九年级数学上册 23.1 求概率的方法课堂导学 北京课改版
北京课改初中数学九上《23.2 用列举法求概率》教案

山东省郯城三中九年级数学上册《25.2 用列举法求概率》教案主备人 课型 新授验收结果:合格/需完善分管领导课时第1课教学目标:1.理解P (A )=n m(在一次试验中有n 种可能的结果,其中A 包含m 种)的意义. 2.应用P (A )=nm解决一些实际问题.重点、一般地,如果在一次试验中,有几种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的。
种结果,那么事件A 发生的概率为P(A)= nm,以及运用它解决实际间题. 难点、通过实验理解P(A)=nm并应用它解决一些具体题目。
教 学 过 程教师活动学生活动一复习引入请同学们回答下列问题 1. 概率是什么?2. P(A)的取值范围是什么?3. 在大量重复试验中,什么值会稳定在一个常数上?我们又把这个常数叫做什么?4. A=必然事件,B 是不可能发生的事件,C 是随机事件.诸你画出数轴把这三个量表示出来 二、探索新知 一、直接引入课题教师:不管求什么事件的概率,我们都可以做大量的试脸.求频率得概率,这是上一节课也是刚才复习的内容,它具有普遍性,但求起来确实很麻烦,是否有比较简单的方法,这种方法就是我们今天要介绍的方法—列举法 二、问题情境把学生分为10组,按要求做试验并回答问题. 1.从分别标有1,2,3 ,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?其抽到1的概率为多少?2.掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1的概率是多少? 三、题后总结得出结论老师口问.学生口答,学生积极参加。
教师适时引导学生归纳 老师点评:1,(口述)一般地,在大量重复试验中,如果事件A 发生的频率nm会稳定在某一个常数P 附近,那么这个常数P 就叫做事件A 的概率,记为P(A)=P . 2.(板书)0≤P ≤1.3.(口述)频率、概率一、教师直接导入,二、生积极参与,回答问题,在比较充分的感知下,达到加深理解的目的。
老师点评:题目1.可能结果有1,2,3,4,5等5种杯由于纸签的形状、大小相同,又是随机抽取的,所以我们可以认为:每个号被抽到的可能性相等,都是1/5.其概率是1/5。
【最新北京课改版精选】北京课改初中数学九上《23.2 用列举法求概率》教案.doc

等,事件A包含其中的、种结果,那么事件A发生的概率为P(A)= 。教师在学生完成问题后应注意引导学生比较题目的异同。
1‘学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举主要事件,在全班发布。
可根据学生的情况先要求完成前4题,题5可留作课事件的概率,我们都可以做大量的试脸.求频率得概率,这是上一节课也是刚才复习的内容,它具有普遍性,但求起来确实很麻烦,是否有 比较简单的方法,这种方法就是我们今天要介绍的方法—列举法
二、问题情境
把学生分为10组,按要求做试验并回答问题.
1.从分别标有1,2,3,4, 5号的5根纸签中随机地抽取一根.抽出的号码有多少种?其抽到1的概率为多少?
求下列事件的概率
(1)指针指向绿色;
(2)指针指向红色 或黄色
(3)指针不指向红色.
四、巩固提高
教材 练习 , ,
练习
五、布置作业
完成同步上本节第一课时,预习下一课时并完成同步第二课时的自主学习部分
六小结谈谈你的收获和体会
老师口问.
学生口答,学生积极参加。
教师适时引导学生归纳
老师点评:1,(口述)一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某一个常数P附近,那么这个常数P就叫做事件A的概率,记为P(A)=P.
难点、通过实验理解P(A)= 并应用它解决一些具体题目。
教学过程
教师活动
学生活动
一复习引入
请同学们回答下列问题
1.概率是什么?
2. P(A)的取值范围是什么?
3.在大量重复试验中,什么值会稳定在一个常数上?我们又把这个常数叫做什么?
