[全程学习方略]高中数学人教A版必修5课时提能训练:人教A版必修5综合质量评估(含答案解析)

合集下载

高中数学(人教A版)必修5能力强化提升及单元测试2-4第2课时

高中数学(人教A版)必修5能力强化提升及单元测试2-4第2课时

第2课时 等比数列的性质及应用双基达标(限时20分钟) 1.在等比数列{a n }中,a 4=4,则a 2·a 6等于( ).A .4B .8C .16D .32解析 由等比数列的性质得a 2·a 6=a 42=42=16. 答案 C2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ).A .-12B .-2C .2D.12解析 根据a n =a m ·q n -m ,得a 5=a 2·q 3. ∴q 3=14×12=18.∴q =12.答案 D3.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad 等于 ( ). A .3 B .2 C .1 D .-2解析 ∵y =(x -1)2+2,∴b =1,c =2.又∵a ,b ,c ,d 成等比数列,∴ad =bc =2. 答案 B4.在等比数列{a n }中,a 1+a 2=30,a 3+a 4=120,则a 5+a 6=________. 解析 根据等比数列的性质:a 1+a 2,a 3+a 4,a 5+a 6也成等比数列.∴a 5+a 6=(a 3+a 4)·a 3+a 4a 1+a 2=120×12030=480.答案 4805.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=________. 解析 由等比数列的性质得a 3a 11=a 72, ∴a 72=4a 7.∵a 7≠0,∴a 7=4. ∴b 7=a 7=4.再由等差数列的性质知b 5+b 9=2b 7=8. 答案 86.已知等比数列{a n }中,a 2a 6a 10=1,求a 3·a 9的值. 解 法一 由等比数列的性质,有a 2a 10=a 3a 9=a 62, 由a 2·a 6·a 10=1,得a 63=1, ∴a 6=1,∴a 3a 9=a 62=1. 法二 由等比数列通项公式,得a 2a 6a 10=(a 1q )(a 1q 5)(a 1q 9)=a 13·q 15=(a 1q 5)3=1, ∴a 1q 5=1,∴a 3a 9=(a 1q 2)(a 1q 8)=(a 1q 5)2=1.综合提高(限时25分钟)7.已知各项为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( ).A .5 2B .7C .6D .4 2解析 ∵a 1a 2a 3=a 23=5,∴a 2=35. ∵a 7a 8a 9=a 83=10,∴a 8=310. ∴a 52=a 2a 8=350=5013,又∵数列{a n }各项为正数,∴a 5=5016.∴a 4a 5a 6=a 53=5012=5 2.答案 A8.在等比数列{a n }中,a 3=12,a 2+a 4=30,则a 10的值为 ( ).A .3×10-5 B .3×29 C .128D .3×2-5或3×29解析 ∵a 2=a 3q ,a 4=a 3q ,∴a 2=12q ,a 4=12q .∴12q+12q =30.即2q 2-5q +2=0, ∴q =12或q =2.当q =12时,a 2=24,∴a 10=a 2·q 8=24×⎝⎛⎭⎫128=3×2-5; 当q =2时,a 2=6, ∴a 10=a 2q 8=6×28=3×29. 答案 D9.在等比数列{a n }中,若a n >0,a 1·a 100=100,则lg a 1+lg a 2+lg a 3+…+lg a 100=________. 解析 由等比数列性质知:a 1·a 100=a 2·a 99=…=a 50·a 51=100.∴lg a 1+lg a 2+lg a 3+…+lg a 100=lg(a 1·a 2·a 3·…·a 100)=lg(a 1·a 100)50=lg 10050=lg 10100=100. 答案 10010.三个数a ,b ,c 成等比数列,公比q =3,又a ,b +8,c 成等差数列,则这三个数依次为________.解析 ∵a ,b ,c 成等比数列,公比是q =3, ∴b =3a ,c =a ·32=9a .又由等差中项公式有:2(b +8)=a +c , ∴2(3a +8)=a +9a .∴a =4. ∴b =12,c =36. 答案 4,12,3611.在正项等比数列{a n }中,a 1a 5-2a 3a 5+a 3a 7=36,a 2a 4+2a 2a 6+a 4a 6=100,求数列{a n }的通项公式.解 ∵a 1a 5=a 32,a 3a 5=a 42,a 3a 7=a 52, ∴由条件,得a 32-2a 42+a 52=36, 同理得a 32+2a 3a 5+a 52=100,∴⎩⎪⎨⎪⎧ (a 3-a 5)2=36,(a 3+a 5)2=100.即⎩⎪⎨⎪⎧a 3-a 5=±6,a 3+a 5=10.解得⎩⎪⎨⎪⎧ a 3=2,a 5=8或⎩⎪⎨⎪⎧a 3=8,a 5=2.分别解得⎩⎪⎨⎪⎧ a 1=12,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.∴a n =a 1q n -1=2n-2或a n =a 1q n -1=26-n .12.(创新拓展)互不相等的3个数之积为-8,这3个数适当排列后可以组成等比数列,也可组成等差数列,求这3个数组成的等比数列.解 设这3个数分别为aq ,a ,aq ,则a 3=-8,即a =-2.(1)若-2为-2q 和-2q 的等差中项,则2q +2q =4,∴q 2-2q +1=0,解得q =1,与已知矛盾,舍去; (2)若-2q 为-2q 和-2的等差中项,则1q+1=2q ,∴2q 2-q -1=0,解得q =-12或q =1(与已知矛盾,舍去),∴这3个数组成的等比数列为4,-2,1; (3)若-2q 为-2q 与-2的等差中项,则q +1=2q,∴q 2+q -2=0,解得q =-2或q =1(与已知矛盾,舍去), ∴这3个数组成的等比数列为1,-2,4.故这3个数组成的等比数列为4,-2,1或1,-2,4.。

