2011年小学六年级数学竞赛试题46
2011年六年级数学能力测试题

学号
得
答
8
不
÷(
)=(
)÷60=2:5=(
)%
线
7 .一张正方形纸上下对折,再左右对折,它的面积是原来正方形的 ( ),它的周长是原正方形的( )。 8.A 和 B 都是非 0 自然数,且 A>B,如果 A-B=1,那么他们的最大公 约数是( ) ,最小公倍数是( ) 。 9.一个梯形,上下底的和是 a 分米,高是上下底和的一半,这个梯形 的面积是( )平方分米。 10. X Y 5 25 ? 50 如果 x 与 y 成正比例, “?”填( 如果 x 与 y 成反比例, “?” 填 ( ) ; ) 。
4
〔 (Leabharlann 8 3 7 1 + )÷ 〕× 9 3 15 10
2009 ×2009 2010
2
3、解方程(6 分) 1 1 1 ∶ = ∶x 9 3 12
x-0.8x+9=19
五、操作与分析(8 分) (一)按要求画图和计算。 1.先画一个长 4 厘米,宽 3 厘米的长方形, 然后在这个长方形里画一个最大的圆(2 分) 2.这个圆的面积是多少平方厘米?(2 分)
不
4、小兰看一本故事书,第一天看了 25%,第二天看了 42 页,这时已 看的与未看的页数之比是 2∶3。这本书共有多少页?(5 分)
得 答 题
5、王大伯参加我县农村合作医疗保险。条款规定:农民住院医疗费设 起付线,县级医疗机构为 400 元,在起付线以上的部分按 45%补偿。今年 4 月份王大伯患了急性肠炎,在定点医院住院治疗了 20 天,医疗费用共计 8260 元。按条款规定,王大伯只要自付多少元?(5 分)
姓名: 班级
内 密 封
11.公路上有一排电线杆共 25 根,每相邻两根之间的距离是 45 米, 现在要改成 60 米,除第一根和最后一根不动外,还有( )根不动。 12.右图描述了我放学回家的行程情况。 (1)我家离学校有( )米路。 (2)从图中可以看出我在离学校 ( )米处停留了( )分钟。 (3)我前 5 分钟的平均速度是每分钟 ( )米。 二、仔细推敲,做出判断(正确的记“√” ,错误的记“×” ) (5 分)
小学六年级数学竞赛试题及详细答案

小学六年级数学竞赛试题及详细答案成若干个小正方体,其中有12个小正方体在长方体的底面上,有16个小正方体在长方体的侧面上,问这个长方体的体积是多少?解答过程:设长方体的长为x,则宽和高分别为x/2,由题意可得:底面上小正方体的个数为:(x/2)²=12,解得x=6√2侧面上小正方体的个数为:4(x/2)=16,解得x=8因为x只能有一个值,所以x=6√2所以长方体的体积为:(6√2)³=432√2答案:432√2法中,左右两个乘法的结果相同,于是可以直接将左右两个乘法相加,得到分子部分的简化形式,再将分母部分也进行类似的化简,最终得到1/3的结果。
二.填空题1.解法一:设7岁时兔子的数量为x,则10岁时兔子的数量为2x,14岁时兔子的数量为3x。
根据题意,有3x-2x=24,解得x=24,因此7岁时兔子的数量为24只。
解法二:设兔子的平均寿命为x岁,则根据题意,有3x=2(x+7)+24,解得x=10,因此兔子的平均寿命为10岁,7岁时兔子的数量为24只。
2.解法一:设第一个数为x,则第二个数为x+1,第三个数为x+2,根据题意,有3x+3=2(x+1)+x+2,解得x=1,因此这三个数分别为1、2、3.解法二:设这三个数的平均数为x,则根据题意,有3x=2(x+1)+x+2,解得x=2,因此这三个数分别为1、2、3.3.设这个大长方体的长、宽、高分别为a、b、c,则根据题意,有2(ab+bc+ac)=600,解得XXX。
又因为这个大长方体由12个小长方体组成,因此有abc=12V,其中V为大长方体的体积。
将ab+bc+ac=300代入abc=12V中,解得V=75.4.设这批书共有x本,则根据题意,有x≡2 (mod 11),x≡0 (mod 3),x≡1 (mod 4)。
根据中国剩余定理,可以得到x≡89 (mod 132),因此这批书共有89+132k (k为非负整数)本。
小学六年级数学竞赛试题及详细答案

小学六年级数学竞赛试题及详细答案二、填空题共40分,每小题5分1.在下面的“□”中填上合适的运算符号,使等式成立:1□9□9□2×1□9□9□2×19□9□2=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边;那么,这个等腰梯形的周长是_ _厘米;3.一排长椅共有90个座位,其中一些座位已经有人就座了;这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻;原来至少有_ _人已经就座;4.用某自然数a去除1992,得到商是46,余数是r;a=_ _,r=_ _;5.“重阳节”那天,延龄茶社来了25位老人品茶;他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000;其中年龄最大的老人今年_ ___岁;6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本;那么,至少__ __个学生中一定有两人所借的图书属于同一种;7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分;那么得分最少的选手至少得__ __分,至多得__ __分;每位选手的得分都是整数8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管;那么,只有当锯得的38毫米的铜管为__ __段、90毫米的铜管为_ ___段时,所损耗的铜管才能最少;三、解答下面的应用题要写出列式解答过程;列式时,可以分步列式,可以列综合算式,也可以列方程共20分,每小题5分1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米;现由甲工程队先修3天;余下的路段由甲、乙两队合修,正好花6天时间修完;问:甲、乙两个工程队每天各修路多少米2.一个人从县城骑车去乡办厂;他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米;又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程;3.