【最新北京课改版精选】北京课改初中数学九上《23.2概率的简单应用 教案 北京课改版.doc

23.2概率的简单应用教学目标:1、通过实例进一步丰富对概率的认识;2、紧密结合实际,培养应用数学的意识。
教学重点和难点:用等可能事件的概率公式解决一些实际问题。
教学过程: 一、提出问题:1.如果有人买了彩票,一定希望知道中奖的概率有多大.那么怎么样来估计中奖的概率呢?2.出门旅行的人希望知道乘坐哪一中交通工具发生事故的可能性较小?指出:概率与人们生活密切相关,在生活,生产和科研等各个领域都有着广泛的应用.二、例题分析:例1、某商场举办有奖销售活动,每张奖券获奖的可能性相同,以每10000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖100个,问1张奖券中一等奖的概率是多少?中奖的概率是多少?分析:因为10 000张奖券中能中一等奖的张数是10张,所以一张奖券中一等奖的概率就是100011000010=;而10000张奖券中能中奖的奖券总数是1+10+100=111张所以一张奖券中奖的概率是10000111。
例2、生命表又称死亡表,是人寿保险费率计算的主要依据,如下图是1996年6月中国人民银行发布的中国人寿保险经验生命表,(1990-1993年)的部分摘录,根据表格估算下列概率(结果保留4个有效数字)(1)某人今年61岁,他当年死亡的概率. (2)某人今年31岁,他活到62岁的概率.分析:(1)解释此表的意思;(2)根据表中数据可得:61岁的生存人数为867685,61岁的死亡人数为10853,所以所求概率为01251.0867685108536161≈==l d p(3)根据表中数据得31l =975856,62l =856832,所以所求的概率为8780.09758568568323162≈==l l p三、课内练习课后习题节选 四、小结976856832 348 422898学会调查、统计,利用血管的概率结合实际问题发表自己的看法,并对事件作出合理的判断和预测,用优化原则作决策,解决实际问题。
新北师大版初中数学九年级上册第3章 概率的进一步认识《3.1用树状图或表格求概率》优质课件

回顾与思考
必然事件
不可能事件
不确定事件
可能性 人们通常用1(或100%)来表示必然事件发生
的可能性,用0表示不可能事件发生的可能性.
1
0
2 (50%)
1(100%)
不可能 发生
可能 发生
必然 发生
回顾与思考
概率
概率 事件发生的可能性,也称为事件发生的概率 (probability).
第二枚硬币 正
反
表
第一枚硬币
格
正
(正,正) (正,反)
反
(反,正) (反,反)
由表可知:总共有 4 种等可能结果.
小明获胜的结果有 1 种:(正,正),P(小明获胜)=
1
;
4
小颖获胜的结果有 1 种:(反,反),P(小颖获胜)=
1; 4
小凡获胜的结果有
2
种:(正,反)(反,正),P(小凡获胜)=
1 2
C、1 D、1
6
4
如何画树状图或列表,需注意什么?
注意:拿第2个球时第1个球并没有放回,两次拿的球不可 能是同一个球,列表时要注意“对角线”上的表格就划去。 类似这种“不放回”求概率的尽量画树状图
数学理解
3.小明从一定高度随机掷一枚质地均匀的硬币,他已经 掷了两次硬币,结果都是“正面朝上”.那么,你认为 小明第三次掷硬币时,“正面朝上”与“反面朝上”的 可能性相同吗?如果不同,哪种可能性大?说说你的理 由,并与同伴交流.
93
小明胜小颖的结果有三种:(石头,剪刀)(剪刀,)(布, 石头),所以小明获胜的概率为 3 1
93
小颖胜小明的结果也有三种:(剪刀,石头)(布,剪
刀)(石头,布),所以小颖获胜的概率为 3 1
九年级数学上册23.2概率的简单应用课件北京课改版.

1.检验员检测了一台机床前三天正常生产的 全部零件的质量,检验结果如下表(合格率 精确到0.0001)
零件生产时间 第一天 第二天 第三天
零件的合格率%
97.75
98.05
97.95
合格的零件数 其中,合格率 100% 检测的零件数
从这台机床第四天正常生产的零件中随机抽 取一个,估计这个零件是合格品的概率。
9 8 7 6 5 4 3 2 1 0 5 9 8 7 6 4 3 2 1 9 8 7 6 5 4 3 2 0 1 0
0
转
解:所有可能中奖的号码有1000个, 其中,中一等奖的号码有1个; 中二等奖的号码有9个;
中三等奖的号码有90个。
所有中奖的号码共有100个。 每个号码中奖的可能性都相等。
(1)小华得到3张奖券,有3个可能中一等奖 的机会。所以, 3 P(小华中一等奖)=
(2)小明得到1张奖券,有9个可能中二等奖 的机会。所以, 9 P(小明中二等奖)=
1000 1000
(3)得到1张奖券,有100个可能中奖的机会。 所以, 100 1 P(得到1张奖券中奖)= 答:略
1000
10
议一议 每期购物奖券的中奖率与随意得 到一张奖券的中奖概率的区别是什么?