新整理高二数学人教A必修5 模块综合检测 Word版含解析

新整理高二数学人教A必修5 模块综合检测 Word版含解析

模块综合检测(时间:120分钟 满分:150分)知识点分布表一、选择题(本大题共12小题,每小题5分,共60分)1.(2015江西吉安联考,1)若a ,b ,c ∈R ,a>b ,则下列不等式成立的是( )A.1<1B.a2>b2 C.a 2>b 2 D.a|c|>b|c|答案:B解析:A.∵当1>-2时,1<-12不成立,∴1a <1b 不成立.B.∵c 2+1≥1,a>b ,∴ac 2+1>bc 2+1,故B 正确. C.∵当1>-2时,1>4不成立,∴a 2>b 2不成立.D.当c=0时,0=a|c|>b|c|=0,不成立.故选B .2.在△ABC 中,A=60°,AB=2,且△ABC 的面积为√32,则BC 的长为( )A.√3B.3C.√7D.7答案:A解析:S=12×AB ·AC sin 60°=12×2×√32AC=√32,所以AC=1.所以BC 2=AB 2+AC 2-2AB ·AC cos 60°=3. 所以BC=√3,故选A .3.若5,x ,y ,z ,21成等差数列,则x+y+z 的值为( ) A.26 B.29 C.39 D.52答案:C解析:因为5,x ,y ,z ,21构成等差数列,所以y 是x ,z 的等差中项,也是5,21的等差中项,所以x+z=2y ,5+21=2y ,所以y=13,x+z=26,所以x+y+z=39.4.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知b cos C+c cos B=2b ,则a等于( ) A.1 B.√2C.2D.√3答案:C解析:利用正弦定理,将b cos C+c cos B=2b 化为sin B cos C+sin C cos B=2sin B ,即sin(B+C )=2sin B.∵sin(B+C )=sin A ,∴sin A=2sin B.利用正弦定理可得a=2b ,故a b=2.5.已知数列{a n }满足3a n+1+a n =0,a 2=-43,则{a n }的前10项和等于( ) A.-6(1-3-10) B.19(1-3-10) C.3(1-3-10) D.3(1+3-10)答案:C解析:由3a n+1+a n =0,得a n+1a n=-13.所以{a n }是以q=-13为公比的等比数列. 所以a 1=a 2·1q =-43×(-3)=4.所以S 10=4[1-(-13)10]1+13=3(1-3-10),故选C .6.(2015河北邯郸三校联考,6)设变量x ,y 满足约束条件{x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z=3x-y 的最大值为( )A.-4B.0C.43D.4答案:D解析:画出不等式组表示的平面区域,将目标函数变形为y=3x-z,作出目标函数对应的直线,当直线过(2,2)时,直线在y轴上的截距最小,z最大,最大值为6-2=4.故选D.7.已知等差数列{a n}满足,a1>0,5a8=8a13,则前n项和S n取最大值时,n的值为()A.20B.21C.22D.23答案:B解析:由5a8=8a13得5(a1+7d)=8(a1+12d)⇒d=-361a1,由a n=a1+(n-1)d=a1+(n-1)(-361a1)≥0⇒n≤643=2113,所以数列{a n}前21项都是正数,以后各项都是负数,故S n取最大值时,n的值为21,选B.8.(2015福建宁德五校联考,8)已知正实数a,b满足2+1=1,x=a+b,则实数x的取值范围是()A.[6,+∞)B.(2√2,+∞)C.[4√2,+∞)D.[3+2√2,+∞)答案:D解析:∵2a +1b=1,∴x=a+b=(a+b)(2a +1b)=2+1+2ba+ab≥3+2√2(当且仅当2ba=ab,即b=√2+1,a=2+√2时,等号成立).故选D.9.(2015河南南阳高二期中,7)在△ABC中,若tan A tan B>1,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定答案:A解析:因为A和B都为三角形中的内角,由tan A tan B>1,得到1-tan A tan B<0,且得到tan A>0,tan B>0,即A ,B 为锐角, 所以tan(A+B )=tanA+tanB1-tanAtanB<0,则A+B ∈(π2,π),即C 为锐角, 所以△ABC 是锐角三角形.10.(2015山东潍坊四县联考,10)已知数列{a n }中,a 1=2,na n+1=(n+1)a n +2,n ∈N *,则a 11=( ) A.36 B.38 C.40 D.42答案:D解析:因为na n+1=(n+1)a n +2,n ∈N *,所以在等式的两边同时除以n (n+1),得a n+1n+1−a n n =2(1n -1n+1).所以a 1111=a 11+2[(110-111)+(19-110)+…+ (1-12)]=4211.所以a 11=42.故选D .11.(2015陕西高考,10)设f (x )=ln x ,0<a<b ,若p=f (√ab ),q=f (a+b2),r=12(f (a )+f (b )),则下列关系式中正确的是( ) A.q=r<p B.q=r>p C.p=r<q D.p=r>q答案:C解析:∵f (x )=ln x ,∴p=f (√ab )=ln √ab =12(ln a+ln b )=r.又∵0<a<b ,∴a+b2>√ab .又∵y=ln x 为递增函数,∴lna+b2>ln √ab ,即q>r ,综上p=r<q.12.(2015河南南阳高二期中,6)对于数列{a n },定义数列{a n+1-a n }为数列a n 的“差数列”,若a 1=1,{a n }的“差数列”的通项公式为3n ,则数列{a n }的通项公式a n =( ) A.3n -1B.3n+1+2C.3n -12D.3n+1-12答案:C解析:∵a 1=1,a n+1-a n =3n ,∴a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+a 1=3n-1+3n-2+…+31+1=1×(1-3n )1-3=3n -12.故选C . 二、填空题(本大题共4小题,每小题5分,共20分)13.(2015广东湛江高二期末,14)若x>4,函数y=x+1x -4,当x= 时,函数有最小值为 . 答案:5 6解析:∵x>4,∴x-4>0.∴y=x+1x -4=x-4+1x -4+4≥2√(x -4)·1x -4+4=6.当且仅当x-4=1x -4即x=5时等号成立.14.(2015山东潍坊四县联考,12)等差数列{a n },{b n }的前n 项和分别为S n ,T n ,且S nn=3n -1,则a 8b 8= .答案:43解析:2a 82b 8=a 1+a 15b 1+b 15=152(a 1+a 15)152(b 1+b 15)=S 15T 15=3×15-12×15+3=43.15.设数列{a n }满足:a 1=1,a 2=4,a 3=9,a n =a n-1+a n-2-a n-3(n=4,5,…),则a 2 015= . 答案:8 057解析:由a n =a n-1+a n-2-a n-3,得a n+1=a n +a n-1-a n-2,两式作和得:a n+1=2a n-1-a n-3, 即a n+1+a n-3=2a n-1(n=4,5,…).∴数列{a n }的奇数项和偶数项均构成等差数列. ∵a 1=1,a 3=9,∴奇数项构成的等差数列的公差为8.则a 2 015=a 1+8(1 008-1)=1+8×1 007=8 057.故答案为8 057.16.(2015福建宁德五校联考,16)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,有下列结论:①若A>B ,则sin A>sin B ;②若c 2<a 2+b 2,则△ABC 为锐角三角形;③若a ,b ,c 成等差数列,则sin A+sin C=2sin(A+C ); ④若a ,b ,c 成等比数列,则cos B 的最小值为12.其中结论正确的是 .(填上全部正确结论的序号) 答案:①③④解析:对于①,若A>B ,则a>b ,由正弦定理得sin A>sin B ,命题①正确;对于②,若c 2<a 2+b 2,则cos C=a 2+b 2-c 22ab >0,说明C 为锐角,但A ,B 不一定为锐角,△ABC 不一定是锐角三角形,命题②错误;对于③,若a ,b ,c 成等差数列,则a+c=2b ,结合正弦定理得:sin A+sin C=2sin B ,即sin A+sin C=2sin(A+C ),命题③正确;对于④,若a ,b ,c 成等比数列,则b 2=ac , 则cos B=a 2+c 2-b22ac=a 2+c 2-ac 2ac≥ac 2ac =12,命题④正确.三、解答题(17~20小题及22小题每小题12分,21小题10分,共70分)17.(2015福建厦门高二期末,17)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a=4,cos B=45. (1)若b=3,求sin A 的值;(2)若△ABC 的面积为12,求b 的值. 解:(1)∵cos B=45,0<B<π,∴sin B=√1-cos 2B =35.由正弦定理可得:asinA =bsinB . 又a=4,b=3,∴sin A=asinBb=4×353=45.(2)由面积公式,得S △ABC =12ac sin B ,∴12ac×35=12,可解得c=10.由余弦定理,b 2=a 2+c 2-2ac cos B=52,解得b=2√13.18.(2015河北邯郸三校联考,18)数列{a n }中,a 1=2,a n+1=a n +cn (c 是常数,n=1,2,3,…),且a 1,a 2,a 3成公比不为1的等比数列.(1)求c的值;(2)求{a n}的通项公式.解:(1)a1=2,a2=2+c,a3=2+3c,因为a1,a2,a3成等比数列,所以(2+c)2=2(2+3c),解得c=0或c=2.当c=0时,a1=a2=a3,不符合题意,舍去,故c=2.(2)当n≥2时,由于a2-a1=c,a3-a2=2c,…,a n-a n-1=(n-1)c,c.所以a n-a1=[1+2+…+(n-1)]c=n(n-1)2又a1=2,c=2,故a n=2+n(n-1)=n2-n+2(n=2,3,…).当n=1时,上式也成立.所以a n=n2-n+2(n=1,2,…).19.(2015河南南阳高二期中,19)△ABC的内角A,B,C的对边分别是a,b,c,已知A,B,C成等差数列,△ABC的面积为√3.(1)求证:a,2,c成等比数列;(2)求△ABC的周长L的最小值,并说明此时△ABC的形状.(1)证明:∵A,B,C成等差数列,∴B=60°.又△ABC的面积为√3,∴1ac sin 60°=√3,即ac=4.2∵ac=22,∴a,2,c成等比数列.(2)解:在△ABC中,根据余弦定理,得b2=a2+c2-2ac cos 60°=a2+c2-ac≥2ac-ac=ac=4,∴b≥2,当且仅当a=c时,等号成立.∴△ABC的周长L=a+b+c≥2√ac+b=4+b,当且仅当a=c时,等号成立.∴L≥4+2=6,当且仅当a=c时,等号成立.∴△ABC周长的最小值为6.∵a=c,B=60°,∴此时△ABC为等边三角形.20.(2015福建宁德五校联考,22)已知f(x)=x2-abx+2a2.(1)当b=3时,①若不等式f(x)≤0的解集为[1,2],求实数a的值;②求不等式f(x)<0的解集.(2)若f(2)>0在a∈[1,2]上恒成立,求实数b的取值范围.解:(1)当b=3时,f(x)=x2-abx+2a2=x2-3ax+2a2,①∵不等式f(x)≤0的解集为[1,2],∴1,2是方程x 2-3ax+2a 2=0的两根. ∴{1+2=3a ,1×2=2a 2,解得a=1.②∵x 2-3ax+2a 2<0, ∴(x-a )(x-2a )<0.∴当a>0时,此不等式的解集为(a ,2a ),当a=0时,此不等式的解集为空集, 当a<0时,此不等式的解集为(2a ,a ).(2)由题意f (2)=4-2ab+2a 2>0在a ∈[1,2]上恒成立, 即b<a+2a 在a ∈[1,2]上恒成立. 又a+2a ≥2√a ·2a =2√2,当且仅当a=2a ,即a=√2时上式等号成立.∴b<2√2,实数b 的取值范围是(-∞,2√2).21.(2015河南郑州高二期末,20)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,某市的一条道路在一个限速为40 km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事后现场勘查测得甲车刹车距离刚好12 m,乙车刹车距离略超过10 m .又知甲、乙两种车型的刹车距离S (m)与车速x (km/h)之间分别有如下关系:S 甲=0.1x+0.01x 2,S 乙=0.05x+0.005x 2. 问:甲、乙两车有无超速现象?解:由题意知,对于甲车,有0.1x+0.01x 2=12,即x 2+10x-1 200=0,解得x=30或x=-40(x=-40不符合实际意义,舍去). 这表明甲车的车速为30 km/h . 甲车车速不会超过限速40 km/h . 对于乙车,有0.05x+0.005x 2>10, 即x 2+10x-2 000>0,解得x>40或x<-50(x<-50不符合实际意义,舍去). 这表明乙车的车速超过40 km/h,超过规定限速.22.(2015河南南阳高二期中,22)已知数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n+12a n+1(n ∈N *). (1)求数列{a n }的通项a n ; (2)求数列{n 2a n }的前n 项和T n ;(3)若存在n ∈N *,使得a n ≥(n+1)λ成立,求实数λ的取值范围. 解:(1)因为a 1+2a 2+3a 3+…+na n =n+12a n+1(n ∈N *), 所以a 1+2a 2+3a 3+…+(n-1)a n-1=n 2a n (n ≥2). 两式相减得na n =n+12a n+1-n2a n , 所以(n+1)a n+1na n=3(n ≥2). 因此数列{na n }从第二项起,是以2为首项,以3为公比的等比数列, 所以na n=2·3n-2(n ≥2).故a n ={1,n =1,2n·3n -2,n ≥2. (2)由(1)可知当n ≥2时,n 2a n =2n ·3n-2, 当n ≥2时,T n =1+4·30+6·31+…+2n ·3n-2,∴3T n =3+4·31+…+2(n-1)·3n-2+2n ·3n-1.两式相减得T n =12+(n -12)·3n-1(n ≥2). 又∵T 1=a 1=1也满足上式,∴T n =12+(n -12)·3n-1.(3)a n ≥(n+1)λ等价于λ≤a n, 由(1)可知当n ≥2时,an=2·3n -2, 设f (n )=n (n+1)2·3n -2(n ≥2,n ∈N *),则f (n+1)-f (n )=-(n+1)(n -1)3n -1<0,∴1f (n+1)≥1f (n ).又1f (2)=13及a 12=12,∴所求实数λ的取值范围为λ≤13.。

