,平面平面,平面,平面解:连接,由平面所以点到平面的距离,等于故三棱锥的体积为.【点睛】本题主要考查了线面垂直的判定定理、几何体体积的求法,解题过程中要注意各种位置关系的相互转化以及数量关系的求解.20.已知抛物线C ;过点.求抛物线C的方程;过点的直线与抛物线C交于M,N 两个不同的点均与点A 不重合,设直线AM,AN的斜率分别为,,求证:为定值.【答案】(1).(2)见解析.【解析】【分析】(1)利用待定系数法,可求抛物线的标准方程;(2)设过点P(3,﹣1)的直线MN 的方程为,代入y2=x利用韦达定理,结合斜率公式,化简,即可求k1•k2的值.【详解】(1)由题意得,所以抛物线方程为.(2)设,,直线MN 的方程为,代入抛物线方程得.所以,,.所以,所以,是定值.【点睛】求定值问题常见的方法①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21.设.讨论的单调区间;当时,在上的最小值为,求在上的最大值.【答案】(Ⅰ)当时,的单调递减区间为;当时,的单调递减区间为和,单调递增区间为;(Ⅱ).【解析】试题分析:第一问对函数求导,结合参数的取值范围,确定出导数在相应的区间上的符号,从而确定出单调区间,第二问结合给定的参数的取值范围,确定出函数在那个点处取得最小值,求得参数的值,再求得函数的最大值.试题解析:(Ⅰ),其(1)若,即时,恒成立,在上单调递减;(2)若,即时,令,得两根,当或时,单调递减;当时,,单调递增.综上所述:当时,的单调递减区间为; 当时,的单调递减区间为和,单调递增区间为;(Ⅱ)随的变化情况如下表:当时,有,所以在上的最大值为又,即.所以在上的最小值为.得,从而在上的最大值为.考点:导数的应用.22.已知直线l 的参数方程为为参数,以坐标原点为极点,x 轴的正半轴为极轴建建立极坐标系,曲线C 的极坐标方程为.求曲线C 的直角坐标方程与直线l 的极坐标方程; Ⅱ若直线与曲线C 交于点不同于原点,与直线l 交于点B ,求的值.【答案】(1):;:;(2).【解析】 【分析】(1) 先根据极坐标与直角坐标的对应关系得出极坐标方程C ,将直线参数方程化为普通方程;(2) 将分别代入直线l 和曲线C 的极坐标方程求出A ,B 到原点的距离,作差得出|AB|.【详解】(1)∵,∴,∴曲线C 的直角坐标方程为.∵直线l 的参数方程为(t为参数),∴.∴直线l 的极坐标方程为.(2)将代入曲线C 的极坐标方程得,∴A 点的极坐标为.将代入直线l 的极坐标方程得,解得.∴B 点的极坐标为,∴.【点睛】本题考查了极坐标方程与直角坐标方程的转化,参数的几何意义,属于基础题.23.已知函数.当时,求不等式的解集;,,求a的取值范围.【答案】(1);(2).【解析】【分析】(1) 当a=1时,可得出f(x)=|x﹣1|+|x+2|,得到不等式|x﹣1|+|x+2|≤3,讨论x值,去绝对值号,即可解出该不等式;(2) 可得到f(x)=|x﹣a|+|x+2|≥|a+2|,从而由题意即可得出|a+2|≤3,解出a的取值范围即可.【详解】(1)当时,,①当时,,令,即,解得,②当时,,显然成立,所以,③当时,,令,即,解得,综上所述,不等式的解集为.(2)因为,因为,有成立,所以只需,解得,所以a 的取值范围为.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。

陕西省四校2019届高三12月模拟数学试卷(文)试卷附答案解析

陕西省四校2019届高三12月模拟数学试卷(文)试卷附答案解析

2������
A. 3
������
B. 3
5������
C. 6
������
D. 6
【答案】B
【解析】
【分析】 由(������ + ������ + ������)(������ + ������−������) = 3������������,可得������2 + ������2−������2 = ������������,结合余弦定理即可得到 B 的大小. 【详解】由(������ + ������ + ������)(������ + ������−������) = 3������������,可得������2 + ������2−������2 = ������������,
【点睛】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解;在进行集合的运算时要尽
可能地借助 Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用 Venn 图表示;集合元素连续时用
数轴表示,用数轴表示时要注意端点值的取舍.
2.已知复数������ = 1 ‒32������(������是虚数单位,则 z 的实部为
=
������(������)在(0,���2���)单调递增,其图象关于直线������
=
������
4对称
B.
������
=
������(������)在(0,���2���)单调递增,其图象关于直线������
=
������
2对称
C.
������
=
������(������)在(0,���2���)单调递减,其图象关于直线������

陕西省2019年四校联考高三12月模拟数学试卷(理科)

陕西省2019年四校联考高三12月模拟数学试卷(理科)

2018-2019学年陕西省四校联考高三(上)12月模拟数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知,,则A. 或B.C. D.【答案】D【解析】解:,,.故选:D.分别求出集合A,B,由此能求出.本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.已知复数是虚数单位,则z的实部为A. B. C. D.【答案】B【解析】解:,的实部为.故选:B.直接利用复数代数形式的乘除运算化简得答案.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.函数的图象可能是A. B.C. D.【答案】C【解析】解:函数为奇函数,图象关于原点对称,排除B,当时,,排除A;当时,,排除D.故选:C.判断函数的奇偶性和对称性,利用特殊值和极限思想进行排除.本题主要考查函数图象的识别和判断,判断函数的奇偶性以及利用排除法是解决本题的关键.4.已知向量,,则与的夹角为A. B. C. D.【答案】A【解析】解:;;又;与的夹角为.故选:A.根据向量的坐标即可求出,从而可求出,根据向量夹角的范围即可求出的夹角.考查向量数量积的坐标运算,根据向量坐标求向量长度的方法,向量夹角的余弦公式,以及向量夹角的范围.5.直线与圆的位置关系是A. 相交B. 相切C. 相离D. 不能确定【答案】B【解析】解:将圆的方程化为标准方程得,圆心坐标为,半径,圆心到直线的距离,则圆与直线的位置关系是相切.故选:B.求出圆的圆心与半径,利用点到直线的距离与半径的关系求解即可.本题考查直线与圆的位置关系的应用,考查转化思想以及计算能力.6.在中,a,b,c分别是角A,B,C的对边,,则角A. B. C. D.【答案】B【解析】解:,整理可得:,根据余弦定理得,,.故选:B.由已知等式整理可得:,根据余弦定理得的值,结合范围,可求B 的值.本题主要考查了余弦定理在解三角形中的应用,考查了转化思想,属于基础题.7.执行下面的程序框图,输出的。

陕西省四校联考2018-2019学年高三(上)12月模拟数学试卷(理科)(解析版)

陕西省四校联考2018-2019学年高三(上)12月模拟数学试卷(理科)(解析版)