每期购物奖券的中奖率,是指中奖奖 券数占全部奖券数的百分比,也就是:
2006NBA赛季中,由姚明所在的 火箭队与森林狼队进行对抗赛,规定 四节总分高者胜。。。。。。在这种 情况下,求火箭队最后获胜的概率。
例2 某商场为促销商品,每期发行 1000张编号为000~999的购物奖券,当 奖券发完后,从0~9中分别摇出三个数 字组成一个中奖号。奖券号码与中奖号 相同时,为一等奖;仅后两位号码相同 时,为二等奖;仅最后一位号码相同时, 为三等奖。
【最新北京课改版精选】北京课改初中数学九上《23.2 用列举法求概率》教案.doc

一、直接引入课题
教师:不管求什么事件的概率,我们都可以做大量的试脸.求频率得概率,这是上一节课也是刚才复习的内容,它具有普遍性,但求起来确实很麻烦,是否有 比较简单的方法,这种方法就是我们今天要介绍的方法—列举法
二、问题情境
把学生分为10组,按要求做试验并回答问题.
1.从分别标有1,2,3,4, 5号的5根纸签中随机地抽取一根.抽出的号码有多少种?其抽到1的概率为多少?
列事件的概率.
(1)牌上的数字为3;
(2)牌上的数字为奇数;
(3)牌上的数字为大于3且小于6.
图25-7
4:如图25-7所示,有一个转盘,转盘分成4个相同的扇形,颇色分为红、绿、黄三种颇色,指针的位置固定,转动转盘后任其自由停止.其中的某个扇形会恰好停在指
针所指的位里(指针指向两个扇形的交线时,当 作指向右边的扇形),
----------------- ------------------ -------------------------
----------------- ------------------三、深化感悟----------------
----------------- ------------------ ------------------------
求下列事件的概率
(1)指针指向绿色;
(2)指针指向红色 或黄色
(3)指针不指向红色.
四、巩固提高
教材 练习 , ,
练习
五、布置作业
完成同步上本节第一课时,预习下一课时并完成同步第二课时的自主学习部分
六小结谈谈你的收获和体会
老师口问.
学生口答,学生积极参加。
教师适时引导学生归纳
北京课改版九年级(上) 中考题同步试卷:23.1 求概率的方法(09)
北京课改版九年级(上)中考题同步试卷:23.1 求概率的方法(09)一、选择题(共4小题)1.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A.B.C.D.2.某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()A.B.C.D.3.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是()A.B.C.D.4.从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上的概率是()A.B.C.D.二、填空题(共4小题)5.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.6.在m2□6m□9的“□”中任意填上“+”或“﹣”号,所得的代数式为完全平方式的概率为.7.现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是.8.一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是.三、解答题(共22小题)9.为鼓励大学生创业,政府制定了小型企业的优惠政策,许多小型企业应运而生.某市统计了该市2015年1﹣5月新注册小型企业的数量,并将结果绘制成如图两种不完整的统计图:(1)某市2015年1﹣5月份新注册小型企业一共家,请将折线统计图补充完整.(2)该市2015年3月新注册小型企业中,只有2家是养殖企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营情况.请以列表或画树状图的方法求出所抽取的2家企业恰好都是养殖企业的概率.10.东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划,某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图)(1)将统计图补充完整;(2)求出该班学生人数;(3)若该校共用学生3500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.11.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有人,将条形图补充完整;(2)扇形图中m=,n=;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.12.为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数分布直方图分数段(分手为x分)频数百分比60≤x<70820%70≤x<80a30%80≤x≤9016b%90≤x<100410%请根据图表提供的信息,解答下列问题:(1)表中的a=,b=;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.13.某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图①和图②两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A、B、C、D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A、B两班的概率.14.为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c (1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.15.今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:(1)求全班学生人数和m的值.(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<611016.一只不透明的袋子中装有1个白球、1个蓝球和2个红球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,摸出红球的概率为;(2)从袋中随机摸出1个球(不放回)后,再从袋中余下的3个球中随机摸出1个球.