【精品习题】高中数学人教A版必修五 模块综合测评1 Word版含答案

【精品习题】高中数学人教A版必修五 模块综合测评1 Word版含答案

模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a<1,b>1,那么下列命题中正确的是( )A.1a>1bB.ba>1C.a2<b2D.ab<a+b 【解析】利用特值法,令a=-2,b=2.则1a<1b,A错;ba<0,B错;a2=b2,C错.【答案】 D2.一个等差数列的第5项a5=10,且a1+a2+a3=3,则有( )A.a1=-2,d=3 B.a1=2,d=-3C.a1=-3,d=2 D.a1=3,d=-2【解析】∵a1+a2+a3=3且2a2=a1+a3,∴a2=1.又∵a5=a2+3d=1+3d=10,d=3.∴a1=a2-d=1-3=-2.【答案】 A3.已知△ABC的三个内角之比为A∶B∶C=3∶2∶1,那么对应的三边之比a∶b∶c等于( )A.3∶2∶1 B.3∶2∶1C.3∶2∶1 D.2∶3∶1【解析】∵A∶B∶C=3∶2∶1,A+B+C=180°,∴A=90°,B=60°,C=30°.∴a∶b∶c=sin 90°∶sin 60°∶sin 30°=1∶32∶12=2∶3∶1.【答案】 D4.在坐标平面上,不等式组⎩⎨⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为( )A. 2B.32C.322D .2【解析】 由题意得,图中阴影部分面积即为所求.B ,C 两点横坐标分别为-1,12.∴S △ABC =12×2×⎪⎪⎪⎪⎪⎪12--1=32.【答案】 B5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC的面积为32,则a 的值为( ) A .1 B .2 C.32D. 3 【解析】 根据S =12bc sin A =32,可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a = 3.【答案】 D6.(2016·龙岩高二检测)等差数列的第二,三,六项顺次成等比数列,且该等差数列不是常数数列,则这个等比数列的公比为( )A .3B .4C .5D .6【解析】 设等差数列的首项为a 1,公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,a 6=a 1+5d ,又∵a 2·a 6=a 23,∴(a 1+2d )2=(a 1+d )(a 1+5d ),∴d =-2a 1,∴q =a 3a 2=3. 【答案】 A7.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52D .-3【解析】 x 2+ax +1≥0在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立⇔ax ≥-x 2-1⇔a ≥⎣⎢⎡⎦⎥⎤-⎝⎛⎭⎪⎫x +1x max,∵x +1x ≥52,∴-⎝ ⎛⎭⎪⎫x +1x ≤-52,∴a ≥-52.【答案】 C8.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0【解析】 ∵a 3,a 4,a 8成等比数列,∴a 24=a 3a 8,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),展开整理,得-3a 1d =5d 2,即a 1d =-53d 2.∵d ≠0,∴a 1d <0.∵S n =na 1+n n -12d ,∴S 4=4a 1+6d ,dS 4=4a 1d +6d 2=-23d 2<0.【答案】 B9.在数列{a n }中,a 1=2,a n +1-2a n =0(n ∈N *),b n 是a n 和a n +1的等差中项,设S n 为数列{b n }的前n 项和,则S 6=( )A .189B .186C .180D .192【解析】 由a n +1=2a n ,知{a n }为等比数列, ∴a n =2n . ∴2b n =2n +2n +1, 即b n =3·2n -1,∴S 6=3·1+3·2+…+3·25=189.【答案】 A10.已知a,b,c∈R,a+b+c=0,abc>0,T=1a+1b+1c,则( )A.T>0 B.T<0 C.T=0 D.T≥0【解析】法一取特殊值,a=2,b=c=-1,则T=-32<0,排除A,C,D,可知选B.法二由a+b+c=0,abc>0,知三数中一正两负,不妨设a>0,b<0,c<0,则T=1a+1b+1c=ab+bc+caabc=ab+c b+aabc=ab-c2abc.∵ab<0,-c2<0,abc>0,故T<0,应选B.【答案】 B11.△ABC的内角A,B,C所对的边分别为a,b,c,若B=2A,a=1,b=3,则c=( )A.2 3 B.2 C. 2 D.1【解析】由正弦定理得:asin A=bsin B,∵B=2A,a=1,b=3,∴1sin A=32sin A cos A.∵A为三角形的内角,∴sin A≠0.∴cos A=3 2.又0<A<π,∴A=π6,∴B=2A=π3.∴C=π-A-B=π2,∴△ABC为直角三角形.由勾股定理得c=12+32=2.【答案】 B12.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项【解析】 设该数列的前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1q n-2,a 1q n -1.所以前三项之积a 31q 3=2,后三项之积a 31q 3n -6=4,两式相乘,得a 61q3(n -1)=8,即a 21q n -1=2.又a 1·a 1q ·a 1q 2·…·a 1qn -1=64,所以a n1·qn n -12=64,即(a 21q n -1)n =642,即2n =642,所以n =12.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.在△ABC 中,BC =2,B =π3,当△ABC 的面积等于32时,sin C =________. 【导学号:05920086】【解析】 由三角形的面积公式,得S =12AB ·BC sin π3=32,易求得AB =1,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos π3,得AC =3,再由三角形的面积公式,得S =12AC ·BC sin C =32,即可得出sin C =12.【答案】1214.(2015·湖北高考)若变量x ,y 满足约束条件⎩⎨⎧x +y ≤4,x -y ≤2,3x -y ≥0,则3x +y的最大值是________.【解析】 画出可行域,如图阴影部分所示,设z =3x +y ,则y =-3x +z ,平移直线y =-3x 知当直线y =-3x +z 过点A 时,z 取得最大值.由⎩⎨⎧x +y =4,x -y =2,可得A (3,1).故z max =3×3+1=10.【答案】 1015.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,则k 的取值范围为________.【解析】 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.【答案】 [2,8] 16.观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为12-22+32-…+(-1)n -1n 2=________. 【解析】 分n 为奇数、偶数两种情况. 第n 个等式为12-22+32-…+(-1)n -1n 2.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-(3+7+11+15+…+2n -1)=-n2×3+2n -12=-n n +12.当n 为奇数时,第n 个等式为(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-n n -12+n 2=n n +12.综上,第n个等式为12-22+32-…+(-1)n-1n2=(-1)n+1n n+12.【答案】(-1)n+1n n+12三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在△ABC中,角A,B,C的对边分别为a,b,c,若m =(a2+c2-b2,-3a),n=(tan B,c),且m⊥n,求∠B的值.【解】由m⊥n得(a2+c2-b2)·tan B-3a·c=0,即(a2+c2-b2)tan B=3ac,得a2+c2-b2=3ac tan B,所以cos B=a2+c2-b22ac=32tan B,即tan B cos B=32,即sin B=32,所以∠B=π3或∠B=2π3.18.(本小题满分12分)在等差数列{a n}中,S9=-36,S13=-104,在等比数列{b n}中,b5=a5,b7=a7, 求b6. 【导学号:05920087】【解】∵S9=-36=9a5,∴a5=-4,∵S13=-104=13a7,∴a7=-8.∴b26=b5·b7=a5·a7=32.∴b6=±4 2.19.(本小题满分12分)解关于x的不等式ax2-2≥2x-ax(a∈R). 【导学号:05920088】【解】原不等式可化为ax2+(a-2)x-2≥0⇒(ax-2)(x+1)≥0.(1)当a=0时,原不等式化为x+1≤0⇒x≤-1;(2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1;(3)当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0. ①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a;②当2a =-1,即a =-2时,原不等式等价于x =-1; ③当2a<-1,即-2<a <0时,原不等式等价于2a≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞.20.(本小题满分12分)设△ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a =1,b =2,cos C =14.(1)求△ABC 的周长; (2)求cos A 的值.【解】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4.∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5. (2)∵cos C =14,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫142=154.∴sin A =a sin C c =1542=158.∵a <c ,∴A <C ,故A 为锐角,∴cos A =1-sin 2A =1-⎝⎛⎭⎪⎫1582=78. 21.(本小题满分12分)(2016·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n , 则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).22.(本小题满分12分)某厂用甲、乙两种原料生产A ,B 两种产品,制造1 tA,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:(2)每吨B 产品的利润在什么范围变化时,原最优解不变?当超出这个范围时,最优解有何变化?【解】 (1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y满足⎩⎨⎧2x +y ≤14,x +3y ≤18,x ≥0,y ≥0,作出可行域如图:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品245 t ,B产品225t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m,又k AB =-2,k CB =-13,要使最优解仍为B 点,则-2≤-5m ≤-13,解得52≤m ≤15,则B 产品的利润在52万元/t 与15万元/t 之间时,原最优解仍为生产A 产品245t ,B 产品225 t ,若B 产品的利润超过15万元/t ,则最优解为C (0,6),即只生产B产品6 t ,若B 产品利润低于52万元/t ,则最优解为A (7,0),即只生产A 产品7 t.。