一个长方体的宽和高相等,并且都等于长的一半如图12;将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米;求这个大长方体的体积;4.某装订车间的三个工人要将一批书打包后送往邮局要求每个包内所多35本;第2次他们把剩下的书全部领来了,连同第一次多的零头一起,刚好又打11包;这批书共有多少本四、问答题共35分1.有1992粒钮扣,两人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输;问:保证一定获胜的对策是什么5分2.有一块边长24厘米的正方形厚纸,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒;现在要使做成的纸盒容积最大,剪去的小正方形的边长应为几厘米6分3.个体铁铺的金师傅加工某种铁皮制品,需要如图13所示的a、b两种形状的铁皮毛坯;现有甲、乙两块铁皮下脚料如图14、图15,图13、图14、图15中的小方格都是边长相等的正方形;金师傅想从其中选用一块,使选用的铁皮料恰好适合加工成套的这种铁皮制品“成套”,指a、b两种铁皮同样多,并且一点材料也不浪费;问:1金师傅应当从甲、乙两块铁皮下脚料中选哪一块3分2怎样裁剪所选用的下脚料请在图上画出裁剪的线痕或用阴影表示其中一种形状的毛坯5分4.只修改21475的某一位数字,就可以使修改后的数能被225整除;怎样修改6分5.1要把9块完全相同的巧克力平均分给4个孩子每块巧克力最多只能切成两部分,怎么分5分2如果把上面1中的“4个孩子”改为“7个孩子”,好不好分如果好分,怎么分如果不好分,为什么5分详解与说明一、计算题说明:要想得到简便的算法,必须首先对题中每个数和运算符号作全面、,马上就应该知道它可以化为3.6;而3.6与36只差一个小数点,于是,又容易想到把“654.3×36”变形为“6543×3.6”,完成了这步,就为正”采用了同样的手段,这种技巧本报多次作过介绍;说明:解这道题可以从不同的角度来观察;解法一是先观察、比较分子部分每个加数连乘积的因数,发现了前后之间的倍数关系,从而把“1×3×24”作为公因数提到前面,分母部分也作了类似的变形;而解法二,是着眼于整个繁分数,由分子看到分母,发现分子部分的左、中、右三个乘分子部分括号内三个乘积的和约去了;本题是根据数学之友7第2页例5改编的;3.解法一:解法二:说明:解法一是求等比数列前n项和的一般方法,这种方法本报217期第一版“好伙伴信箱”栏中曾作过介绍;由于本题中后一个加数总是前一个加数的一半,因而,只要添上一个最小的加数,就能凑成“2倍”,也就是它前面的一个加数,这就不难想到解法二;二、填空题1.解:1×9×9+2×1+9-9+2×19-9-2=83×3×8=1992或1×9×9+2×1×9÷9×2×19-9+2=83×2×12=1992本题答案不唯一,只要所填的符号能使等式成立,都是正确的说明:在四个数字之间填上三个运算符号,使它们的计算结果为某个已知数,这是选手们熟悉的“算式谜”题;而这道题却不容易一下子判断括号内的计算结果应该是多少,这就需要把1992分解为三个数连乘积的形式,1992=83×3×2×2×2,因为83、3、2、2、2组成三个乘积为1992的数有多种组合形式,所以填法就不唯一了;2.解:55+15+25×2=120厘米说明:要算周长,需要知道上底、下底、两条腰各是多长;容易判断:下底最长,应为55厘米;关键是判断腰长是多少,如果腰长是15厘米,15×2+25=55,说明上底与两腰长度之和恰好等于下底长,四条边不能围成梯形,所以,腰长只能是25厘米;读者从本报190期第三版任意三根小棒都能围成三角形吗一文中应当受到启发;3.解:最少有说明:根据题意,可推知这排长椅上已经就座的任意相邻的两人之间都有两个空位;但仅从这个结果中还不能肯定长椅上共有多少个座位,因为已经就座的人最左边一个最右边一个既可以坐在左边右边起第一个座位上,也可以坐在左边右边起第二个座位上如图16所排出的两种情况,“●”表示已经就座的人,“○”表示空位”;不过,题目中问“至少”有多少人就座,那就应选第二种情况,每三人○●○一组,每组中有一人已经就座;1●○○●○○●……2○●○○●○○●○……图164.解法一:由1992÷46=43 (14)立即得知:a=43,r=14解法二:根据带余除法的基本关系式,有1992=46a+r0≤r<a由r=1992-46a≥0,推知由r=1992-46a<a,推知因为a是自然数,所以a=43r=1992-46×43=14说明:本题并不难,因此应尽可能运用简单的方法,迅速地算出答案;解法一是根据1992÷a的商是46,因而直接用1992÷46得到了a和r;解法二用的是“估值法”;5.解法一:先算出这25位老人今年的岁数之和为2000-25×2=1950年龄最大的老人的岁数为1950+1+2+3+4+……+24÷25=2250÷25=90岁解法二:两年之后,这25位老人的平均年龄年龄处于最中间的老人的年龄为2000÷25=80岁两年后,年龄最大的老人的岁数为80+12=92岁年龄最大的老人今年的岁数为92-2=90岁说明:解法一采用了“补齐”的手段详见本报241期第一版“削平”与“补齐”一文;当然,也可以用“削平”法先求年龄最小的老人的岁数,再加上24;解法二着眼于25人的平均年龄,先算年龄处于最中间的老人的岁数,算起来更简便些;6.解:根据“抽屉原理”,可知至少7个学生中有两人所借图书的种类完全相同;说明:本题是抽屉原理的应用;应用这个原理的关键是制造抽屉;从历史、文艺、科普三种图书若干本中任意借两本,共有——史,史、文,文、科,科、史,文、史,科、文,科这六种情况,可把它们看作六只“抽屉”,每个学生所借的两本书一定是这六种情况之一;换句话说,如果把借书的学生看作“苹果”,那么至少7个苹果放入六个抽屉,才能有两个苹果放在同一个抽屉内;本题是由本报234期“奥林匹克学校”拦的例2改换而成的;7.解:得分最低者最少得404-90+89+88+87=50分得分最低者最多得404-90-1+2+3÷4=77分说明:解这道题要考虑两种极端情形:1要使得分最低的选手的得分尽可能地少,在五名选手总分一定的条件下,应该使前四名领先于第五名的分数尽可能多才行;第一名得分是已知的90分,这就要求第二、三、四名的得分尽可能靠近90分,而且互不相等,只有第二、三、四名依次得89分、88分、87分时,第五名得分最少;2要使得分最低的选手得分最多,在总分和第一名得分一定的条件下,应当使第二、三、四、五名的得分尽可能接近;考虑到他们的得分又要互不相等,只有当第二、三、四、五名的得分为四个连续自然数时才能做到,用“削平”的方法可以算出第五名最多得多少分;本题是根据数学之友7第46页第13题改编的;8.