2018-2019学年陕西省四校联考高三(上)12月模拟数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知,,则A.或 B.C. D.【答案】D【解析】【分析】首先化简集合A,B,然后求二者并集即可.【详解】,,则.故应选D.【点睛】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解;在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.已知复数是虚数单位,则z的实部为A. B. C. D.【答案】B【解析】【分析】利用复数的除法运算化简复数z,从而得到其实部.【详解】∵,∴z的实部为.故应选B.【点睛】数的运算,难点是乘除法法则,设,则,.3.函数的图象可能是A. B. C. D.【答案】C【解析】【分析】利用已知函数的对称性及特殊点进行判断即可.【详解】函数为奇函数,图象关于原点对称,排除B,当时,,排除A;当时,,排除D.故应选C.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.4.已知向量,,则与的夹角为A. B. C. D.【答案】A【解析】【分析】直接由向量的夹角公式代入求解即可得出答案.【详解】;;又;与的夹角为.故选:A.【点睛】本题主要考查了向量的夹角公式,属于基础题.5.直线与圆的位置关系是A. 相交B. 相切C. 相离D. 不能确定【答案】B【解析】【分析】利用圆心到直线的距离与半径比较,判断二者位置关系.【详解】将圆的方程化为标准方程得,∴圆心坐标为,半径,∵圆心到直线的距离,则圆与直线的位置关系是相切.故应选B.【点睛】本题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,直线与圆相切时,圆心到直线的距离等于圆的半径,熟练掌握此性质是解本题的关键.6.在中,a,b,c分别是角A,B,C的对边,,则角A. B. C. D.【答案】B【解析】【分析】由,可得,结合余弦定理即可得到B的大小.【详解】由,可得,根据余弦定理得,∵,∴.故应选B.【点睛】对于余弦定理一定要熟记两种形式:(1);(2).另外,在解与三角形、三角函数有关的问题时,还要记住,,等特殊角的三角函数值,以便在解题中直接应用.7.执行如图所示的程序框图,输出的A. 25B. 9C. 17D. 20【答案】C【解析】【分析】直接利用循环结构,计算循环各个变量的值,当,不满足判断框的条件,退出循环输出结果即可.【详解】按照程序框图依次执行为,,;,,;,,,退出循环,输出.故应选C.【点睛】解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8.将一颗质地均匀的骰子一种各个面分别标有1,2,3,4,5,6个点的正方体玩具先后抛掷2次,则出现向上的点数之和为大于8的偶数的概率为A. B. C. D.【答案】B【解析】【分析】先求出基本事件总数,再利用列举法求出点数之和为大于8的偶数有4种,由此能求出出现向上的点数之和为大于8的偶数的概率【详解】将先后两次的点数记为有序数实数对,则共有个基本事件,其中点数之和为大于8的偶数有,,,共4种,则满足条件的概率为.【点睛】本题考查了列举法求概率,求此类题目的基本思路是:先求出试验的基本事件的总数和事件A包含的基本事件的个数,再代入古典概型的概率公式求概率.9.长方体,,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】A【解析】【分析】由题,找出,故为异面直线与所成角,然后解出答案即可.【详解】如图,连接,由,为异面直线与所成角,由已知可得,则..即异面直线与所成角的余弦值为.故选:A.【点睛】本题考查了异面直线的夹角问题,找平行线,找出夹角是解题的关键,属于较为基础题.10.设函数,则,则A. 在单调递增,其图象关于直线对称B. 在单调递增,其图象关于直线对称C. 在单调递减,其图象关于直线对称D. 在单调递减,其图象关于直线对称【答案】D【解析】,由得,再由,所以.所以y=f(x)在在单调递减,其图象关于直线对称,故选D.11.已知函数,且,则实数a的值是A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据表达式及,解得实数a的值【详解】由题意知,,又,则,又,解得.故选:B【点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.12.已知椭圆和双曲线有共同的焦点,,P是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则A. 4B.C. 2D. 3【答案】A【解析】【分析】设椭圆的长半轴长为a1,双曲线的实半轴长a2,焦距2c.结合椭圆与双曲线的定义,得, ,在△F1PF2中,根据余弦定理可得到与c的关系式,变形可得的值.【详解】如图所示:设椭圆的长半轴长为,双曲线的实半轴长为,则根据椭圆及双曲线的定义:,,∴,,设,,则在中由余弦定理得,,∴化简得,该式可变成.故选A.【点睛】本题考查了椭圆及双曲线的定义和离心率,考查了余弦定理的应用;涉及圆锥曲线的离心率时,常通过结合圆锥曲线a,b,c的关系式和其他已知条件,转化只含有a,c的关系式求解.二、填空题(本大题共4小题,共20.0分)13.已知函数,则函数的图象在处的切线方程为______.【答案】【解析】【分析】求出导函数求出,从而利用点斜式得到切线的方程.【详解】∵,∴,∴,又,∴所求切线方程为,即.故答案为:【点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.14.若x,y满足约束条件,则的最小值为______.【答案】-11【解析】【分析】画出可行域如图,平移动直线根据纵截距的变化情况得到最小值.【详解】画出可行域如图所示,可知目标函数过点时取得最小值,.故答案为:-11【点睛】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15.已知,则的值是______.【答案】【解析】【分析】由已知得到,巧用“1”及弦化切得到所求的结果.【详解】由已知得,.故答案为:【点睛】1.利用sin2+cos2=1可以实现角的正弦、余弦的互化,利用=tan可以实现角的弦切互化.2.应用公式时注意方程思想的应用:对于sin+cos,sin cos,sin-cos这三个式子,利用(sin±cos)2=1±2sin cos,可以知一求二.3.注意公式逆用及变形应用:1=sin2+cos2,sin2=1-cos2,cos2=1-sin2.16.直三棱柱的底面是直角三角形,侧棱长等于底面三角形的斜边长,若其外接球的体积为,则该三棱柱体积的最大值为______.