人教A版高中数学必修五模块综合检测卷(一).docx

人教A版高中数学必修五模块综合检测卷(一).docx

高中数学学习材料马鸣风萧萧*整理制作数学·必修5(人教A模块综合检测卷(一)(测试时间:120分钟评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.35解析:∵a3+a4+a5=3a4=12,a4=4,∴a1+a2+…+a7=7(a1+a7)2=7a4=28.答案:C2.设集合M={x|x2-x<0},N={x|-3<x<3},则() A.M∩N=∅B.M∩N=N C.M∪N=N D.M∪N=R答案:C3.不等式x -1x >0的解是( )A .-1<x <0或x >1B .x <-1或0<x <1C .x >-1D .x >1解析:x -1x >0⇔x 2-1x >0⇔x (x -1)(x +1)>0, 解得x >1或-1<x <0.故选A. 答案:A4.(2013·茂名二模)为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A ,B (如图),要测量A ,B 两点的距离,测量人员在岸边定出基线BC ,测得BC =50 m ,∠ABC =105°,∠BCA =45°,就可以计算出A ,B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m答案:A5.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形解析:由sin A ∶sin B ∶sin C =5∶11∶13及正弦定理得:a ∶b ∶c =5∶11∶13.由余弦定理得cos C =52+112-1322×5×11<0,所以角C 为钝角.答案:C6.(2013·汕头二模)在△ABC 中,内角A ,B ,C 对应的边分别是a ,b ,c ,已知c =2,C =π3,△ABC 的面积S =3,则△ABC 的周长为( )A .6B .5C .4D .4+2 3解析:∵S △ABC =3,∴ab =4.在△ABC 中由余弦定理得:a 2+b 2-ab =4. 易求得:a +b =4.∵c =2,∴a +b +c =6. 答案:A7.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤1,x +2y ≥1.则目标函数z =5x +y 的最大值为( )A .2B .3C .4D .5答案:D8.等比数列{a n }中,a n >0,a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( )A .16B .27C .36D .81答案:B9.设数列{a n }满足a 1+2a 2=3,且对任意的n ∈N *,点P n (n ,a n )都有P n P n +1=(1,2),则{a n }的前n 项和S n 为( )A .n ⎝ ⎛⎭⎪⎫n -43B .n ⎝ ⎛⎭⎪⎫n -34C .n ⎝ ⎛⎭⎪⎫n -23D .n ⎝ ⎛⎭⎪⎫n -12答案:A10.已知{a n }为等差数列,a 1=15,S 5=55,则过点P (3,a 2),Q (4,a 4)的直线的斜率为( )A .4 B.14C .-4D .-14答案:C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11.若△ABC 的内角A 满足sin 2A =23,则sin A +cos A =______.解析:由sin 2A =2sin A cos A >0,可知A 是锐角,所以sin A +cos A >0,又(sin A +cos A )2=1+sin 2A =53,所以sin A +cos A =153.答案:15312.已知a <b ∈R ,且ab =50,则|a +2b |的最小值为________.解析:∵ab =50>0,∴a 与b 同号,若二者均为正数,则|a +2b |≥22ab =20, 只有a =2b 时等式成立,∴a =10,b =5(不合题意,舍去). 若二者均为负数,则-a >0,-b >0, |a +2b |=-(a +2b )≥22ab =20,只有a =2b 时等式成立,∴a =-10,b =-5符合题意,∴最小值为20.答案:2013.已知点A (4,1),B (7,5),C (0,4),则△ABC 中的∠BAC 的大小是______.解析:AB→=(3,4),AC →=(-4,3), ∵AB →·AC →=3×(-4)+4×3=0, ∴AB →⊥AC →,即∠BAC =90°.答案:90°14.在△ABC 中,A 、B 、C 是三角形的三内角,a 、b 、c 是三内角对应的三边,已知b 2+c 2-a 2=bc ,sin 2A +sin 2B =sin 2C ,则角B 的大小为__________.解析:由b 2+c 2-a 2=bc⇒cos A =b 2+c 2-a 22bc =12,∴A =60°.再由sin 2A +sin 2B =sin 2C ⇒a 2+b 2=c 2, ∴C =90°,∴B =30°.答案:π6三、解答题(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积;解析:cos A =2cos2A2-1=2×2⎛⎫⎪⎝⎭255-1=35,又A ∈(0,π),sin A =1-cos 2A =45,而AB →·AC →=|AB →|·|AC →|·cos A =35bc =3,所以bc =5,所以△ABC 的面积为: 12bc sin A =12×5×45=2.(2)若c =1,求a 的值.解析:由(1)知,bc =5,而c =1,所以b =5, 所以a =b 2+c 2-2bc cos A =25+1-2×3=2 5.16.(本小题满分12分)已知函数f (x )=2sin ⎝⎛⎭⎪⎫ωx -π6sin ⎝⎛⎭⎪⎫ωx +π3(其中ω为正常数,x ∈R)的最小正周期为π.(1)求ω的值;解析:∵f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -π6sin ⎝ ⎛⎭⎪⎫ωx +π3=2sin ⎝ ⎛⎭⎪⎫ωx -π6cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫ωx +π3-π2=2sin ⎝⎛⎭⎪⎫ωx -π6cos ⎝ ⎛⎭⎪⎫ωx -π6=sin ⎝ ⎛⎭⎪⎫2ωx -π3, 而f (x )的最小正周期为π,ω为正常数, ∴2π2ω=π,解之,得ω=1.(2)在△ABC 中,若A <B ,且f (A )=f (B )=12,求BCAB .解析:由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. 若x 是三角形的内角,则0<x <π,∴-π3<2x -π3<5π3.令f (x )=12,得sin ⎝ ⎛⎭⎪⎫2x -π3=12,∴2x -π3=π6或2x -π3=5π6,解之,得x =π4或x =7π12.由已知,A ,B 是△ABC 的内角,A <B 且f (A )=f (B )=12,∴A =π4,B =7π12,∴C=π-A-B=π6.又由正弦定理,得BCAB=sin Asin C=sinπ4sinπ6=2212= 2.17.(本小题满分14分)某工厂生产A 、B 两种型号的童车.每种童车都要经过机械、油漆和装配三个车间进行加工.根据该厂现有的设备和劳动力等条件,可以确定各车间每日的生产能力,我们把它们折合成有效工时来表示.现将各车间每日可利用的有效工时数、每辆童车的各个车间加工时所花费的工时数以及每辆童车可获得的利润情况列成下表:车间每辆童车所需的加工工时 有效工时(小时/日)A B 机械 0.8 1.2 40油漆0.6 0.8 30 装配 0.4 0.6 25利润(元/辆)610试问这两种型号的童车每日生产多少辆,才能使得工厂所获得的利润最大?解析:设x ,y 分别是A ,B 两种型号童车的日产量,工厂每日可获得利润为z ,则z =6x +10y ,其中x ,y 满足约束条件.⎩⎪⎨⎪⎧0.8x +1.2y ≤40,0.6x +0.8y ≤30,0.4x +0.6y ≤25,x ∈N ,y ∈N.即⎩⎪⎨⎪⎧2x +3y ≤100,3x +4y ≤150,2x +3y ≤125,x ∈N ,y ∈N.作出线性可行域.考虑z =6x +10y ,将它变形为y =-35x +110z ,这是斜率为-35,随z 变化的一组平行直线.110z 是直线在y 轴上的截距,当直线截距最大时,z 的值最大.当然直线要与可行域相交,即在满足约束条件时目标函数z =6x +10y 取得最大值.可见,当直线z =6x +10y 经过可行域上的点A 时,截距最大,即z 最大.解方程组⎩⎪⎨⎪⎧x =0,2x +3y =100,得A 的坐标为⎝ ⎛⎭⎪⎫0,1003.但A ⎝ ⎛⎭⎪⎫0,1003不是整点,在可行域的整点中,(2,32)是最优解.此时,z max =6×2+10×32=332.18.(本小题满分14分)已知等差数列{a n }的公差d 不为零,首项a 1=2且前n 项和为S n .(1)当S 9=36时,在数列{a n }中找一项a m (m ∈N *),使得a 3,a 9,a m 成为等比数列,求m 的值;解析:数列{a n }的公差d ≠0,a 1=2,S 9=36,∴36=9×2+12×9×8d ,∴d =12,∴a 3=3,a 9=6.由a 3,a 9,a m 成等比数列, 则a 29=a 3·a m ,得a m =12, 又12=2+(m -1)×12,∴m =21.(2)当a3=6时,若自然数n1,n2,…,n k,…满足3<n1<n2<…<n k<…,并且a1,a3,an1,…,an k,…是等比数列,求n k.解析:∵{a n}是等差数列,a1=2,a3=6,∴a n=2n.又a1,a3,an1成等比数列,所以公比q=3.∴an k=a1·q k+1=2·3k+1.又an k是等差数列中的项,∴an k=2n k,∴2n k=2·3k+1,∴n k=3k+1(k∈N*).19.(本小题满分14分)把正奇数数列{2n -1}中的数按上小下大、左小右大的原则排成如下三角形数表:1 3 5 7 9 11 - - - - - - - - -设a ij (i ,j ∈N *)是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数.(1)若a mn =2 011,求m ,n 的值.解析:∵三角形数表中前m 行共有1+2+3+…+m =m (m +1)2个数,∴第m 行最后一个数应当是所给奇数列中的第m (m +1)2项.故第m 行最后一个数是2·m (m +1)2-1=m 2+m -1,因此,使得a mn =2 011的m 是不等式 m 2+m -1≥2 011的最小正整数解.由m 2+m -1≥2 011得m 2+m -2 012≥0,∴m ≥-1+1+8 0482>-1+7 9212=-1+892=44.∴m 的最小正整数解为45.于是,第45行第一个数是442+44-1+2=1 981,∴n =2 011-1 9812+1=16.(2)已知函数f (x )=n⎛⎫ ⎪⎝⎭12·3x (x >0),若记三角形数表中从上往下数第n 行各数的和为b n ,求数列{f (b n )}的前n 项和S n .解析:∵第n 行最后一个数是n 2+n -1,且有n 个数,若将n 2+n -1看成第n 行第一个数,则第n 行各数成公差为-2的等差数列,故b n =n (n 2+n -1)+n (n -1)2(-2)=n 3.∵f(x)=n⎛⎫⎪⎝⎭123x(x>0),∴f(b n)=n⎛⎫⎪⎝⎭123n3=nn⎛⎫⎪⎝⎭12,S n=12+22⎛⎫⎪⎝⎭12+33⎛⎫⎪⎝⎭12+44⎛⎫⎪⎝⎭12+…+(n-1)n-1⎛⎫⎪⎝⎭12+nn⎛⎫⎪⎝⎭12,∵12S n=2⎛⎫⎪⎝⎭12+23⎛⎫⎪⎝⎭12+34⎛⎫⎪⎝⎭12+45⎛⎫⎪⎝⎭12+…+(n-1)n⎛⎫⎪⎝⎭12+nn+1⎛⎫⎪⎝⎭12,两式相减得:12S n=12+2⎛⎫⎪⎝⎭12+3⎛⎫⎪⎝⎭12+…+n⎛⎫⎪⎝⎭12-nn+1⎛⎫⎪⎝⎭12=⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-⎛⎫- ⎪⎝⎭n12112112-nn+1⎛⎫⎪⎝⎭12=1-n⎛⎫⎪⎝⎭12-nn+1⎛⎫⎪⎝⎭12.∴S n=2-(n+2)n⎛⎫⎪⎝⎭12.20.(本小题满分14分)已知函数f (x )=ax 2-12x +c (a ,c ∈R)满足条件:①f (1)=0;②对一切x ∈R ,都有f (x )≥0.(1)求a 、c 的值.解析:解法一:当a =0时,f (x )=-12x +c .由f (1)=0得:-12+c =0,即c =12,∴f (x )=-12x +12.显然x >1时,f (x )<0,这与条件②相矛盾,不合题意.∴a ≠0,函数f (x )=ax 2-12x +c 是二次函数.由于对一切x ∈R ,都有f (x )≥0,于是由二次函数的性质可得 20412a ac >∆=-⎛⎫- ⎪⎝⎭⎩⎨⎧a >0,ac ≥116>0,(*) 由f (1)=0得a +c =12,即c =12-a ,代入(*)得a ⎝ ⎛⎭⎪⎫12-a ≥116.整理得a 2-12a +116≤0,即2⎛⎫- ⎪⎝⎭1a 4≤0.而2⎛⎫-⎪⎝⎭1a 4≥0,∴a =14.∴c =12-a =12-14=14,∴a =c =14.解法二:当a =0时,f (x )=-12x +c .由f (1)=0得-12+c =0,即c =12,∴f (x )=-12x +12.显然x >1时,f (x )<0,这与条件②相矛盾,≤0∴a ≠0,因而函数f (x )=ax 2-12x +c 是二次函数.由于对一切x ∈R ,都有f (x )≥0,于是由二次函数的性质可得 2412a ac >∆=-⎛⎫- ⎪⎝⎭即⎩⎨⎧a >0,ac ≥116>0,由此可知a >0,c >0, ∴ac ≤2+⎛⎫⎪⎝⎭a c 2.由f (1)=0,得a +c =12,代入上式得ac ≤116.但前面已推得ac ≥116,∴ac =116.由⎩⎪⎨⎪⎧ac =116,a +c =12,解得a =c =14.(2)是否存在实数m ,使函数g (x )=f (x )-mx 在区间[m ,m +2]上有最小值-5?若存在,请求出实数m 的值;若不存在,请说明理由.解析:∵a =c =14,∴f (x )=14x 2-12x +14.g (x )=f (x )-mx =14x 2-⎝ ⎛⎭⎪⎫12+m x +14. 该函数图象开口向上,且对称轴为 x =2m +1.假设存在实数m 使函数g (x )=f (x )-mx =14x 2-⎝ ⎛⎭⎪⎫12+m x +14 在区间[m ,m +2]上有最小值-5.≤①当m <-1时,2m +1<m ,函数g (x ) 在区间 [m ,m +2]上是递增的,∴g (m )=-5,即14m 2-⎝ ⎛⎭⎪⎫12+m m +14=-5, 解得m =-3或m =73.∵73>-1,∴m =73舍去. ②当-1≤m <1时,m ≤2m +1<m +2,函数g (x )在区间[m,2m +1]上是递减的,而在区间[2m +1,m +2]上是递增的,∴g (2m +1)=-5,14(2m +1)2-⎝ ⎛⎭⎪⎫12+m (2m +1)+14=-5.解得m =-12-1221或m =-12+1221,均应舍去.③当m ≥1时,2m +1≥m +2,函数g (x )在区间 [m ,m +2]上是递减的, ∴g (m +2)=-5,14(m +2)2-⎝ ⎛⎭⎪⎫12+m (m +2)+14=-5, 解得m =-1-22或m =-1+22, 其中m =-1-22,应舍去.综上可得,当m =-3或m =-1+22时,函数g (x )=f (x )-mx 在区间[m ,m +2]上有最小值-5.。