解:设38毫米、90毫米的铜管分别锯X段、Y段,那么,根据题意,有38X+90Y+X+Y-1=100039X+91Y=1001要使损耗最少,就应尽可能多锯90毫米长的铜管,也就是说上面式中的X应尽可能小,Y尽可能大;由于X、Y都必须是自然数,因而不难推知:X=7,Y=8;即38毫米的铜管锯7段,90毫米的铜管锯8段时,损耗最少;说明:选手们读题之后,可以马上想到:要使损耗最少,应尽可能多锯90毫米长的铜管,但必须符合“两种铜管都有”、“两种铜管长度之和加上损耗部分长度应等于1米”两个条件,这样算起来就不那么简单了;这种题目,借助等量关系式来进行推理比较方便,不过,列方程时可别忘掉那损耗的1毫米,而且损耗了几个“1毫米”也不能算错,应该是“总段数-1”;列出方程式之后,还有两点应当讲究:1变形要合理;2要选用简便算法;如上面解法中,把1001写成7×11×13,39写成3×13,91写成7×13,使分子部分和分母部分可以约分,对于迅速推知最后结果是大有帮助的;本题是数学之友7第51页练习六中的原题;三、应用题1.解法一:假设乙工程队每天与甲工程队修的路同样多,那么两队一共修的路就要比4200米少600米,这3600米就相当于甲工程队用15天15=3+6×2修完的,列式为4200-600÷3+6×2=3600÷15=240米240+100=340米解法二:设甲工程队每天修路X米,那么乙工程队每天修路“X+100”米,根据题意,列方程3X+6×X+X+100=4200解得X=240从而X+100=340米答:甲工程队每天修路240米,乙工程队每天修路340米;说明:“假设”是我们解应用题时经常采用的算术方法,它体现了机智、敏捷,能迅速得到答案;本题根据本报第234期第二版“思考题解答”一栏中的例题改编而成;2.解:从题目可知,前30分钟行完总路程的一半,后20分钟没有把另一半行完,比总路程的一半少2千米;换句话说,后20分钟比前30分钟少行了2000米;为什么会少行呢原因有两方面:1后20分钟比前30分钟少行10分钟;2后20分钟比前30分钟每分钟多行50米;这样,容易推知前30分钟里每10分钟所行的路程是20×50+2000=3000米;前30分钟每分钟行3000÷10=300米总路程为300×30×2=18000米答:县城到乡办厂之间的总路程为18千米;说明:解本题的关键是:1通过比较,知道这个人前30分钟比后20分钟多行多少路程;2找出前30分钟比后20分钟多行2000米的原因是什么;详见本报209期抓住矛盾找原因一文;3.解法一:设大长方体左右面面积为X平方分米,则大长方体表面积为10X;切成12个小长方体后,新增加的表面积为3X+2×2X×2=14X12个小长方体表面积之和为10X+14X=600X=25V=25×10=250立方分米解法二:把大长方体的表面积看作——“1”,则切成12个小长方体后,V=25×5×2=250立方分米答:这个大长方体的体积为250立方分米;说明:这道题比较简单,只要明白把一个几何体切成两部分后,“新增加的表面积等于切面面积的2倍”这个关系,不过,在计算新增加表面积时,稍不留心就会弄错;本题根据本报第226期第一版“教你思考”栏中的例题改编的;又因为10包+25本+35本←→11包所以1包←→60本14+11×60=1500本解法二:列方程解则有7X=14Y+35 15X=11Y-35 21-2,得ZX—3Y+70 31+2,得12X=25Y 43×6,得12X=18Y+420 5比较4、5两式,有25Y=18Y+420解得Y=6012X=25×60=1500本答:这批书共有1500本;说明:这道题目里的数量关系其实很容易看出,解法一几乎是心算出结果的;所以,不能把问题想得很复杂;解法二比较容易想到,但设“未知数”也很有讲究,如果设这批书有X本,变形就比较麻烦了;四、问答题1.答:保证一定获胜的对策是:1先取1粒钮扣,这时还剩1991粒钮扣;2下面轮到对方取,如果对方取n粒1≤n≤4,自己就取“5-n”粒,经过398个轮回后,又取出398×5=1990粒钮扣,还剩1粒钮扣,这1粒必定留给对方取;说明:本题只是把本报233期“奥林匹克学校”栏对策问题的“例1”改掉一个字——“胜”改为“输”;一字之差,对策就要改变;我们知道,解对策问题有一个基本思路:把失败输的可能留给对手;本题中,谁取到最后一粒钮扣谁就算输,因而,要想获胜,就必须抢到第1991粒;想到这一点,就容易找到保证获胜的对策了;2.答:剪去的小正方形边长应为4厘米;说明:要回答这道题,可以先到一个表来比较一下;通过比较,容易知道剪去的小正方形边长是几厘米时,做成的纸盒容积最大;从上面表中一下子可以看出结果;还可以设被剪去的小正方形边长纸盒的高为h,那么,纸盒底面边长为24-2h;它的容积为因为24-2h+24-2h+4h=48定数,根据数学之友7第23页所介绍的结论,当24-2h=4h时,24-2h×24-2h×4h乘积最大;也就是说,当h=4时,V最大;3.答:1应选甲铁皮料;2剪法如图17;说明:题中要求选一块铁皮料适合做“成套”的铁皮制品,这就要求所选的铁皮料中包含的ab两种毛坯同样多;又因为不能浪费材料,所以,只要算一算数一数甲、乙两块材料中各有多少小正方形,看甲或乙材料中小正方形的总数能不能被10+7=17整除;在回答第2个问题时,可以把ab两块毛坯拼成图18,再根据上面所算出的结果,从中心处向四个方向剪开,就得到4个图18的形状;仔细观察图17,容易发现图中的对称美,这种美也能启发你找到剪裁铁皮的方法;4.答:可以把“1”改为“0”,也可以把“4”改为“3”,还可以把“1”改为“9”,把“2”改为“1”;说明:本题有四种符合要求的答案,就看你考虑问题是不是全面了;因为225=25×9,所以要修改后的数能被225整除,就是既能被25整除,又能被9整除;被25整除不成问题,末两位数75不必修改,只要看前面三个数字;有2+1+4+7+5=19=18+1=27-8,不难排出上面四种答案;5.答:1把9块中的三块各分为两部分:说明:这个分糖的问题很有趣;先得算一算,9块糖平分给4个孩子,。
六年级数学口算竞赛试题