【答案】【解析】【分析】由题意可知三棱柱上下底面三角形斜边的中点连线的中点是该三棱柱的外接球的球心,利用勾股定理建立变量间的关系,结合均值不等式得到最值.【详解】设三棱柱底面直角三角形的直角边为a,b,则棱柱的高,设外接球的半径为r,则,解得,∵上下底面三角形斜边的中点连线的中点是该三棱柱的外接球的球心,∴.∴,∴,∴.当且仅当时“=”成立.∴三棱柱的体积.故答案为:【点睛】空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.三、解答题(本大题共7小题,共82.0分)17.已知正项等比数列满足,.求数列的通项公式;记,求数列的前n项和.【答案】(1).(2).【解析】【分析】(1)由题意得,解出基本量即可得到数列的通项公式;(2)由(1)知,,利用裂项相消法求和.【详解】(1)设数列的公比为q,由已知,由题意得,所以.解得,.因此数列的通项公式为.(2)由(1)知,,∴.【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18.经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:其中:,,请画出上表数据的散点图;请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;的值精确到若规定,一个人的收缩压为标准值的倍,则为血压正常人群;收缩压为标准值的倍,则为轻度高血压人群;收缩压为标准值的倍,则为中度高血压人群;收缩压为标准值的倍及以上,则为高度高血压人群一位收缩压为180mmHg的70岁的老人,属于哪类人群?【答案】(1)见解析;(2).(3)见解析.【解析】【分析】(1)根据表中数据即可得散点图;(2)由题意求出,,,,代入公式求值,从而得到回归直线方程;(3)将x=70带入计算,根据题干已知规定即可判断70岁的老人,属于哪类人群.【详解】(1)(2),.∴..∴回归直线方程为.(3)根据回归直线方程的预测,年龄为70岁的老人标准收缩压约为,∵.∴收缩压为的70岁老人为中度高血压人群.【点睛】本题主要考查线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.19.已知抛物线C;过点.求抛物线C的方程;过点的直线与抛物线C交于M,N两个不同的点均与点A不重合,设直线AM,AN的斜率分别为,,求证:为定值.【答案】(1).(2)见解析.【解析】【分析】(1)利用待定系数法,可求抛物线的标准方程;(2)设过点P(3,﹣1)的直线MN的方程为,代入y2=x利用韦达定理,结合斜率公式,化简,即可求k1•k2的值.【详解】(1)由题意得,所以抛物线方程为.(2)设,,直线MN的方程为,代入抛物线方程得.所以,,.所以,所以,是定值.【点睛】求定值问题常见的方法①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.20.如图,三棱柱的所有棱长都是2,平面ABC,D,E分别是AC,的中点.求证:平面;求二面角的余弦值.【答案】(1)见解析;(2).【解析】【分析】(1)根据线面垂直和面面垂直判定和性质,证得,通过三角形全等,证得,再根据线面垂直的判定定理,证得平面;(2) 建立空间直角坐标系,向量法求二面角的余弦值.【详解】(1)∵,D是AC的中点,∴,∵平面ABC,∴平面平面ABC,∴平面,∴.又∵在正方形中,D,E分别是AC,的中点,易证得∴△A1AD≌△ACE∴∠A1DA=∠AEC,∵∠AEC+∠CAE=90°,∴∠A1DA+∠CAE=90° ,即.又,∴平面.(3)取中点F,以DF,DA,DB为x,y,z轴建立空间直角坐标系,,,,,,,,,设平面DBE的一个法向量为,则,令,则,设平面的一个法向量为,则,令,则,设二面角的平面角为,观察可知为钝角,,∴,故二面角的余弦值为.【点睛】本题考查了线面垂直的证明,考查了线面垂直与面面垂直的判定与性质,考查了二面角的余弦值的求法;利用向量解几何题的一般方法是:建立空间直角坐标系,用坐标表示各点,把线段转化为用向量表示,然后通过向量的运算或证明去解决问题.21.已知函数,.Ⅰ当时,求函数的最小值;Ⅱ若对任意,恒有成立,求实数m的取值范围.【答案】(1)1 ;(2) .【解析】【分析】(1)求出函数的导数,根据导数判断函数的单调区间,进而求出函数的最小值;(2)要证,只需证明e x≥ln(x+m)+1成立即可,分情况讨论,采用分离参数法,构造新函数,利用导数求得符合条件的m的取值范围,进而问题得解.【详解】(1)当时,,则.令,得.当时,;当时,.∴函数在区间上单调递减,在区间上单调递增.∴当时,函数取得最小值,其值为.(2)由(1)得:恒成立.①当恒成立时,即恒成立时,条件必然满足.设,则,在区间上,,是减函数,在区间上,,是增函数,即最小值为.于是当时,条件满足.②当时,,,即,条件不满足.综上所述,m的取值范围为.【点睛】本题考查了函数的单调性、最值问题,考查了导数的应用以及分类讨论思想,考查了用导数求解不等式成立时,参数的取值范围;用导数解决满足函数不等式条件的参数范围问题,一般采用参数分离法,构造新函数,然后对构造函数求导解答.22.已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为.求曲线C的直角坐标方程与直线l的极坐标方程;Ⅱ若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.【答案】(1):;:;(2).【解析】【分析】(1) 先根据极坐标与直角坐标的对应关系得出极坐标方程C,将直线参数方程化为普通方程;(2) 将分别代入直线l和曲线C的极坐标方程求出A,B到原点的距离,作差得出|AB|.【详解】(1)∵,∴,∴曲线C的直角坐标方程为.∵直线l的参数方程为(t为参数),∴.∴直线l的极坐标方程为.(2)将代入曲线C的极坐标方程得,∴A点的极坐标为.将代入直线l的极坐标方程得,解得.∴B点的极坐标为,∴.【点睛】本题考查了极坐标方程与直角坐标方程的转化,参数的几何意义,属于基础题.23.已知函数.当时,求不等式的解集;,,求a的取值范围.【答案】(1);(2).【解析】【分析】(1) 当a=1时,可得出f(x)=|x﹣1|+|x+2|,得到不等式|x﹣1|+|x+2|≤3,讨论x值,去绝对值号,即可解出该不等式;(2) 可得到f(x)=|x﹣a|+|x+2|≥|a+2|,从而由题意即可得出|a+2|≤3,解出a的取值范围即可.【详解】(1)当时,,①当时,,令,即,解得,②当时,,显然成立,所以,③当时,,令,即,解得,综上所述,不等式的解集为.(2)因为,因为,有成立,所以只需,解得,所以a的取值范围为.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。