【精品习题】高中数学人教A必修5模块综合测评2 Word版含解析

【精品习题】高中数学人教A必修5模块综合测评2 Word版含解析

模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列1,3,7,15,…的通项a n 可能是( ) A .2nB .2n+1 C .2n -1D .2n -1【解析】 取n =1时,a 1=1,排除A 、B ,取n =2时,a 2=3,排除D. 【答案】 C2.不等式x 2-2x -5>2x 的解集是( ) A .{x |x ≤-1或x ≥5} B .{x |x <-1或x >5} C .{x |1<x <5} D .{x |-1≤x ≤5}【解析】 不等式化为x 2-4x -5>0,所以(x -5)(x +1)>0,所以x <-1或x >5.【答案】 B3.在正项等比数列{a n }中,a 1和a 19为方程x 2-10x +16=0的两根,则a 8·a 10·a 12等于( )A .16B .32C .64D .256【解析】 ∵{a n }是等比数列且由题意得a 1·a 19=16=a 210(a n >0),∴a 8·a 10·a 12=a 310=64.【答案】 C4.下列不等式一定成立的是( ) A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B.sin x+1sin x≥2(x≠kπ,k∈Z)C.x2+1≥2|x|(x∈R)D.1x2+1>1(x∈R)【解析】5.在△ABC中,角A,B,C的对边分别为a,b,c,ac=3,且a=3b sin A,则△ABC的面积等于( )A.12B.32C.1 D.3 4【解析】∵a=3b sin A,∴由正弦定理得sin A=3sin B sin A,∴sin B=1 3 .∵ac=3,∴△ABC的面积S=12ac sin B=12×3×13=12,故选 A.【答案】 A6.等比数列{a n}前n项的积为T n,若a3a6a18是一个确定的常数,那么数列T10,T13,T17,T25中也是常数的项是( )A.T10B.T13C.T17D.T25【解析】 由等比数列的性质得a 3a 6a 18=a 6a 10a 11=a 8a 9a 10=a 39,而T 17=a 179,故T 17为常数.【答案】 C7.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3【解析】 由题意:A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2},由根与系数的关系可知:a =-1,b =-2,∴a +b =-3. 【答案】 A8.古诗云:远望巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?( )A .2B .3C .4D .5【解析】 远望巍巍塔七层,说明该数列共有7项,即n =7.红光点点倍加增,说明该数列是公比为2的等比数列.共灯三百八十一,说明7项之和S 7=381.请问尖头几盏灯,就是求塔顶几盏灯,即求首项a 1.代入公式S n =a 11-q n 1-q ,即381=a 11-271-2,∴a 1=381127=3. ∴此塔顶有3盏灯. 【答案】 B9.若实数x ,y 满足⎩⎨⎧x -y +1≤0,x >0,则y x的取值范围是( )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞)【解析】 实数x ,y 满足 ⎩⎨⎧x -y +1≤0,x >0的相关区域如图中的阴影部分所示.y x 表示阴影部分内的任意一点与坐标原点(0,0)连线的斜率,由图可知,y x 的取值范围为(1,+∞).【答案】 C10.在△ABC 中,若c =2b cos A ,则此三角形必是( ) A .等腰三角形 B .正三角形 C .直角三角形D .有一角为30°的直角三角形【解析】 由正弦定理得sin C =2cos A sin B , ∴sin (A +B )=2cos A sin B ,即sin A cos B +cos A sin B =2cos A sin B , 即sin A cos B -cos A sin B =0, 所以sin (A -B )=0. 又因为-π<A -B <π, 所以A -B =0, 即A =B . 【答案】 A11.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2 【解析】 ∵x >1,∴x-1>0.∴y=x2+2x-1=x2-2x+2x+2x-1=x2-2x+1+2x-1+3x-1=x-12+2x-1+3x-1=x-1+3x-1+2≥23+2. 【答案】 A12.在△ABC中,角A,B,C的对边分别是a,b,c,且tan B=2-3a2-b2+c2,BC→·BA→=12,则tan B等于( )A.32B.3-1C.2 D.2- 3【解析】由BC→·BA→=12,得ac cos B=12,∴2ac cos B=1.又由余弦定理,得b2=a2+c2-2ac cos B=a2+c2-1,∴a2-b2+c2=1,∴tan B=2-31=2- 3.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知点P(1,-2)及其关于原点的对称点均在不等式2x+by+1>0表示的平面区域内,则b的取值范围是______. 【导学号:05920089】【解析】点P(1,-2)关于原点的对称点为点P′(-1,2).由题意知⎩⎨⎧2×1-2b +1>0,-2+2b +1>0,解得12<b <32.【答案】 ⎝ ⎛⎭⎪⎫12,3214.(2015·江苏高考)设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 前10项的和为________.【解析】 由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =n -12+n2=n 2+n -22.又∵a 1=1, ∴a n =n 2+n 2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n 2(n ∈N *).∴1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1. ∴S 10=2×⎝ ⎛⎭⎪⎫11-12+12-13+…+110-111=2×⎝ ⎛⎭⎪⎫1-111=2011.【答案】201115.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sinA -sinB )=(c -b )sinC ,则△ABC 面积的最大值为________.【解析】 ∵a sin A=b sin B=c sin C=2R ,a =2,又(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(a -b )=(c -b )·c , ∴a 2-b 2=c 2-bc , ∴b 2+c 2-a 2=bc .∴b 2+c 2-a 22bc =bc 2bc =12=cos A ,∴A =60°.∵在△ABC 中,4=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc ≥2bc -bc =bc (“=”当且仅当b =c 时取得), ∴S △ABC =12·bc ·sin A ≤12×4×32= 3.【答案】316.若1a <1b<0,已知下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab >2;⑤a 2>b 2;⑥2a >2b .其中正确的不等式的序号为______. 【解析】 ∵1a <1b<0,∴b <a <0,故③错;又b <a <0,可得|a |<|b |,a 2<b 2, 故②⑤错,可证①④⑥正确. 【答案】 ①④⑥三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的取值范围;(2)问前几项的和最大,并说明理由. 【解】 (1)∵a 3=12,∴a 1=12-2d , ∵S 12>0,S 13<0, ∴⎩⎨⎧12a 1+66d >0,13a 1+78d <0,即⎩⎨⎧24+7d >0,3+d <0,∴-247<d <-3. (2)∵S 12>0,S 13<0, ∴⎩⎨⎧ a 1+a 12>0,a 1+a 13<0,∴⎩⎨⎧a 6+a 7>0,a 7<0,∴a 6>0, 又由(1)知d <0.∴数列前6项为正,从第7项起为负. ∴数列前6项和最大.18.(本小题满分12分)已知α,β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a ,b ∈R ,求b -3a -1的最大值和最小值. 【解】 ∵⎩⎨⎧α+β=-a ,αβ=2b ,∴⎩⎨⎧a =-α+β,b =αβ2,∵0≤α≤1,1≤β≤2, ∴1≤α+β≤3,0≤αβ≤2. ∴⎩⎨⎧-3≤a ≤-1,0≤b ≤1,建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如下图所示.令k=b-3a-1,可以看成动点P(a,b)与定点A(1,3)的连线的斜率.取B(-1,0),C(-3,1),则k AB=32,k AC=12,∴12≤b-3a-1≤32.故b-3a-1的最大值是32,最小值是12.19.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,满足(2b-c)cos A-a cos C=0.(1)求角A的大小;(2)若a=3,试求当△ABC的面积取最大值时,△ABC的形状. 【导学号:05920090】【解】(1)∵(2b-c)cos A-a cos C=0,由余弦定理得(2b-c)·b2+c2-a22bc-a·a2+b2-c22ab=0,整理得b2+c2-a2=bc,∴cos A=b2+c2-a22bc=12,∵0<A<π,∴A=π3.(2)由(1)得b2+c2-bc=3及b2+c2≥2bc得bc≤3. 当且仅当b=c=3时取等号.∴S△ABC=12bc sin A≤12×3×32=334.从而当△ABC的面积最大时,a=b=c= 3.∴当△ABC的面积取最大值时△ABC为等边三角形.20.(本小题满分12分)已知函数y=ax2+2ax+1的定义域为R.(1)求a的取值范围;(2)解关于x的不等式x2-x-a2+a<0.【解】 (1)∵函数y =ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立.①当a =0时,1≥0,不等式恒成立; ②当a ≠0时,则⎩⎨⎧a >0,Δ=4a 2-4a ≤0,解得0<a ≤1.综上可知,a 的取值范围是[0,1].(2)由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0. ∵0≤a ≤1, ∴①当1-a >a , 即0≤a <12时,a <x <1-a ;②当1-a =a ,即a =12时,⎝ ⎛⎭⎪⎫x -122<0,不等式无解;③当1-a <a ,即12<a ≤1时,1-a <x <a .综上,当0≤a <12时,原不等式的解集为(a,1-a );当a =12时,原不等式的解集为∅;当12<a ≤1时,原不等式的解集为(1-a ,a ). 21.(本小题满分12分)若数列{a n }满足a 2n +1-a 2n =d ,其中d 为常数,则称数列{a n }为等方差数列.已知等方差数列{a n }满足a n >0,a 1=1,a 5=3.(1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a 2n ⎝ ⎛⎭⎪⎫12n 的前n 项和.【解】 (1)由a 21=1,a 25=9, 得a 25-a 21=4d ,∴d =2.a 2n =1+(n -1)×2=2n -1,∵a n >0,∴a n =2n -1. 数列{a n }的通项公式为a n =2n -1. (2)a 2n ⎝ ⎛⎭⎪⎫12n =(2n -1)12n , 设S n =1·12+3·122+5·123+…+(2n -1)·12n ,① 12S n =1·122+3·123+5·124+…+(2n -1)· 12n +1,② ①-②,得12S n =12+2⎝ ⎛⎭⎪⎫122+123+…+12n -(2n -1)·12n +1 =12+2·14⎝ ⎛⎭⎪⎫1-12n -11-12-(2n -1)·12n +1, 即S n =3-2n +32n, 即数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a 2n ⎝ ⎛⎭⎪⎫12n 的前n 项和为3-2n +32n. 22.(本小题满分12分)如图1所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东60°的C 处,12时20分时测得该轮船在海岛北偏西60°的B 处,12时40分该轮船到达位于海岛正西方且距海岛5千米的E 港口,如果轮船始终匀速直线航行,则船速是多少?(结果保留根号)图1【解】 轮船从点C 到点B 用时80分钟,从点B 到点E 用时20分钟,而船始终匀速航行,由此可见,BC =4EB .设EB=x,则BC=4x,由已知得∠BAE=30°,在△AEC中,由正弦定理得ECsin ∠EAC =AEsin C,即sin C=AE sin ∠EACEC=5sin 150°5x=12x,在△ABC中,由正弦定理得BCsin ∠BAC =ABsin C,即AB=BC sin Csin 120°=4x×12xsin 120°=43=433.在△ABE中,由余弦定理得BE2=AE2+AB2-2AE·AB cos 30°=25+163-2×5×433×32=313,所以BE=313(千米).故轮船的速度为v=313÷2060=93(千米/时).。

2019版高中数学人教A版必修5:模块综合检测 含解析

2019版高中数学人教A版必修5:模块综合检测 含解析

( ) 解析:∵xy=1+(x+y)≤
������ + ������ 2
2,
∴(x+y)2-4(x+y)-4≥0, ∴x+y≥2( 2 + 1), 当且仅当 x=y = 2 + 1时等号成立.
答案:A
1=
������������ -
3
(
10 若数列{an}满足 a1=0,an+
3������������ + 1 n∈N*),则 a20 等于( )
=
1 2
+
1 4
+

+
1 2������ -
1

2 - ������ 2������
( ) 1 ‒
=
1
-
1 2������ -
1

2 - ������ 2������
=
2������������,
= ������ . ∴Sn 2������ - 1
当 n=1 时,S1=1 也符合该公式.
{ } 列
综上可知,数
������������
= + +…+ .
224
2������
∵当
n>1时,���2���������
=��1 2
+

+
������������ - ������������ 2������ - 1
1

������������ 2������
( ) 1 ‒
由余弦定理,得 AC2=BA2+BC2-2BA·BC·cos 120°,

(广西专用)版高中数学 单元评估检测(五)课时提能训练 理 新人教A版

【全程复习方略】(广西专用)202X版高中数学单元评估检测五课时提能训练理新人教A版第五章120分钟150分一、选择题本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1下列说法中正确的是A如果非零向量a与b的方向相同或相反,则a+b的方向必与a、b之一的方向相同B在△ABC中,必有++=0C若++=0,则A、B、C为一个三角形的三个顶点D|a+b|≥|a-b|2202X·北海模拟已知向量a=1,2,b=coα,inα,且a∥b,则tanα+错误!=A-3 B3 C-错误!D错误!,n满足m=2,0,n=错误!,错误!在△ABC中,=2m+2n,=2m-6n,D为BC边的中点,则||等于A2 B4 C6 D84202X·柳州模拟设A,1、B2,、C4,5为坐标平面上三点,O为坐标原点,若与在方向上的投影相同,则与满足的关系式为A4-5=3 B5-4=3C4+5=14 D5+4=145易错题已知i与为互相垂直的单位向量,a=i-2,b=i+λ且a与b的夹角为锐角,则实数λ的取值范围是A-∞,-2∪-2,错误!B[错误!,+∞C-2,错误!∪错误!,+∞ D-∞,错误!,A,B,C满足=错误!+错误!,则||∶||=A1∶3 B3∶1C1∶2 D2∶17202X·梧州模拟已知A2,3、B4,-3,点,n平移后得△A′B′C′,若△A′B′C′的重心G′3,4,则a=1,-a,B2,a2,C3,a3共线,则实数a=是平面α上一点,点A、B、C是平面α上不共线的三点,平面α内的动点OP PA=a,b,n=inB,inA,∥n,求证:△ABC为等腰三角形;2若m⊥OP OQ20 m10错误!未定义书签。

,记∠BHE=θ1试将污水净化管道的长度L表示成θ的函数,并写出定义域;2若inθ+coθ=错误!,求此时管道的长度L;3当θ取何值时,污水净化效果最好并求出此时管道的长度答案解析1【解析】+b=0时命题不成立B真命题、B、C三点共线时也有++=0不共线时,|a+b|与|a-b|表示以a、b为邻边的平行四边形的两条对角线的长,其大小不定;当a与b 为非零向量且共线时,同向则有|a+b|>|a-b|,反向则有|a+b|<|a-b|;当a、b中有零向量时,则|a+b|=|a-b|综上只有B正确2【解析】选A∵a∥b,∴2coα=inα,tanα=2,∴tanα+错误!=错误!=错误!=-33【解题指南】由D为BC边的中点可得=错误!+,再用m、n表示即可【解析】选A∵D为BC边的中点,∴=错误!+=错误!2m+2n+2m-6n=2m-2n=22,0-2错误!,错误!=1,-错误!,∴||=24【解析】选A∵与在方向上的投影相同,故有·=·,∴,1·4,5=2,·4,5,4+5=8+5,∴4-5=35【解题指南】设a、b的夹角为θ,由θ为锐角可得0<coθ=错误!<1,进而可求出λ的取值范围【解析】选A∵|a|错误!同理可求|b|=错误!,又a·b=i-2 ·i+λ=i2+λ-2i·-2λ2=1-2λ,设a、b的夹角为θ,则0°<θ<90°,coθ=错误!=错误!,由0<coθ<1得λ<-2或-2<λ<错误!【误区警示】θ为锐角⇒0<coθ<1,易忽略coθ<1而误选D6【解题指南】把目标向量、用已知向量、、表示是解题的关键【解析】选D因为=错误!+错误!,所以-=错误!-错误!,得=错误!,又-=-错误!+错误!,得=错误!,所以||∶||=错误!∶错误!=2∶1,故选D7【解析】选B由题意知λ=-错误!设点2A2A BA≠0使=m·,即λa+b=m a+μb,得λ=m,1=mμ,∴λμ=112【解题指南】利用B、F、E三点共线,D、F、C三点共线是解答本题的关键,而用两种形式表示向量是求,的桥梁【解析】选C=a,=b,得BE=错误!b-a,DC=b-错误!,F,E三点共线,令BF=t BE,则=+t BE=1-t a+错误!t ,F,C三点共线,令DF=DC,则=+DC=错误!1-a+,解得t=错误!,=错误!,得=错误!,=错误!,即,为错误!,错误!,故选C13【解析】a+λb=1,2+λ1,0=1+λ,2,由a+λb∥c得,41+λ-3×2=0,解得λ=错误!答案:错误!14【解题指南】先求出△ABC的重心G,由题意a=GG'可求a的坐标【解析】设△ABC的重心为G,,则错误!,∴G2,2由平移后重心G′3,4,∴a=GG'=1,2答案:1,215【解析】∵=1,a2+a,=1,a3-a2,又∵A、B、C三点共线,∴∥,∴1×a3-a2-a2+a×1=0,即a3-2a2-a=0,∴a=0或a=1±错误!答案:0或1±错误!16【解析】由已知得OP-=λ+,即=λ+,当λ=错误!时,得=错误!+,∴2=+,即-=-,∴=,∴+=+=0,∴PA·+=PA·0=0答案:017【解析】设BD=λ,又=-1,-2,则BD=-λ,-2λ,∴=+BD=-1,1+-λ,-2λ=-1-λ,1-2λ,由⊥,得·=0,即1+λ+22λ-1=0,解得λ=错误!,∴=-错误!,错误!18【解题指南】【解析】1∵m∥n,∴ainA=binB,即a·错误!=b·错误!,其中R是△ABC外接圆半径,∴a=b∴△ABC为等腰三角形2由题意可知m·OP OQ;3因为L=错误!+错误!+错误!=10错误!,设inθ+coθ=t=错误!inθ+错误!,inθcoθ=错误!,∴L=错误!又θ∈[错误!,错误!],t∈[错误!,错误!],所以L ma=错误!=错误!=20错误!+1,此时θ=错误!或θ=错误!所以当θ=错误!或θ=错误!时,铺设的管道最长,为20错误!+1m。