六年级数学口算竞赛试题一、基础口算题(每题1分,共20分)1. 34 + 56 =2. 87 - 49 =3. 48 × 3 =4. 120 ÷ 6 =5. 72 ÷ 8 =6. 5 × 20 =7. 98 + 32 =8. 65 - 17 =9. 49 × 5 =10. 360 ÷ 9 =11. 27 + 73 =12. 56 - 28 =13. 3 × 15 =14. 48 ÷ 3 =15. 8 × 12 =16. 74 - 46 =17. 9 × 11 =18. 54 ÷ 6 =19. 63 + 47 =20. 450 ÷ 15 =二、混合运算题(每题2分,共20分)21. (36 + 24) ÷ 9 =22. 64 - 18 × 2 =23. 72 ÷ 8 + 35 =24. (56 - 48) × 3 =25. 42 × (6 - 3) =26. 81 ÷ 9 - 7 =27. 54 + 45 ÷ 5 =28. 72 ÷ (12 - 6) =29. 3 × 21 - 42 =30. 98 - 56 ÷ 8 =三、应用题(每题5分,共30分)31. 一个班级有48名学生,如果每4名学生组成一个小组,那么可以组成多少个小组?32. 一辆汽车以每小时60公里的速度行驶,3小时后它行驶了多少公里?33. 一个长方形的长是15米,宽是10米,它的面积是多少平方米?34. 一个水果店卖出了240个苹果,如果每个苹果卖2元,那么水果店总共收入多少元?35. 一个班级有24名男生和18名女生,如果每3名学生组成一个小组,那么可以组成多少个小组?36. 一个圆形花坛的直径是14米,它的半径是多少米?四、逻辑推理题(每题5分,共30分)37. 如果一个数的3倍加上8等于48,那么这个数是多少?38. 一个数加上它的一半等于30,这个数是多少?39. 一个数的5倍减去15等于35,这个数是多少?40. 如果一个数的4倍减去它的一半等于54,那么这个数是多少?41. 一个数的6倍加上它的3倍等于96,这个数是多少?42. 如果一个数的7倍减去它的2倍等于49,这个数是多少?请注意:以上题目需要学生在规定时间内完成,口算竞赛旨在考查学生的快速计算能力和数学思维能力。
小学六年级数学竞赛(算式谜)(数阵)(进位制)专题试卷(含答案)5

小学六年级数学竞赛(算式谜)(数阵)(进位制)专题试卷(含答案)5学校:___________姓名:___________班级:___________考号:___________一、选择题1.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().A.2986 B.2858 C.2672 D.2754二、填空题2.在下面的乘法算式中,A、B、C和D表示不同的数字,ABC是一个三位数。
(1)A=____;B=____;C=____;D=____。
(2)ABC=____。
3.图中有_____个长方形.4.从1至9中选出8个数字填入算式“□□□□+□□□□=4026”的方框中,每个数字恰好填一次,使等式成立.没有被选出的数字是_______.5.把1~14 分别填入下图中的方格内,使“十一” 三笔中每五个方格内的数的和相等。
6.如图,内部四个交点上已经填好数,请你在方格里填上适当的数,使交点上的数恰好等于四周四个方格内数的和,可以怎么填?7.把1~8 分别填入下图的空格中,使图中四边正好组成加、减、乘、除四种运算算式。
8.把1~9 分别填入下图的圆圈中,使七个三角形(四个小三角形、三个大三角形)中每个三角形的三个顶点圆圈内的数的和相等。
9.把3~10 分别填在下图中正方体的八个顶点上的圆圈里,使每个面四个顶点上圆圈中的数的和相等。
10.把1~16 分别填入下图的十六个圆圈中,使每条线段上四个圆圈内的数的和相等,两个八边形顶点上的数的和也相等。
11.把1~9 分别填入下图的圆圈中,使两条线段上的五个数的和相等,两个四边形顶点上数的和也相等。
12.把2~11 分别填入下图的方格中,每格填一个数,要求图中三个2×2 的正方形中四数之和相等。
13.在下图(1)中,每边上的数加起来之和都是5,所有数的和是12,现用任何数字重新排列填入图(2)、(3)中,使每边的数字之和仍为5,但全部数的和是13、14。
小学六年级数学竞赛试题及详细答案

小学六年级数学竞赛试题及详细答案一、计算下面各题,并写出简要的运算过程共15分,每小题5分二、填空题共40分,每小题5分1.在下面的“□”中填上合适的运算符号,使等式成立:1□9□9□2×1□9□9□2×19□9□2=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边;那么,这个等腰梯形的周长是__厘米;3.一排长椅共有90个座位,其中一些座位已经有人就座了;这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻;原来至少有__人已经就座;4.用某自然数a去除1992,得到商是46,余数是r;a=__,r=__;5.“重阳节”那天,延龄茶社来了25位老人品茶;他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000;其中年龄最大的老人今年____岁;6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本;那么,至少____个学生中一定有两人所借的图书属于同一种;7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分;那么得分最少的选手至少得____分,至多得____分;每位选手的得分都是整数8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管;那么,只有当锯得的38毫米的铜管为____段、90毫米的铜管为____段时,所损耗的铜管才能最少;三、解答下面的应用题要写出列式解答过程;列式时,可以分步列式,可以列综合算式,也可以列方程共20分,每小题5分1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米;现由甲工程队先修3天;余下的路段由甲、乙两队合修,正好花6天时间修完;问:甲、乙两个工程队每天各修路多少米2.一个人从县城骑车去乡办厂;他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米;又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程; 3.