陕西省2019届高三第一次模拟联考文科数学试卷 含解析

陕西省2019届高三第一次模拟联考文科数学试卷 含解析

陕西省2019届高三第一次模拟联考文科数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|-1≤x<2},B={x|0≤x≤3},则A∩B=()A. B. C. D.【答案】B【解析】【分析】利用集合的交集的定义,直接运算,即可求解.【详解】由题意,集合A={x|-1≤x<2},B={x|0≤x≤3},∴A∩B={x|0≤x<2}.故选:B.【点睛】本题主要考查了集合的交集运算,其中解答中熟记集合的交集定义和准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.2.复数i(1+2i)的模是()A. B. C. D.【答案】D【解析】【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式,即可求解.【详解】由题意,根据复数的运算可得,所以复数的模为,故选D.【点睛】本题主要考查了复数代数形式的乘除运算,考查复数模的求法,其中解答中熟记复数的运算,以及复数模的计算公式是解答的关键,着重考查了运算与求解能力,属于基础题。

3.若抛物线y2=2px的焦点坐标为(2,0),则准线方程为()A. B. C. D.【答案】A【解析】【分析】抛物线y2=2px的焦点坐标为(2,0),求得的值,即可求解其准线方程.【详解】由题意,抛物线y2=2px的焦点坐标为(2,0),∴,解得p=4,则准线方程为:x=-2.故选:A.【点睛】本题主要考查了抛物线的标准方程及其性质,其中解答中熟记抛物线的标准方程,及其简单的几何性质,合理计算是解答的关键,着重考查了运算与求解能力,属于基础题.4.一个空间几何体的三视图如图所示,则该几何体的表面积为()A. 64B.C. 80D.【答案】B【解析】【分析】根据三视图画出几何体的直观图,判断几何体的形状以及对应数据,代入公式计算即可.【详解】几何体的直观图是:是放倒的三棱柱,底面是等腰三角形,底面长为4,高为4的三角形,棱柱的高为4,所求表面积:.故选:B.【点睛】本题主要考查了几何体的三视图,以及几何体的体积计算,其中解答中判断几何体的形状与对应数据是解题的关键,着重考查了推理与计算能力,属于基础题。