高中数学人教A必修5章末综合测评2 --含解析(1)

章末综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个数列中,既是无穷数列又是递增数列的是( )A .1,12,13,14,…B .-1,2,-3,4,…C .-1,-12,-14,-18,…D .1, 2, 3,…,n【解析】 A 为递减数列,B 为摆动数列,D 为有穷数列.【答案】 C2.已知数列{a n }是首项a 1=4,公比q ≠1的等比数列,且4a 1,a 5,-2a 3成等差数列,则公比q 等于( ) A.12 B .-1 C .-2 D .2【解析】 由已知,2a 5=4a 1-2a 3,即2a 1q 4=4a 1-2a 1q 2,所以q 4+q 2-2=0,解得q 2=1,因为q ≠1,所以q =-1.【答案】 B3.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律进行下去,6小时后细胞存活的个数是( )A .33个B .65个C .66个D .129个【解析】 设开始的细胞数和每小时后的细胞数构成的数列为{a n }.则⎩⎨⎧ a 1=2,a n +1=2a n -1,即a n +1-1a n -1=2. ∴a n -1=1·2n -1 ,a n =2n -1+1,a 7=65.【答案】 B4.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列 {b n },那么162是新数列{b n }的( )A .第5项B .第12项C .第13项D .第6项【解析】 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.【答案】 C5.已知数列{a n }的前n 项和S n =a n -1(a ≠0),则{a n }( )A .一定是等差数列B .一定是等比数列C .或者是等差数列,或者是等比数列D .既不可能是等差数列,也不可能是等比数列【解析】 ∵S n =a n -1(a ≠0),∴a n =⎩⎨⎧ S 1,n =1,S n -S n -1,n ≥2,即a n =⎩⎨⎧a -1,n =1,(a -1)a n -1,n ≥2,当a =1时,a n =0,数列{a n }是一个常数列,也是等差数列;当a ≠1时,数列{a n }是一个等比数列.【答案】 C6.等差数列{a n }的公差不为零,首项a 1=1,a 2是a 1和a 5的等比中项,则数列的前10项之和是( )A .90B .100C .145D .190【解析】 设公差为d ,∴(1+d )2=1×(1+4d ),∵d ≠0,∴d =2,从而S 10=100.【答案】 B7.记等差数列{a n }的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d =( )A .2B .3C .6D .7【解析】 S 4-S 2=a 3+a 4=20-4=16,∴a 3+a 4-S 2=(a 3-a 1)+(a 4-a 2)=4d =16-4=12,∴d =3.【答案】 B8.已知数列{a n }满足a 1=5,a n a n +1=2n ,则a 7a 3=( ) A .2 B .4 C .5 D.52【解析】 依题意得a n +1a n +2a n a n +1=2n +12n =2,即a n +2a n=2,数列a 1,a 3,a 5,a 7,…是一个以5为首项,2为公比的等比数列,因此a 7a 3=4. 【答案】 B9.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( )A .49B .50C .51D .52【解析】 ∵2a n +1-2a n =1,∴a n +1-a n =12,∴数列{a n }是首项a 1=2,公差d =12的等差数列,∴a 101=2+12(101-1)=52.【答案】 D。

高中数学人教A必修5章末综合测评1 Word版含解析

章末综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,若sin A +cos A =712,则这个三角形是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .等边三角形【解析】 若A ≤90°,则sin A +cos A ≥1>712,∴A >90°. 【答案】 A2.在△ABC 中,内角A 满足sin A +cos A >0,且tan A -sin A <0,则A 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,π4 B.⎝ ⎛⎭⎪⎫π4,π2 C.⎝ ⎛⎭⎪⎫π2,3π4 D .⎝ ⎛⎭⎪⎫π4,3π4【解析】 由sin A +cos A >0得2sin ⎝ ⎛⎭⎪⎫A +π4>0.∵A 是△ABC 的内角,∴0<A <3π4. ① 又tan A <sin A ,∴π2<A <π. ②由①②得,π2<A <3π4. 【答案】 C3.已知锐角三角形的三边长分别为1,3,a ,那么a 的取值范围为( ) 【导学号:05920080】A .(8,10)B .(22,10)C .(22,10)D .(10,8) 【解析】 设1,3,a 所对的角分别为∠C 、∠B 、∠A ,由余弦定理知a 2=12+32-2×3cos A <12+32=10,32=1+a 2-2×a cos B <1+a 2, ∴22<a <10. 【答案】 B4.已知圆的半径为4,a ,b ,c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A .2 2B .8 2 C. 2D .22【解析】 ∵a sin A =b sin B =csin C =2R =8, ∴sin C =c 8,∴S △ABC =12ab sin C =abc 16=16216= 2. 【答案】 C5.△ABC 的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则角C 的大小为( )A.π6B.π3C.π2 D .2π3【解析】 p ∥q ⇒(a +c )(c -a )-b (b -a )=0, 即c 2-a 2-b 2+ab =0⇒a 2+b 2-c 22ab =12=cos C .∴C =π3. 【答案】 B6.在△ABC 中,若sin B sin C =cos 2A2,则下面等式一定成立的是( ) A .A =B B .A =C C .B =CD .A =B =C【解析】 由sin B sin C =cos 2A 2=1+cos A2⇒2sin B sin C =1+cos A ⇒cos(B-C )-cos(B +C )=1+cos A .又cos(B +C )=-cos A ⇒cos(B -C )=1,∴B -C =0,即B =C . 【答案】 C7.一角槽的横断面如图1所示,四边形ADEB 是矩形,且α=50°,β=70°,AC =90 mm ,BC =150 mm ,则DE 的长等于( )图1A .210 mmB .200 mmC .198 mmD .171 mm【解析】 ∠ACB =70°+50°=120°,在△ABC 中应用余弦定理可以求出AB 的长,即为DE 的长.【答案】 A8.(2014·江西高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932 C.332 D .3 3【解析】 ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332. 【答案】 C9.(2015·山东省实验中学期末考试)已知在△ABC 中,sin A +sin B =sin C (cos A +cos B ),则△ABC 的形状是( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形【解析】 由正弦定理和余弦定理得a +b =c b 2+c 2-a 22bc +a 2+c 2-b 22ac ,即2a 2b+2ab 2=ab 2+ac 2-a 3+a 2b +bc 2-b 3,∴a 2b +ab 2+a 3+b 3=ac 2+bc 2,∴(a +b )(a 2+b 2)=(a +b )c 2,∴a 2+b 2=c 2,∴△ABC 为直角三角形,故选D.【答案】 D10.在△ABC 中,sin 2A =sin 2B +sin B sin C +sin 2C ,则A =( )A .30°B .60°C .120°D .150°【解析】 由已知得a 2=b 2+bc +c 2,∴b 2+c 2-a 2=-bc ,∴cos A =b 2+c 2-a 22bc =-12,又0°<A <180°,∴A =120°. 【答案】 C11.在△ABC 中,A ∶B =1∶2,∠ACB 的平分线CD 把△ABC 的面积分成3∶2两部分,则cos A 等于( )A.13B.12C.34 D .0【解析】 ∵CD 为∠ACB 的平分线, ∴D 到AC 与D 到BC 的距离相等.∴△ACD 中AC 边上的高与△BCD 中BC 边上的高相等. ∵S △ACD ∶S △BCD =3∶2,∴AC BC =32. 由正弦定理sin B sin A =32,又∵B =2A , ∴sin 2A sin A =32,即2sin A cos A sin A =32,∴cos A =34. 【答案】 C12.如图2,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进100米到达B 后,又测得C 对于山坡的斜度为45°,若CD =50米,山坡对于地平面的坡角为θ,则cos θ( )图2A .23+1B .23-1 C.3-1D .3+1 【解析】 在△ABC 中,BC =AB sin ∠BACsin ∠ACB=100sin 15°sin(45°-15°)=50(6-2),在△BCD中,sin∠BDC=BC sin∠CBDCD=50(6-2)sin 45°50=3-1,又∵cos θ=sin∠BDC,∴cos θ=3-1.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.(2015·黄冈高级中学高二期中测试)△ABC为钝角三角形,且∠C为钝角,则a2+b2与c2的大小关系为.【解析】∵cos C=a2+b2-c22ab,且∠C为钝角.∴cos C<0,∴a2+b2-c2<0.故a2+b2<c2.【答案】a2+b2<c214.(2013·安徽高考)设△ABC的内角A,B,C所对边的长分别为a,b,c.若b+c=2a,3sin A=5sin B,则角C=.【解析】由3sin A=5sin B,得3a=5b.又因为b+c=2a,所以a=53b,c=73b,所以cos C=a2+b2-c22ab=⎝⎛⎭⎪⎫53b2+b2-⎝⎛⎭⎪⎫73b22×53b×b=-12.因为C∈(0,π),所以C=2π3.【答案】2π315.在锐角△ABC中,BC=1,B=2A,则ACcos A的值等于,AC的取值范围为.【解析】设A=θ⇒B=2θ.由正弦定理得ACsin 2θ=BCsin θ,∴AC2cos θ=1⇒ACcos θ=2.由锐角△ABC得0°<2θ<90°⇒0°<θ<45°.又0°<180°-3θ<90°⇒30°<θ<60°,故30°<θ<45°⇒22<cos θ<32,∴AC=2cos θ∈(2,3).【答案】2(2,3)16.(2014·全国卷Ⅰ)如图3,为测量山高MN,选择A和另一座山的山顶C 为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN =m.图3【解析】根据图示,AC=100 2 m.在△MAC中,∠CMA=180°-75°-60°=45°.由正弦定理得ACsin 45°=AMsin 60°⇒AM=100 3 m.在△AMN中,MNAM=sin 60°,∴MN=1003×32=150(m).【答案】150三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a;(2)若c2=b2+3a2,求B.【解】(1)由正弦定理得,sin2A sin B+sin B cos2A=2sin A,即sin B(sin2A +cos2A)=2sin A.故sin B=2sin A,所以ba= 2.(2)由余弦定理和c2=b2+3a2,得cos B=(1+3)a2c.由(1)知b2=2a2,故c2=(2+3)a2.可得cos2B=12,又cos B>0,故cos B=22,所以B=45°.18.(本小题满分12分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,cos B=3 5.(1)若b=4,求sin A的值;(2)若△ABC的面积S△ABC=4,求b,c的值.【解】(1)∵cos B=35>0,且0<B<π,∴sin B=1-cos2B=4 5.由正弦定理得asin A=bsin B,sin A=a sin Bb=2×454=25.(2)∵S△ABC=12ac sin B=4,∴12×2×c×45=4,∴c=5.由余弦定理得b2=a2+c2-2ac cos B=22+52-2×2×5×35=17,∴b=17.19.(本小题满分12分)(2015·安徽高考)在△ABC中,∠A=3π4,AB=6,AC=32,点D在BC边上,AD=BD,求AD的长.【解】 设△ABC 的内角∠BAC ,B ,C 所对边的长分别是a ,b ,c , 由余弦定理得a 2=b 2+c 2-2bc cos ∠BAC =(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,所以a =310.又由正弦定理得sin B =b sin ∠BAC a =3310=1010,由题设知0<B <π4, 所以cos B =1-sin 2B =1-110=31010.在△ABD 中,因为AD =BD ,所以∠ABD =∠BAD ,所以∠ADB =π-2B ,故由正弦定理得AD =AB ·sin B sin (π-2B )=6sin B 2sin B cos B =3cos B =10.20.(本小题满分12分)某观测站在城A 南偏西20°方向的C 处,由城A 出发的一条公路,走向是南偏东40°,在C 处测得公路距C 处31千米的B 处有一人正沿公路向城A 走去,走了20千米后到达D 处,此时C 、D 间的距离为21千米,问这人还要走多少千米可到达城A?【解】 如图所示,设∠ACD =α,∠CDB =β.在△CBD 中,由余弦定理得cos β=BD 2+CD 2-CB 22BD ·CD =202+212-3122×20×21=-17,∴sin β=437.而sin α=sin(β-60°)=sin βcos 60°-sin 60°cos β=437×12+32×17=5314. 在△ACD 中,21sin 60°=AD sin α,∴AD =21×sin αsin 60°=15(千米). 所以这人还要再走15千米可到达城A .21.(本小题满分12分)(2016·洛阳模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2C +22cos C +2=0.(1)求角C 的大小;(2)若b =2a ,△ABC 的面积为22sin A sin B ,求sin A 及c 的值. 【导学号:05920081】【解】 (1)∵cos 2C +22cos C +2=0,∴2cos 2C +22cos C +1=0,即(2cos C +1)2=0, ∴cos C =-22. 又C ∈(0,π),∴C =3π4.(2)∵c 2=a 2+b 2-2ab cos C =3a 2+2a 2=5a 2, ∴c =5a ,即sin C =5sin A , ∴sin A =15sin C =1010. ∵S △ABC =12ab sin C ,且S △ABC =22sin A sin B , ∴12ab sin C =22sin A sin B ,∴absin A sin B sin C =2,由正弦定理得 ⎝ ⎛⎭⎪⎫c sin C 2sin C =2,解得c =1. 22.(本小题满分10分)已知函数f (x )=m sin x +2cos x (m >0)的最大值为2. (1)求函数f (x )在[0,π]上的单调递减区间;(2)若△ABC 中,f ⎝ ⎛⎭⎪⎫A -π4+f ⎝ ⎛⎭⎪⎫B -π4=46sin A sin B ,角A ,B ,C 所对的边分别是a ,b ,c ,且C =60°,c =3,求△ABC 的面积.【解】 (1)由题意,f (x )的最大值为m 2+2,所以m 2+2=2.又m >0,所以m =2,f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4.令2k π+π2≤x +π4≤2k π+3π2(k ∈Z ), 得2k π+π4≤x ≤2k π+5π4(k ∈Z ).所以f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤π4,π.(2)设△ABC 的外接圆半径为R , 由题意,得2R =c sin C =3sin 60°=2 3. 化简f ⎝ ⎛⎭⎪⎫A -π4+f ⎝ ⎛⎭⎪⎫B -π4=46sin A sin B ,得sin A +sin B =26sin A sin B .由正弦定理,得2R (a +b )=26ab ,a +b =2ab .① 由余弦定理,得a 2+b 2-ab =9, 即(a +b )2-3ab -9=0.②将①式代入②,得2(ab )2-3ab -9=0, 解得ab =3或ab =-32(舍去), 故S △ABC =12ab sin C =334.。