一个长方体的宽和高相等,并且都等于长的一半如图12;将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米;求这个大长方体的体积;4.某装订车间的三个工人要将一批书打包后送往邮局要求每个包内所多35本;第2次他们把剩下的书全部领来了,连同第一次多的零头一起,刚好又打11包;这批书共有多少本四、问答题共35分1.有1992粒钮扣,两人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输;问:保证一定获胜的对策是什么5分小学生数学报杯”少年数学文化传播活动六年级数学思维能力竞赛试卷时间:9:00~11:00总分120分一、填空题;每题5分,共60分1.计算:1/3×5+1/5×7+7×9++1/2001×2003=;2.计算:4×5+5×6+6×7++25×26+26×27=;3.已知a、b是两个自然数,并且a2=2b;如果b不超过100,那么a的最大值是;4.一个正方形的一条对角线长20厘米,这个正方形的面积是平方米;5.1111×9999的积里含有个奇数; 2006个l2006个96.从任意n个不同的整数中,一定可以找到两个数,它们的差是8的倍数,那么n的最小值是; 7.小明和爸爸同去靶场打靶,他们约定:每人各射击6次,每次打中靶的话,再追加射击2次;这样小明共射击了18次,小明没有射中靶的共有次;8.如图1,5×5的正方形内有25个方格,至少要涂黑个方格,才能使其中每一个3×3的正方形内正好都有4个黑格;9.把立方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数对应情况如下表:颜色红黄蓝白紫绿l花的朵数l23456现将上述大小相等,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体如图2,从左往右第二个立方体的下底面有朵花;10.如图3,正方形ABCD的边长是20厘米,E、F分别是AB和BC的中点,那么,四边形BEGF 的面积是平方厘米;备课吧免费下载备课吧——课件,试卷,教案,图片,论文共30万多个资料供您免费下载11.将数字2,3,4,5组成没有重复数字的四位数,则所有这样的四位数的和是;12.将1~16这16个数分别填人图4中的16个小圆圈内,使每个正六边形顶点处6个数的和相等,那么,这个和最大是,最小是;二、应用题;每题9分,共18分1.计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取出,按照“先进后出”的原则;如图5,堆栈1的2个连续存储单元已依次存人数据b,a,取出数据的顺序是a,b;堆栈2的3个连续存储单元已依次存人数据e,d,c,取出数据的顺序则是c,d,e;现在要从这两个堆栈中取出这5个数据每次取出1个数据,那么不同顺序的取法共有多少种2.如图6,用一块边长是18厘米的正方形硬纸片,在四个角上截去4个相同的小正方形,然后把四边折合起来,做成一个没有盖的长方体纸盒;请你试算一下,截去的4个相同的小正方形的边长是多少厘米时,长方体纸盒容积最大最大容积是多少图6三、操作题;1.有一叠300张卡片,从上到下依次编号为1~300,从最上面的一张开始按如下的顺序进行操作:把最上面的第一张拿掉,把下一张卡片放在这一叠卡片的最下面;再把最上面的第一张原来的第三张拿掉,把下一张卡片放在这一叠卡片的最下面依次重复这样做,直到手中剩下一张卡片;那么剩下的这张卡片是原来300张卡片的第几张2、如图,方格纸的每一个小方格是边长为1的小正方形,A、B两点在小方格的顶点上;现在要在小方格的顶点上缺点一点C,连接AB、AC和BC后,三角形ABC的面积为2;请你找出5个符合条件的C点;在图中标出来四、问答题;1.甲、乙两地相距100米,大刚和小明两人同时从甲、乙两地出发,相向而行,分别到达两地后立即返回,不断在两地间往返行走;大刚每秒行米,小明每秒行米,在30分钟内两人相遇多少次2.图8是由10~10的小方格组成的大正方形,能否在每个小正方形中分别填上l,2,3这三个数之一,使得大正方形的每行、每列及对角线上的各个数的和互不相同为什么3.张大妈最近在医院动了一次手术,花去医药费25000元;张大妈参加了农村大病医疗保险,医药费具体报销办法是:全年累计医药费总额超过4000元4000元以下自理,凡4001元~10000元的部分报销50%,10001元~20000元的部分报销65%,20001元以上部分报销80%;参保对象属“三老”优抚对象的,其报销标准比普通5%;参保对象每年每人报销的最高金额不超过16000元;请问:张大妈作为“三老”优抚对象,实际需要支付的医药费是多少小学数学教师解题能力竞赛试题整理2010-4-3ByHandtalk填空部分:1、在1—100的自然数中,的约数个数最多;2、一个质数的3倍与另一个质数的2倍之和为100,这两个质数之和是;3、在1~600这600个自然数中,能被3或5整除的数有个;4、有42个苹果34个梨,平均分给若干人,结果多出4个梨,少3个苹果,则最多可以分给个人;5、甲、乙两人同时从A点背向出发沿400米环行跑道行走,甲每分钟走80米,乙每分钟走50米,这二人最少用分钟再在A点相遇;6、11时15分,时针和分针所夹的钝角是度;7、一个涂满颜色的正方体,每面等距离切若干刀后,切成若干小正方体块,其中两面涂色的有60块,那么一面涂色的有块;8、六一儿童节游艺活动中,老师让每位同学从一个装有许多玻璃球的口袋中摸两个球,这些球给人的手感相同,只有红、黄、白、蓝、绿五色之分摸时看不到颜色,结果发现总有两个人取的球相同,由此可知,参加取球的至少有人;9、一批机器零件,甲队独做需11小时完成,乙队独做需13小时完成,现在甲、乙两队合做,由于两人合作时相互有些干扰,每小时两队共少做28个,结果用了小时才完成;这批零件共有个;10、李然从常熟虞山下的言子墓以每分12米的速度跑上祖师山,然后以每分24米的速度原路返回,他往返平均每分行米;11、常熟市乒乓比赛中,共有32位选手参加比赛,如果采用循环赛,一共要进行场比赛;如果采用淘汰赛,共要进行场比赛;12、甲、乙、丙三人各拿出同样多的钱合买一种英语本,买回后甲和乙都比丙多要6本,因此,甲、乙分别给丙元钱,每本英语本元;13、一个表面都涂上红色的正方体,最少要切刀,才能得到100个各面都不是红色的正方体;14、果园收购一批苹果,按质量分为三等,最好的苹果为一等,每千克售价元;其次是二等苹果,每千克售价元;最次的是三等苹果每千克售价元;这三种苹果的数量之比为2:3:1;若将这三种苹果混在一起出售,每千克