陕西省四校2019届高三12月模拟联考数学(理)试卷附答案解析

2018-2019学年陕西省四校联考高三(上)12月模拟数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知,,则A. 或B.C. D.【答案】D【解析】【分析】首先化简集合A,B,然后求二者并集即可.【详解】,,则.故应选D.【点睛】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解;在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.已知复数是虚数单位,则z的实部为A. B. C. D.【答案】B【解析】【分析】利用复数的除法运算化简复数z,从而得到其实部.【详解】∵,∴z的实部为.故应选B.【点睛】数的运算,难点是乘除法法则,设,则,.3.函数的图象可能是A. B.C. D.【答案】C【解析】【分析】利用已知函数的对称性及特殊点进行判断即可.【详解】函数为奇函数,图象关于原点对称,排除B,当时,,排除A;当时,,排除D.故应选C.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.4.已知向量,,则与的夹角为A. B. C. D.【答案】A【解析】【分析】直接由向量的夹角公式代入求解即可得出答案.【详解】;;又;与的夹角为.故选:A.【点睛】本题主要考查了向量的夹角公式,属于基础题.5.直线与圆的位置关系是A. 相交B. 相切C. 相离D. 不能确定【答案】B【解析】【分析】利用圆心到直线的距离与半径比较,判断二者位置关系.【详解】将圆的方程化为标准方程得,∴圆心坐标为,半径,∵圆心到直线的距离,则圆与直线的位置关系是相切.故应选B.【点睛】本题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,直线与圆相切时,圆心到直线的距离等于圆的半径,熟练掌握此性质是解本题的关键.6.在中,a,b,c分别是角A,B,C的对边,,则角A. B. C. D.【答案】B【解析】【分析】由,可得,结合余弦定理即可得到B的大小.【详解】由,可得,根据余弦定理得,∵,∴.故应选B.【点睛】对于余弦定理一定要熟记两种形式:(1);(2).另外,在解与三角形、三角函数有关的问题时,还要记住,,等特殊角的三角函数值,以便在解题中直接应用.7.执行如图所示的程序框图,输出的A. 25B. 9C. 17D. 20【答案】C【解析】【分析】直接利用循环结构,计算循环各个变量的值,当,不满足判断框的条件,退出循环输出结果即可.【详解】按照程序框图依次执行为,,;,,;,,,退出循环,输出.故应选C.【点睛】解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8.将一颗质地均匀的骰子一种各个面分别标有1,2,3,4,5,6个点的正方体玩具先后抛掷2次,则出现向上的点数之和为大于8的偶数的概率为A. B. C. D.【答案】B【解析】【分析】先求出基本事件总数,再利用列举法求出点数之和为大于8的偶数有4种,由此能求出出现向上的点数之和为大于8的偶数的概率【详解】将先后两次的点数记为有序数实数对,则共有个基本事件,其中点数之和为大于8的偶数有,,,共4种,则满足条件的概率为.【点睛】本题考查了列举法求概率,求此类题目的基本思路是:先求出试验的基本事件的总数和事件A包含的基本事件的个数,再代入古典概型的概率公式求概率.9.长方体,,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】A【解析】【分析】由题,找出,故(或其补角)为异面直线与所成角,然后解出答案即可.【详解】如图,连接,由,(或其补角)为异面直线与所成角,由已知可得,则..即异面直线与所成角的余弦值为.故选:A.【点睛】本题考查了异面直线的夹角问题,找平行线,找出夹角是解题的关键,属于较为基础题.10.设函数,则A.在单调递增,其图象关于直线对称B. 在单调递增,其图象关于直线对称C. 在单调递减,其图象关于直线对称D.在单调递减,其图象关于直线对称【答案】D【解析】,由得,再由,所以.所以y=f(x)在在单调递减,其图象关于直线对称,故选D.11.已知函数,且,则实数a的值是A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据表达式及,解得实数a的值【详解】由题意知,,又,则,又,解得.故选:B【点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.12.