2019-2020学年人教A版高中数学必修五同步课时分层训练:模块综合检测卷 Word版含解析

模块综合检测卷(时间:120分钟 满分:150分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)2.设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <BD .A >B3.不等式6x 2+x -2≤0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23或x ≥12C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥12D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23 4.已知在各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1a 15的值为( )A .100B .-100C .10 000D .-10 0005.(2018·太原一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =60°,b =1,S △ABC =3,则c 等于( )A .1B .2C .3D .46.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定8.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19B .13C .1D .729.(2019·河南百校联盟模拟)等差数列{a n }中,S n 是其前n 项和,a 1=-9,S 99-S 77=2,则S 10=( )A .0B .-9C .10D .-1010.(2019·河南信阳模拟)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代一种质量单位),在这个问题中,甲得 钱( )A.53 B .32 C.43D .5411.(2018·武昌调研)如图,据气象部门预报,在距离某码头南偏东45°方向600 km 处的热带风暴中心正以20 km/h 的速度向正北方向移动,距风暴中心450 km 以内的地区都将受到影响,则该码头将受到热带风暴影响的时间为( )A .14 hB .15 hC .16 hD .17 h12.若两个正实数x ,y 满足1x +4y =1,且不等式x +y4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)二、填空题(本题共4小题,每小题5分,共20分)13.不等式x 2-2x +3≤a 2-2a -1在R 上的解集是∅,则实数a 的取值范围是 .14.已知等比数列{a n }的公比q ≠1,且a 1=1,3a 3=2a 2+a 4,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前4项和为 .16.如图,在△ABC 中,已知B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB = .三、解答题(本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)若不等式ax 2+5x -2>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <2, (1)求a 的值;(2)求不等式1-ax x +1>a +5的解集.18.(12分)(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .19.(12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a sin B =3b cos A .(1)求角A 的大小;(2)若a =7,b =2,求△ABC 的面积.20.(12分)(2019·沈阳质检)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5.(1)求数列{a n }的通项公式;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式.21.(12分)(2018·陕西四校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A =13.(1)求cos 2B +C2+cos 2A 的值; (2)若a =3,求△ABC 面积的最大值.22.(12分)某厂家拟在2018年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-km +1(k 为常数),如果不举行促销活动,该产品的年销售量为1万件.已知2018年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2018年该产品的利润y (单位:万元)表示为年促销费用m 的函数; (2)该厂家2018年的促销费用为多少万元时,厂家的利润最大? 1.不等式组⎩⎨⎧2x +y -2≥0,x +3y -3≤0表示的平面区域为( )解析:选C 取满足不等式组的一个点(2,0),由图易知此点在选项C 表示的阴影中,故选C.解析:选B 由题意得,B 2-A 2=-2ab ≤0,且A ≥0,B ≥0,可得A ≥B .故选B.解析:选A 因为6x 2+x -2≤0⇔(2x -1)(3x +2)≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12.故选A.解析:选C ∵a 3a 8a 13=a 38,∴lg(a 3a 8a 13)=lg a 38=3lg a 8=6. ∴a 8=100.又a 1a 15=a 28=10 000,故选C.解析:选D ∵S △ABC =12bc sin A ,∴3=12×1×c ×32,∴c =4.故选D. 解析:选B 依据题设条件,由正弦定理,得sin B cos C +cos B sin C =sin 2A ,有sin(B +C )=sin 2A , 从而sin(B +C )=sin A =sin 2A ,解得sin A =1或sin A =0(舍去), ∴A =π2,∴△ABC 是直角三角形.故选B.7.已知z =2x +y ,x ,y 满足⎩⎨⎧y ≥x ,x +y ≤2,x ≥m ,且z 的最大值是最小值的4倍,则m 的值是( )A.14 B .15 C.16 D .17解析:选A根据题中所给约束条件⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥m所得的可行域如图.根据y =-2x +z 可知z 的几何含义为直线在y 轴上的截距.显然y =-2x +z 在点(1,1)和(m ,m )处直线的截距分别取得最大值3和最小值3m ,故3=4·3m ,解得m =14. 故选A.解析:选D ∵3a =2b ,∴b =32a , 由正弦定理,得2sin 2B -sin 2A sin 2A =2b 2-a 2a 2=2×94a 2-a 2a 2=72.故选D.解析:选A∵数列{a n }是等差数列,∴数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,由题意知数列⎩⎨⎧⎭⎬⎫S n n 的首项为-9,公差为1,∴S n n =n -10,∴S 1010=0,∴S 10=0.故选A.解析:选C 甲、乙、丙、丁、戊五人所得钱数依次设为等差数列的a 1,a 2,a 3,a 4,a 5,设公差为d ,由题意知a 1+a 2=a 3+a 4+a 5=52,即⎩⎪⎨⎪⎧2a 1+d =52,3a 1+9d =52,解得⎩⎪⎨⎪⎧a 1=43,d =-16,故甲得43钱,故选C.解析:选B 记现在热带风暴中心的位置为点A ,t 小时后热带风暴中心到达B 点位置,在△OAB 中,OA =600,AB =20t ,∠OAB =45°,根据余弦定理得OB 2=6002+400t 2-2×20t ×600×22,令OB 2≤4502,即4t 2-1202t +1 575≤0,解得302-152≤t ≤302+152,所以该码头将受到热带风暴影响的时间为302+152-302-152=15(h).故选B. 解析:选B ∵不等式x +y4<m 2-3m 有解,∴⎝ ⎛⎭⎪⎫x +y 4min <m 2-3m ,∵x >0,y >0,且1x +4y =1,∴x +y 4=⎝ ⎛⎭⎪⎫x +y 4⎝ ⎛⎭⎪⎫1x +4y =4x y +y 4x +2≥24x y ·y 4x +2=4,当且仅当4x y =y 4x ,即x =2,y =8时取等号,∴⎝ ⎛⎭⎪⎫x +y 4min =4,∴m 2-3m >4,即(m +1)(m -4)>0,解得m <-1或m >4,故实数m 的取值范围是(-∞,-1)∪(4,+∞).故选B.解析:原不等式变形为x 2-2x -a 2+2a +4≤0,其在R 上解集为∅, ∴Δ=4-4(-a 2+2a +4)<0, 即a 2-2a -3<0,解得-1<a <3. 答案:(-1,3)解析:∵等比数列{a n }中,a 1=1,3a 3=2a 2+a 4,∴3q 2=2q +q 3.又∵q ≠1,∴q =2,∴a n =2n -1,∴1a n a n +1=⎝ ⎛⎭⎪⎫122n -1,即⎩⎨⎧⎭⎬⎫1a n a n +1是首项为12,公比为14的等比数列,∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前4项和为12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1441-14=85128. 答案:8512815.若实数x ,y 满足⎩⎨⎧x -y +1≥0,x +y ≥0,x ≤0,则z =3x +2y 的最小值是 .解析:不等式组表示的可行域如图阴影部分所示,设t =x +2y ,则y =-12x +t2, 当x =0,y =0时,t 最小=0. z =3x +2y 的最小值为1. 答案:1解析:在△ADC 中,cos C =AC 2+DC 2-AD 22·AC ·DC =72+32-522×7×3=1114.又0°<C <180°,∴sin C =5314.在△ABC 中,AC sin B =ABsin C ,∴AB =sin C sin B AC =5314×2×7=562. 答案:562解:(1)依题意可得,ax 2+5x -2=0的两个实数根为12和2, 由根与系数的关系得,12+2=-5a ,解得a =-2. (2)将a =-2代入不等式得,1+2x x +1>3,即1+2xx +1-3>0, 整理得,-(x +2)x +1>0,即(x +1)(x +2)<0,解得-2<x <-1, 则不等式的解集为{x |-2<x <-1}.解:(1)设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2. 故a n =(-2)n -1或a n =2n -1. (2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m =-188,此方程没有正整数解; 若a n =2n -1,则S n =2n -1. 由S m =63得2m =64,解得m =6. 综上,m =6.解:(1)因为a sin B =3b cos A , 由正弦定理得sin A sin B =3sin B cos A . 又sin B ≠0,从而tan A = 3. 由于0<A <π,所以A =π3.(2)解法一:由余弦定理a 2=b 2+c 2-2bc cos A ,及a =7,b =2,A =π3, 得7=4+c 2-2c ,即c 2-2c -3=0. 因为c >0,所以c =3.故△ABC 的面积S =12bc sin A =332. 解法二:由正弦定理,得7sin π3=2sin B , 从而sin B =217,又由a >b ,知A >B ,所以cos B =277.故sin C =sin(A +B )=sin ⎝ ⎛⎭⎪⎫B +π3=sin B cos π3+cos B sin π3=32114.所以△ABC 的面积S =12ab sin C =332. 解:(1)设等差数列{a n }的公差为d , 由题意知⎩⎪⎨⎪⎧2a 1+7d =4,5a 1+5×42d =-5,解得⎩⎨⎧a 1=-5,d =2,故a n =2n -7(n ∈N *).(2)由a n =2n -7<0,得n <72,即n ≤3, 所以当n ≤3时,a n =2n -7<0, 当n ≥4时,a n =2n -7>0. 由(1)知S n =n 2-6n ,所以当n ≤3时,T n =-S n =6n -n 2;当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18. 故T 5=13,T n =⎩⎨⎧6n -n 2,n ≤3,n 2-6n +18,n ≥4.解:(1)cos 2B +C2+cos 2A=1+cos (B +C )2+2cos 2A -1=12-cos A2+2cos 2A -1 =12-12×13+2×⎝ ⎛⎭⎪⎫132-1=-49.(2)由余弦定理可得(3)2=b 2+c 2-2bc cos A =b 2+c 2-23bc ≥2bc -23bc =43bc , 所以bc ≤94,当且仅当b =c =32时,bc 有最大值94. 又cos A =13,A ∈(0,π), 所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫132=223, 于是△ABC 面积的最大值为12×94×223=324. 解:(1)由题意,可知当m =0时,x =1, ∴1=3-k ,解得k =2,∴x =3-2m +1, 又每件产品的销售价格为1.5×8+16xx 元,∴y =x ⎝ ⎛⎭⎪⎫1.5×8+16x x -(8+16x +m )=4+8x -m =4+8⎝ ⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0).(2)∵m ≥0,16m +1+(m +1)≥216=8,当且仅当16m +1=m +1,即m =3时等号成立,∴y ≤-8+29=21,∴y max =21.