定价元比较适宜;15、在一次晚会上男宾与每一个人握手但他的妻子除外,女宾不与女宾握手,如果有8对夫妻参加晚会,那么这16人共握手次;16、百米赛跑,假定各自的速度不变,甲比乙早到5米,甲比丙早到10米;那么乙比丙早到米;17、一件工作,甲独干8天后,乙又独干13天,还剩下这件工作的1/6;已知甲乙合干这件工作要12天,甲单独完成这件工作要天;18、小华有2枚5分硬币,5枚2分硬币,10枚1分硬币,他要取出1角钱,共有种不同的取法;19、一个正方体,它的表面积是20平方厘米,现在把它切割成8个完全相同的小正方体;这些小正方体的表面积之和是;20、小明从家到学校有两条一样长的路,一条是平路,另一条的一半是上坡路,一半是下坡路;小明上学两条路所用的时间一样,已知下坡的速度是平路的3/2,那么上坡的速度是平路速度的;21、9点整时,时针与分针组成的角是角,此后时针与分针再成这种角是9时分;22、五1班全班45人选中队长,每人投一票,现已统计到李辰已得票16票,王莹得票18票,王莹至少再得票就能保证当选得票多者当选23、自然数A的所有约数两两求和,又得到若干个自然数;在这些和中,最小的是4,最大的是500,那么A=24、甲、乙、丙三个电台,分别有4、4、3人,新年中彼此祝贺,每两个电台的人都彼此一一通话,那么他们一共要通话次;;解决问题部分:1、六1班男、女人数之比为5:3;体育课上,老师按每3个男生、2个女生分成一组进行游戏;这样,当女生分完时男生还剩4人;求这个班女生一共有多少人2、常熟市举行小学生“百科知识竞赛”,大约有381~450名学生参加,测试结果是全体学生的平均分是76分,男生平均分是79分,女生平均分是71分;求参加测试的男生和女生至少各有多少人;3、中国古代算书张丘建算经中有个“百鸡问题”:今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一;凡百钱,买鸡百只;问鸡翁、母、雏各几何4、在AB一段公路上,甲骑自行车从A往B,乙骑摩托车从B往A,他们同时出发,经过80分钟两人相遇,乙到A后马上折回,在第一次相遇后40分钟追上甲,乙到B地后马上返回,再过多少时间甲与乙再相遇5、两辆汽车从甲乙两地同时相向而行,在距乙地95千米处相遇,相遇后两车又继续前进,它们各自到达甲乙后又立即返回,两车在距甲地25千米处相遇;假设两车的速度不变,甲乙两地的距离是多少千米6、百货公司委托运输公司运送1000只花瓶,双方商定每只的运费为元,如打破一只,这只花瓶不但不计运费,还要赔偿元;结果运输公司共得到了1456元运费;问运输过程中打破了几只花瓶7、用长72米的篱笆靠墙围成一个长方形;长和宽各多少时围成的面积最大面积是多少8、甲乙丙三人合作完成一件工程,共得报酬1800元;三人完成这项工作的情况是:甲乙合作8天完成工程的13;接着乙丙又合作2天,完成余下的14;以后三人合作5天完成了这项工程;按劳付酬,各人应得报酬多少元9、甲、乙两车分别从A、B两站同时相向开出,已知甲车速度是乙车速度的倍,甲车到达途中C站的时刻为凌晨5:00,乙车到达途中C站的时刻为同一天的下午3:00,问这两车相遇是什么时刻10、蓄水池有甲、丙两条进水管,和乙、丁两条排水管;要灌满一池水,单开甲管需要3小时,单开丙管需要5小时;要排光一池水,单开乙管需要4小时,单开丁管需要6小时;现在池内有61池水,如果按甲、乙、丙、丁、甲、乙的顺序,轮流各开一小时,多少时间后水开始溢出水池11、某地收取电费的标准是:每月用电不超过50度,每度收5角;如果超过50度,超出部分按每度8角收费;某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电12、小轿车、面包车和大客车的速度分别为60千米/小时、48千米/小时和42千米/小时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车;甲、乙两地相距多远13、制作一个玩具熊,甲需5分钟,乙需6分钟,丙需分钟;现在将制作555个玩具熊的任务交给他们,要求他们三人在相同时间内完成任务,那么每人各应加工多少个14、用丰商场从批发部购进100副手套和80个帽子,共花去2800元;商场零售时,每副手套加价5%,每个帽子加价10%,这样卖出后共收入3020元,原来1副手套和1个帽子一共多少元15、某风景区门票的票价如下:50人以下每张12元,51-100人每张10元,100人以上每张8元;现在有甲、乙两个旅游团,若分开购票,两个旅游团总共需门票费1142元;若两个旅游团合在一起作为一个团体购票,总共只需付门票864元;这两个旅游团各有多少人16、有两条纸带,一条长21厘米,一条长13厘米,把两条纸带都剪下同样的一段后,发现长纸带剩下的长度是短纸带剩下的长度的2倍;请问:剪下的一段有多长17、小星有48块巧克力,小强有36块巧克力;如果每次小星给小强8块,同时小强又给小星4块,经过多少次这样的交换后,小强的块数是小星的2倍18、袋里有若干个球,小明每次拿出其中的一半再放回一个球,这样共操作了3次,袋中还有6个球;请问:袋中原有多少个球19、有一根长180厘米的绳子,从一端开始,每3厘米作一个记号,每4厘米也作一记号;然后将标有记号的地方剪断,绳子共被剪成多少段20、某班学生排队,如果每排3人,就多1人;如果每排5人,就多3人,如果每排7人,就多2人,这个班级至少有多少人21、学校一次选拔考试,参加的男生与女生之比是4:3,结果录取91人,其中男女生人数之比是8:5,在未被录取的学生中,男女生人数之比是3:4,那么,参加这次考试共有多少名学生22、甲、乙两人各做一项工程;如果全是晴天,甲需12天,乙需15天完成;雨天甲的工作效率比晴天低40%,乙降低10%;两人同时开工,恰好同时完成;问工作中有多少个雨天23、甲、乙两车往返于相距270千米的A、B两地,甲车先从A地出发,12分钟后,乙车也从A地出发,并在距A地90千米的C地追上甲车;乙车到B地后立即按原速返回,甲车到B地休息5分钟后加快速度,向A地返回,在C地又将乙车追上;最后甲车比乙车早几分钟到达A地24、甲乙两人分别从相距130千米的AB两地同时沿笔直的公路乘车相向而行,各自前往B 