已知椭圆和双曲线有共同的焦点,,P是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则A. 4B.C. 2D. 3【答案】A【解析】【分析】设椭圆的长半轴长为a1,双曲线的实半轴长a2,焦距2c.结合椭圆与双曲线的定义,得, ,在△F1PF2中,根据余弦定理可得到与c的关系式,变形可得的值.【详解】如图所示:设椭圆的长半轴长为,双曲线的实半轴长为,则根据椭圆及双曲线的定义:,,∴,,设,,则在中由余弦定理得,,∴化简得,该式可变成.故选A.【点睛】本题考查了椭圆及双曲线的定义和离心率,考查了余弦定理的应用;涉及圆锥曲线的离心率时,常通过结合圆锥曲线a,b,c的关系式和其他已知条件,转化只含有a,c的关系式求解.二、填空题(本大题共4小题,共20.0分)13.已知函数,则函数的图象在处的切线方程为______.【答案】【解析】【分析】求出导函数求出,从而利用点斜式得到切线的方程.【详解】∵,∴,∴,又,∴所求切线方程为,即.故答案为:【点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.14.若x,y满足约束条件,则的最小值为______.【答案】-11【解析】【分析】画出可行域如图,平移动直线根据纵截距的变化情况得到最小值.【详解】画出可行域如图所示,可知目标函数过点时取得最小值,.故答案为:-11【点睛】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15.已知,则的值是______.【答案】【解析】【分析】由已知得到,巧用“1”及弦化切得到所求的结果.【详解】由已知得,.故答案为:【点睛】1.利用sin2+cos2=1可以实现角的正弦、余弦的互化,利用=tan可以实现角的弦切2.应用公式时注意方程思想的应用:对于sin+cos,sin cos,sin-cos这三个式子,利用(sin±cos)2=1±2sin cos,可以知一求二.3.注意公式逆用及变形应用:1=sin2+cos2,sin2=1-cos2,cos2=1-sin2.16.直三棱柱的底面是直角三角形,侧棱长等于底面三角形的斜边长,若其外接球的体积为,则该三棱柱体积的最大值为______.【答案】【解析】【分析】由题意可知三棱柱上下底面三角形斜边的中点连线的中点是该三棱柱的外接球的球心,利用勾股定理建立变量间的关系,结合均值不等式得到最值.【详解】设三棱柱底面直角三角形的直角边为a,b,则棱柱的高,设外接球的半径为r,则,解得,∵上下底面三角形斜边的中点连线的中点是该三棱柱的外接球的球心,∴.∴,∴,∴.当且仅当时“=”成立.∴三棱柱的体积.故答案为:【点睛】空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.三、解答题(本大题共7小题,共82.0分)17.已知正项等比数列满足,.求数列的通项公式;记,求数列的前n项和.【答案】(1).(2).【分析】(1)由题意得,解出基本量即可得到数列的通项公式;(2)由(1)知,,利用裂项相消法求和.【详解】(1)设数列的公比为q ,由已知,由题意得,所以.解得,.因此数列的通项公式为.(2)由(1)知,,∴.【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18.经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:其中:,,请画出上表数据的散点图;请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;的值精确到若规定,一个人的收缩压为标准值的倍,则为血压正常人群;收缩压为标准值的倍,则为轻度高血压人群;收缩压为标准值的倍,则为中度高血压人群;收缩压为标准值的倍及以上,则为高度高血压人群一位收缩压为180mmHg的70岁的老人,属于哪类人群?【答案】(1)见解析;(2).(3)见解析.【解析】【分析】(1)根据表中数据即可得散点图;(2)由题意求出,,,,代入公式求值,从而得到回归直线方程;(3)将x=70带入计算,根据题干已知规定即可判断70岁的老人,属于哪类人群.【详解】(1)(2),.∴..∴回归直线方程为.(3)根据回归直线方程的预测,年龄为70岁的老人标准收缩压约为,∵.∴收缩压为的70岁老人为中度高血压人群.【点睛】本题主要考查线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.19.