故该厂家2018年的促销费用为3万元时,厂家的利润最大,最大利润为21万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合质量评估第一~三章 (120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果a<0,b>0,那么,下列不等式中正确的是( )()(()()2211A B C a b D a b a b< << > 2.在△ABC 中,∠A=60°,a =b=4,那么满足条件的△ABC ( ) (A)有一个解 (B)有两个解 (C)无解 (D)不能确定3.已知数列{a n }满足a 1=0,a n+1=a n +2n ,那么a 2 012的值是( ) (A)2 0122 (B)2 011×2 010 (C)2 012×2 013 (D)2 011×2 0124.(2011·辽宁高考)△ABC 的三个内角A ,B ,C 所对的边分别为a,b,c ,2asinAsinB bcos A +=则ba=( )()()((A B C D 5.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( )()()()()A B 7C 6D 6.设a,b, c ∈(-∞,0),则111a ,b ,c bca+++( ) (A)都不大于-2 (B)都不小于-2 (C)至少有一个不大于-2(D)至少有一个不小于-27.在△ABC 中,角A ,B ,C 的对边分别为a,b,c ,若(a 2+c 2-b 2则角B 的值为( )()()()()52A B C D 636633ππππππ 或或 8.已知x>0,y>0,2x+y=2,c=xy,那么c 的最大值为( )()()(()11A 1 B C D 2249.在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1-x 2)sinC=0有两个不相等的实根,则A 为( )(A)锐角 (B)直角 (C)钝角 (D)不能确定10.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )(A)35 (B)33 (C)31 (D)2911.已知各项均为正数的等差数列{a n }的前20项和为100,那么a 3·a 18的最大值是( )(A)50 (B)25 (C)100 (D)12.已知等差数列{a n }中,|a 3|=|a 9|,公差d<0,则使等差数列{a n }前n 项和S n 取最大值的正整数n 是( )(A)4或5 (B)5或6 (C)6或7 (D)8或9二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在题中的横线上)13.数列{a n }的通项公式为a n =2n-49,S n 达到最小时,n 等于__________.14.在△ABC 中,A ,B ,C 分别为a,b,c 三条边的对角,如果b=2a,B=A+60°,那么A=________.15.若负数a,b,c 满足a+b+c=-1,则111abc++的最大值是__________.16.不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是_______. 三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)在△ABC 中,角A ,B ,C 成等差数列,并且sinA ·sinC=cos 2B ,三角形的面积ABC S = 求三边a,b,c.18.(12分)(2011·福建高考)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项的和S k =-35,求k 的值.19.(12分)(2011·山东高考)在△ABC 中,内角A ,B ,C 的对边分别为a,b,c,已知cosA 2cosC 2c a.cosB b --=(1)求sinCsinA的值;(2)若1cosB ,4=b=2,求△ABC 的面积S.20.(12分)已知f(x)=ax 2+(b-8)x-a-ab,当x ∈(-3,2)时,f(x)>0;x ∈(-∞,-3)∪(2,+∞)时,f(x)<0. (1)求y=f(x)的解析式;(2)c 为何值时,ax 2+bx+c ≤0的解集为R.21.(12分)某公司计划在2012年内同时出售空调机和洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如表:试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?22.(12分)已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n . (1)求a n 及S n ; (2)令n 2n1b a 1=-(n ∈N *),求数列{b n }的前n 项和T n .答案解析1.【解析】选A.如果a<0,b>0,那么110,0,ab<>11,a b∴<故选A. 2.【解析】选C.根据正弦定理得bsinA sinB 1,a ===>故无解.故选C.3.【解析】选D.由已知a n+1-a n =2n,≨a 2-a 1=2×1,a 3-a 2=2×2,a 4-a 3=2×3,…,a n -a n-1=2(n-1),以上各式两端分别相加得:()()()n 1n 2 012a a 2123n 1n n 1.a n n 1.a 2 011 2 012.-=++⋯+-=-=-∴=⨯[]即故选D.4.【解析】选D.2asinAsinB bcos A +=2sinAsinAsinB sinBcos A b sinBsinB a sinA∴+=∴=∴== 故选D.5.【解析】选A.18789123a a a q 2.a a a ==()99456123q a a a a a a q ∴==故选A.6.【解题提示】解答本题关键是分析111a b c bca+++++的最大值. 【解析】选C.111a b c 6,bca+++++≤- 三者不能都大于-2.故选C.7.【解析】选D.在△ABC 中,根据b 2=c 2+a 2-2cacosB 得a 2+c 2-b 2=2cacosB ,代入已知得sinB 2∴=2B B ,33ππ∴==或故选D. 8.【解析】选B.由已知,22x y =+≥1c ,2∴≤故选B. 9.【解析】选A.4sin 2B-4(sin 2A-sin 2C)>0,即sin 2B+sin 2C>sin 2A,由正弦定理得b 2+c 2>a 2, 再由余弦定理得cosA>0,所以A 为锐角,故选A. 10.【解析】选C.设公比为q,由题意知2323113647113133311a a a q 2a .5a 2a a q 2a q 2a q 25a q 2a q q 2⎧==⎪⎨+=+=⎪⎩⎧=⎪⎨+=⎪⎩ 即 解得11q .2a 16⎧=⎪⎨⎪=⎩故55116(1)2S 31 .112⨯-==-故选C.11.【解析】选B.由题可知()3181202031820a a 20a a )S 100,a a 10,22++===∴+=(2318318a a a a ()25.2+∴≤= 故选B.12.【解题提示】解答本题的关键是分析出数列{a n }第几项开始有符号发生变化. 【解析】选B.由|a 3|=|a 9|得()()()22111n 1a 2d a 8d .a 5d.a a n 1d n 6d,d 0,+=+∴=-=+-=-< ()≨当n ≤6时,a n ≥0,当n>6时,a n <0, ≨前5项或前6项的和最大,故选B. 13.【解析】≧a n =2n-49,≨{a n }是等差数列,且首项为-47,公差为2,由()n n 1a 2n 490,a 2n 1490-=->⎧⎪⎨=--≤⎪⎩,解得n=25.≨从第25项开始为正,前24项都为负数,即前24项之和最小. 答案:24【方法技巧】求等差数列前n 项和最值的方法:对于等差数列,当公差不等于零时,则其为单调数列,所以其前n 项和往往存在最大值或最小值,常用的方法有:(1)通项公式法:先求出通项公式,通过通项公式确定等差数列的单调性,再求其正项或负项为哪些项,从而确定前n 项和的最值.(2)二次函数法:根据等差数列的前n 项和S n 是关于项数n 的一元二次函数,从而可直接配方,求其最值,但应注意项数n 为正整数,由此,本题还可有以下解法:方法二,a n =2n-49,a 1=-47<0,公差d=2>0, ≨数列{a n }为递增等差数列. 令a n =0,得1n 24.2=≨该数列中,a 1,a 2,…,a 24<0,a 25>0,…… ≨数列{a n }的前24项和最小,故n=24. 方法三,可知数列{a n }为等差数列,a 1=-47.()()1n n 222n a a n 472n 49S 22n 48nn 2424,+-+-∴===-=--() ≨当n=24时,S n 取最小值,故n=24. 14.【解析】≧b=2a,B=A+60°,≨sinB=2sinA, sinB=sin(A+60°),≨2sinA=sin(A+60°).12sinA sinA tanA 2=∴=又≧0°<A<180°,≨A=30°. 答案:30°15.【解题提示】解答本题一方面要注意常值代换的应用,另一方面要注意利用不等式的性质化“负”为“正”. 【解析】≧a+b+c=-1,≨1=-a-b-c.111a b c a b c a b c a b c a b cb ac a c b3()()()a b a c b c32229.---------∴++=++=--+-+-+≤----=- 当且仅当a=b=c=13-时取等号. 答案:-916.【解析】不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,即(a+2)x 2+4x+a-1>0对一切x ∈R 恒成立,若a+2=0,则4x-3>0,显然不恒成立;若a+2≠0,则a 200+>⎧⎨∆<⎩,即()()2a 2044a 2a 10+>⎧⎪⎨-+-<⎪⎩,解得a>2.答案:(2,+≦)17.【解析】≧角A ,B ,C 成等差数列, ≨A+C=2B ,A+B+C=180°,≨B=60°, 所以21sinAsinC cos 60.4=︒= ①又ABC 1S acsinB,2==得ac=16. ② 由①②及a csinA sinC=得:22ac a c ()()64,sinAsinC sinA sinCa c8.sinA sinC asinB b 8sinB 8sin60sinA========︒=所以 又222a c b 1cosB ,2ac 2+-== ()()222222a cb ac,ac b 3ac,a c 484896,a c ∴+-=+-=∴+=+=∴+=③联立③与②得a 2,c 2,a 2,c 2.====或 18.【解析】(1)设等差数列{a n }的公差为d,则a n =a 1+(n-1)d,由a 1=1,a 3=-3可得1+2d=-3.解得d=-2. 从而a n =1+(n-1)×(-2)=3-2n ,n ∈N *. (2)由(1)可知a n =3-2n.()2n n 132n S 2n n .2+-∴==-[]由S k =-35可得2k-k 2=-35. 即k 2-2k-35=0,解得k=7或k=-5. 又k ∈N *,故k=7.19.【解析】(1)由正弦定理设a b ck,sinA sinB sinC=== 则2c a 2ksinC ksinA 2sinC sinA,b ksinB sinB ---== cosA 2cosC 2sinC sinA cosB sinB--∴=即(cosA-2cosC )sinB=(2sinC-sinA)cosB, 化简可得sin(A+B)=2sin(B+C), 又A+B+C=π,≨sinC=2sinA.因此sinC2.sinA= (2)由sinC2sinA=得c=2a. 由余弦定理b 2=a 2+c 2-2accosB 及1cosB ,b 2.4==22214a 4a 4a .a 1.c 2.4=+-⨯==得解得从而又≧cosB=14且0<B<π,sinB ∴=因此11S acsinB 1222==⨯⨯= 20.【解析】(1)由x ∈(-3,2)时,f(x)>0;x ∈(-≦,-3)∪(2,+≦)时,f(x)<0知:-3,2是方程ax 2+(b-8)x-a-ab=0的两根且a <0,()2b 832a 3,a a ab b 5.32a f x 3x 3x 18.-⎧-+=-⎪=-⎧⎪∴⎨⎨--=⎩⎪-⨯=⎪⎩∴=--+得 (2)由a<0,知二次函数y=ax 2+bx+c 的图象开口向下. 要使-3x 2+5x+c ≤0的解集为R ,只需Δ≤0, 即25+12c ≤0,得25c .12≤- ≨当25c 12≤-时,ax 2+bx+c ≤0的解集为R. 21.【解析】设空调机、洗衣机的月供应量分别是x 台,y 台,总利润是z ,则z=6x+8y由题意有30x 20y 3005x 10y 110x 0y 0+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩且x, y 均为整数. 作出可行域如图.由图知直线31y x z 48=-+过M (4,9)时,纵截距最大.这时z 也取最大值z max = 6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9 600元.22.【解题提示】第(1)题可以列方程组求出首项和公差,从而易求a n ,S n .第(2)题要注意对b n 的化简变形和裂项求和法的应用.【解析】(1)设等差数列{a n }的首项为a 1,公差为d,由于a 3=7,a 5+a 7=26, ≨a 1+2d=7,2a 1+10d=26.解得a 1=3,d=2.由于a n =a 1+(n-1)d,()1n n n a a S .2+=≨a n =2n+1,S n =n(n+2),n ∈N *.(2)≧a n =2n+1,()2n a 14n n 1.∴-=+()n 1111b ().4n n 14n n 1∴==-++ 故T n =b 1+b 2+…+b n()111111(1)4223n n 111n (1).4n 14n 1=-+-+⋯+-+=-=++ ≨数列{b n }的前n 项和()*n n T n N .4n 1=∈+,。

相关文档
最新文档