地、A地;甲每小时行28千米,乙每小时行32千米;甲乙各有一个对讲机,当他们之间的距离不大于10千米时,两人可用对讲机联络;问:1两人出发后多久可以用对讲机联络2他们能用对讲机联络多长时间25、某市居民自来水收费标准如下:每户每月用水4吨以下,每吨元;当超过4吨时,超过部分每吨3元;某月甲、乙两户用水量之比为5:3,共缴水费元;问甲、乙两户各应缴水费多少元26、某服装公司第一季度销售一批服装,单件成本为400元,售价510元;卖完后公司的有关部门作市场调查,决定第二季度降低成本,同时把售价降低4%,结果第二季度销量增加了10%,总利润提高了5%;问第二季度的每件成本是多少元27、某火车站的检票口,在检票开始前已经有一些人排队等待检票;检票开始后每分钟有10人前来排队检票,一个检票口每分钟能让25人检票进站;如果只有一个检票口,检票开始8分钟就没有人排队检票,如果有两个检票口,检票开始后分钟就没有人排队检票28、一列快车和一列慢车从A、B两地同时相向而行,6小时相遇,相遇后两车又继续行驶2小时,这时快车距B地还差全程的20%,慢车共行了400千米,A、B两地之间的路程共多少千米29、某班学习小组有12人,一次数学测验只有10人参加,平均分是分;后来,缺考的李明和张红进行了补考,李明补考成绩比原10人平均分少分,而张红的补考成绩却比12人的平均分多分,张红考了多少分30、火车站的检票口前已经有一些人排队等候检票进站,假如每分钟前来检票口排队检票的人数一定,那么当开一个检票口时,需要20分钟可以检完;当开两个检票口时,8分钟就可以无人排队;如果开三个检票口时,需要多少分钟可以检完教师解题能力竞赛试题参考答案个人整理,仅供参考填空部分:1、60;约数中尽量含有2、3、5,由此可以判断出可能是30、60、90其中的一个;2、49;3a+2b=100,由于2b是偶数,所以3a也是偶数,即a是偶数,又是质数,所以a=2,从而求出b=47,a+b=493、280;600÷3=200;600÷5=120;600÷15=40,200+120-40=2804、15;34-4=30;42+3=45;30和45的最大公约数是155、40;甲、乙跑一圈分别是5分钟和8分钟,5和8的最小公倍数是406、;30×4-30/4=7、150;60÷12=5,5×5×6=1508、16;摸两个球,有5+4+3+2+1=15种情况,所以要16人才能保证至少有2人相同;9、3575;28÷24/143-4/25;24/143表示甲乙工作效率和,4/25表示甲乙相互干扰后的工作效率和;10、16;设路程为1,2/1/12+1/24=1611、496和31;单循环赛:1+2+3+31=496;淘汰赛:比赛一场淘汰1人,决出冠军意味着要淘汰掉31人,所以比赛31场;12、元;+÷6+6÷3=13、17;首先要切6刀把表皮切掉,底面切成25个小正方形:4+4刀,然后竖着再切3刀,就是100个了;也就是6+8+3=1714、;×2+×3+×1÷2+3+1=15、84;无限制两人握手16×15÷2=120次,去掉女士相互握手8×7÷2=28次,去掉夫妻握手8次,最后求出:120-38-8=8416、100/19米;甲跑100米,乙跑95米,丙跑90米,他们跑的路程成正比,95:90=100:X,X=1800/19;100-1800/19=100/1917、20;1/12-5/6-1/12×8÷13-818、10种;用列举法得出;19、40;大正方形每个面分成4块,所以表面积为4×6=24块,当拆开后,表面积为6×8块,面积增加1倍;20、;因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间==1/3,上坡时间=1-1/3=2/3,上坡速度=1/2/2/3=3/4=21、直、360/11;分针每小时可以追上时针330o,追上180o需要180÷330时=360/11分22、5;王莹得到23票超过半数就能当选,只要再得23-18=5票;23、375;4=3+1;500÷4×3=37524、40次;4×4+4×3+4×3=40次25、0;因为1—99有189个数字;100—699有300×解决问题部分1、思路点拨:男女学生分的组数相同;设男女生都分成了a组,列方程得:3a+4/2a=5/3;a=12;男生人数:3a+4=40;女生人数:2a=24;2、思路点拨:求出男女生人数的比例;设男生a人,女生b人,列方程得:79a+71b/a+b=76,整理后得3a=5b,即a:b=5:3,也就是总人数a+b是8的倍数;381÷8=475,所以总人数至少是48×8=388人,从而求出男生人数为388×5/8=240人;女生人数为388-240=144人;3、思路点拨:“百鸡问题”可以通过列出不定方程解出其中两种鸡的数量关系,再利用鸡的取值范围和数的整除性解出得数;设:鸡翁、母、雏各有a、b、c只;列方程得:a+b+c=100①;5a+3b+1/3c=100②,将②两边乘3得15a+9b+c=300③,用③-①得14a+8b=200,整理后得b=25-7a/4④;可以看出a必定是4的倍数,并且a小于15,所以a可能是4、8、12分别代入④,最终得出3种不同结果;即鸡翁、鸡母、鸡雏的只数分别是12、4、84或8、11、81或4、18、78;4、思路点拨:⑴可以先求出甲乙的速度比;⑵可以从整体上考虑:三个全程时间240分钟-第一次相遇时间80分钟一追上时间40分钟=追上后第二次相遇时间120分钟;方法一:假设甲的速度是X,乙的速度是Y;那么80X+80Y=AB,考虑到80分钟第一次相遇后40分钟又相遇了,说明甲还没有走道B点就被乙追到了,所以120Y-120X=AB;80X+80Y=120Y-120X;5X=Y;乙的速度是甲的5倍,这样可以推理到第三次相遇时,甲还是没有走到B点,再假设第三次相遇的时间为m,那么mX+mY=3AB,套用80X+80Y=AB,m=240分钟;最后用三个全程时间240分钟-第一次相遇时间80分钟一追上时间40分钟=追上后第二次相遇时间120分钟;方法二:不需要求出甲乙的速度比;甲、乙共走一个全程AB需80分钟,整体上考虑,从同时出发到最后第二次相遇,甲、乙共走了三个全程AB,总时间是80×3=240分钟;三个全程时间240分钟-第一次相遇时间80分钟一追上时间40分钟=追上后第二次相遇时间120分钟;方法三:设AB一段公路为x,乙骑摩托车在第一次相遇后40分钟追上甲,说明行进速度是自行车5倍这句话想要理解的话需要花费一点时间的;从第一次相遇后40分钟甲实际仅仅走了摩托车8分钟的路程;也就是距B地还有80-8=72分钟的摩托车路程,也就是乙骑摩托车还需要72分钟才到b地能返回;此时甲骑自行车距b地还有72-72/5=分钟的路程;到再相遇即分钟/=48分钟+72分钟=120分钟;其中表示1+1/55、思路点拨:当甲乙两车第二次相遇时,两车一共行驶的距离正好是甲乙全程距离的3倍;首先要作图分析图略第一次相遇,乙行驶了95千米,第二次相遇,由于是双方一共行驶了甲乙全程距离的3倍,所以乙一共行驶了95×3=285千米;又因为第二次相遇时,乙行驶了一个甲乙的全程再加上25米,所以甲乙两地的距离等于95×3-25=260千米;6、思路点拨:可以列出二元一次方程解出或者采用假设法;假设法:假设所有的花瓶都没有打破,应该得到的运费是1500元,实际只得了1456元运费,少得了44元,这是因为把打破的花瓶看出成了没有打碎的花瓶;没有打破得元运费,打破了要陪元,两者相差+=11元,也就是每打破一个花瓶,一来一去要少得11元的运费;44÷11=4个,所以打破了4个;7、思路点拨:要注意这道题是靠墙围的长方形,最大面积不是正方形;其实靠墙围出的最大面积的长方形正好是半个大正方形假设围墙的另一面也有半个大正方形,也就是长是宽的2倍; 