已知抛物线C;过点.求抛物线C的方程;过点的直线与抛物线C交于M,N两个不同的点均与点A不重合,设直线AM,AN的斜率分别为,,求证:为定值.【答案】(1).(2)见解析.【解析】【分析】(1)利用待定系数法,可求抛物线的标准方程;(2)设过点P(3,﹣1)的直线MN的方程为,代入y2=x利用韦达定理,结合斜率公式,化简,即可求k1•k2的值.【详解】(1)由题意得,所以抛物线方程为.(2)设,,直线MN的方程为,代入抛物线方程得.所以,,.所以,所以,是定值.【点睛】求定值问题常见的方法①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.20.如图,三棱柱的所有棱长都是2,平面ABC,D,E分别是AC,的中点.求证:平面;求二面角的余弦值.【答案】(1)见解析;(2).【解析】【分析】(1)根据线面垂直和面面垂直判定和性质,证得,通过三角形全等,证得,再根据线面垂直的判定定理,证得平面;(2) 建立空间直角坐标系,向量法求二面角的余弦值.【详解】(1)∵,D是AC的中点,∴,∵平面ABC,∴平面平面ABC,∴平面,∴.又∵在正方形中,D,E分别是AC,的中点,易证得∴△A1AD≌△ACE∴∠A1DA=∠AEC,∵∠AEC+∠CAE=90°,∴∠A1DA+∠CAE=90° ,即.又,∴平面.(3)取中点F,以DF,DA,DB为x,y,z轴建立空间直角坐标系,,,,,,,,,设平面DBE的一个法向量为,则,令,则,设平面的一个法向量为,则,令,则,设二面角的平面角为,观察可知为钝角,,∴,故二面角的余弦值为.【点睛】本题考查了线面垂直的证明,考查了线面垂直与面面垂直的判定与性质,考查了二面角的余弦值的求法;利用向量解几何题的一般方法是:建立空间直角坐标系,用坐标表示各点,把线段转化为用向量表示,然后通过向量的运算或证明去解决问题.21.已知函数,.Ⅰ当时,求函数的最小值;Ⅱ若对任意,恒有成立,求实数m的取值范围.【答案】(1)1 ;(2) .【解析】【分析】(1)求出函数的导数,根据导数判断函数的单调区间,进而求出函数的最小值;(2)要证,只需证明e x≥ln(x+m)+1成立即可,分情况讨论,采用分离参数法,构造新函数,利用导数求得符合条件的m的取值范围,进而问题得解.【详解】(1)当时,,则.令,得.当时,;当时,.∴函数在区间上单调递减,在区间上单调递增.∴当时,函数取得最小值,其值为.(2)由(1)得:恒成立.①当恒成立时,即恒成立时,条件必然满足.设,则,在区间上,,是减函数,在区间上,,是增函数,即最小值为.于是当时,条件满足.②当时,,,即,条件不满足.综上所述,m的取值范围为.【点睛】本题考查了函数的单调性、最值问题,考查了导数的应用以及分类讨论思想,考查了用导数求解不等式成立时,参数的取值范围;用导数解决满足函数不等式条件的参数范围问题,一般采用参数分离法,构造新函数,然后对构造函数求导解答.22.已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为.求曲线C的直角坐标方程与直线l的极坐标方程;Ⅱ若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.【答案】(1):;:;(2).【解析】【分析】(1) 先根据极坐标与直角坐标的对应关系得出极坐标方程C,将直线参数方程化为普通方程;(2) 将分别代入直线l和曲线C的极坐标方程求出A,B到原点的距离,作差得出|AB|.【详解】(1)∵,∴,∴曲线C的直角坐标方程为.∵直线l的参数方程为(t为参数),∴.∴直线l的极坐标方程为.(2)将代入曲线C的极坐标方程得,∴A点的极坐标为.将代入直线l的极坐标方程得,解得.∴B点的极坐标为,∴.【点睛】本题考查了极坐标方程与直角坐标方程的转化,参数的几何意义,属于基础题.23.已知函数.当时,求不等式的解集;,,求a的取值范围.【答案】(1);(2).【解析】【分析】(1) 当a=1时,可得出f(x)=|x﹣1|+|x+2|,得到不等式|x﹣1|+|x+2|≤3,讨论x值,去绝对值号,即可解出该不等式;(2) 可得到f(x)=|x﹣a|+|x+2|≥|a+2|,从而由题意即可得出|a+2|≤3,解出a的取值范围即可.【详解】(1)当时,,①当时,,令,即,解得,②当时,,显然成立,所以,③当时,,令,即,解得,综上所述,不等式的解集为.(2)因为,因为,有成立,所以只需,解得,所以a的取值范围为.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档