求两次摸到的球颜色不相同的概率.17.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.18.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A 组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.19.父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性是否会增大?请说明理由.20.“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦•我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出2名去参加市中学生演讲比赛,已知A等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.21.根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其他共五类.根据调查的部分相关数据,绘制的统计图表如下:根据所给信息解答下列问题:(1)请补全条形统计图并在图中标明相应数据;(2)若菏泽市约有880万人口,请你估计最关注环保问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.22.甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.23.为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C 跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.24.国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B 两所学校的概率.25.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C 两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.26.“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2﹣3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计.绘制成频数分布直方图,如图所示.(1)图中a值为.(2)将跳绳次数在160~190的选手依次记为A1、A2、…A n,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A1和A2的概率.27.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x||x|=4|x|=31≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?28.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.29.有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.30.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.北京课改版九年级(上)中考题同步试卷:23.1 求概率的方法(09)参考答案一、选择题(共4小题)1.C;2.A;3.B;4.D;二、填空题(共4小题)5.;6.;7.;8.;三、解答题(共22小题)9.16;10.;11.100;25;108;12.12;40;108°;;13.;14.;15.;16.;17.;18.;19.;20.20;72;40;21.;22.;23.;24.;25.;26.4;27.;28.;29.;30.25;72;第11页(共11页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.1 求概率的方法
名师导学
典例分析
例1 某中学七年级有6个班,要从中选出2个班代表学校参加某项活动,七(1)班必须参加,
另外再从七(2)班至七(6)班中选出1个班.七(4)班有同学建议用如下的方法:从装有编号为
1,2,3的3个白球的A袋中摸出1个球,再从装有编号为1,2,3的3个红球的B袋中摸出1
个球(两袋中球的大小、形状与质量完全一样),摸出的2个球的数字和是几,就选几班,你认
为这种方法公平吗?请说明理由.
思路分析:七(4)班同学的建议是否公平,关键在于该建议对每个班是不是等可能性的,这就
需要求各种情况的概率,要么用列表法,要么用画树状图法.
解:方法不公平.方法一:用列表法来说明.
方法二:用画树状图法来说明.如图23-1-1
所以,七(2)班被选中的概率为91;七(3)班被选中的概率为92;七(4)班被选中的概率为
3193;七(5)班被选中的概率为92;七(6)班被选中的概率为9
1
,所以这种方法不公平,显
然对七(4)班有利.
例2 一个不透明的袋子里放着3个黑球和2个白球,搅匀后同时摸出2个,要求摸出的2个
球颜色不同的概率.请设计一个使用替代物的模拟实验来估计这个事件发生的概率.
思路分析:解决本题的实验方案有很多,只要可行即可,这里举出两个简单的例子,仅供参考.
解:方案一:取5张大小材料都相同的纸片,2张上面写上‘‘白”,3张上面写上“黑”,
然后背面向上,同时摸出2张,记录下2张牌标注的‘‘颜色”;放回后重新洗牌,再摸第二
次„„计算摸出的两张牌中恰好是一个“白’’字,一个“黑”字出现的频率.
方案二:取一些小纸片,每5张一组,每一组中写2张“1”,写3张‘‘2”,然后把它们揉成
一团,每次从一个小组中抽2个小纸团,打开查看所写的数据,计算抽出的2张纸片恰好一张
写“l”,一张写“2”出现曲频率.
突破易错☆挑战零失误
规律总结
善于总结★触类旁通
1 方法点拨:这类题目的实质就是求事件的概率,解题过程中需要罗列所有可能的结果,借助
于列表或画树状图的方法可以有效地避免结果重复或遗漏.
2 方法点拨:本题是关于模拟实验的题目,模拟实验是仿真的,解决此类问题时要注意替代物
与模拟对象之间的对应关系,二者之间的数量比必须是同步对应的,就本题而言,例如2个
“自球”对应着2个“1”,3个黑球对应着3个“2”,另外,用模拟实验的方法估计事件发
生的概率,关键要选好替代物,以便于操作.