方法一:设长方形宽a米,长72-2a,面积是72-2aa=2a36-a,当a=36-a时,面积最大,也就是a=18;长方形的长36米,宽18米,面积是648平方米;方法二:长方形的长是宽的2倍,把宽看成1倍,长就是2倍;72÷1+1+2=18,18×2=368、思路点拨:分别求出甲乙丙的工作效率,然后根据甲乙丙工作占的比例求出各自的报酬;根据“甲乙合作8天完成工程的1/3”求出甲乙合作完成需要24天;根据“乙丙又合作2天,完成余下的1/4”求出乙丙合作完成需要:2÷2/3×1/4=12天;根据“以后三人合作5天完成了这项工程”求出甲乙丙三人合作完成需要:5÷1-1/3-1/6=10天;所以丙的工作效率=1/10-1/24=7/120;甲的工作效率=1/10-1/12=1/60;乙的工作效率=1/24-1/60=1/40;整个工程,甲做了13天,占了总量的13/60;乙做了15天,占了总量的15/40即3/8;丙做了7天,占了总量的49/120;甲的报酬=1800×13/60=390元;乙的报酬=1800×3/8=675元;丙的报酬=1800×49/120=735元;9、思路点拨:当未知量很多时,通常把其中的一个或几个量设成1;设甲、乙两车的速度分别是和1,当甲到达C站时,乙还需要10小时才能到达C站,这时两车的距离等于10×1=10,相遇的时间=10÷1+=4小时,5+4=9时上午9时;10、思路点拨:同上解法一:设水池容量为1,设甲乙丙丁四个水管每小时进出水量分别为a、b、c、d,则有a=1/3,b=1/4;c=1/5;d=1/6;易知甲乙丙丁循环一次的总进水量为7/60,本题的关键是动态的考虑水池的剩余容量,5/6-a=1/2,而7/60×4<1/2,故经过4×4=16小时是不会溢出的,再经过两小时的剩余容量=5/6-28/60-a-b=17/60>c,所以再过两小时也不会溢出,至此经过20小时,剩余容量=1/4<a,需要1/4÷a=3/4小时,所以小时后溢出;列式解答方法同解法一:61+31=21先通过甲管放进31水,现在水池一共有水211-21=21还需要进水21。
小学六年级数学竞赛考试试题
小学六年级数学竞赛试题一、计算下面各题,并写出简要的运算过程(共15分,每小题5分)二、填空题(共40分,每小题5分)1.在下面的“□”中填上合适的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。
那么,这个等腰梯形的周长是_ _厘米。
3.一排长椅共有90个座位,其中一些座位已经有人就座了。
这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。
原来至少有_ _人已经就座。
4.用某自然数a去除1992,得到商是46,余数是r。
a=_ _,r=_ _。
5.“重阳节”那天,延龄茶社来了25位老人品茶。
他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。
其中年龄最大的老人今年_ ___岁。
6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。
那么,至少__ __个学生中一定有两人所借的图书属于同一种。
7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。
那么得分最少的选手至少得__ __分,至多得 __ __分。
(每位选手的得分都是整数)8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。
那么,只有当锯得的38毫米的铜管为__ __段、90毫米的铜管为_ ___段时,所损耗的铜管才能最少。
三、解答下面的应用题(要写出列式解答过程。
列式时,可以分步列式,可以列综合算式,也可以列方程)(共20分,每小题5分)1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。
现由甲工程队先修3天。
余下的路段由甲、乙两队合修,正好花6天时间修完。
问:甲、乙两个工程队每天各修路多少米?2.一个人从县城骑车去乡办厂。
小学数学六年级竞赛试题解决问题练习440道
小学数学六年级竞赛试题解决问题练习440道学校名称:班级:学号:姓名:1.一种VCD影碟机的售价是600元,比原来降价415。
原来的价钱是多少元?2.小明读一本书,第一天读了这本书的13多5页,第二天读了这本书的12少一页,第三天读完剩下的21页。
这本书共多少页?3.某工程队要铺设一条公路,前20天已铺设了2。
8千米,照这样计算,剩下的4。
2千米,还要多少天才能铺完?(用比例解)4.一项工程,甲独做要10小时,乙独做要15小时。
现在甲乙合做,多少小时可以完成?5. 一张课桌比一把椅子贵10元,如果椅子的单价是课桌单价的35,课桌和椅子的单价各是多少元?6. 有一袋大米,第一周吃了40%,第二周吃了12千克,还剩6千克。
这袋大米原来有多少千克 ?7. 将一个体积是753.6立方米的圆柱体钢材熔铸成一个底面半径是4厘米的圆锥体模型,这个圆珠笔锥体模型的高是多少厘米?8.某化工厂采用新技术后,每天用原料18吨,这样原来6天用的原料,现在可以用10天,这个厂现在比过去每天节约多少吨原料?9.加工一批零件,师傅独做8小时完成,徒弟独做10小时完成,师徒二人合作2.5小时后,还没有加工的零件占这批零件的几分之几?10.用边长15厘米的方砖给教室铺地,需要2000块;如果用边长25厘米的方砖铺地需要多少块?11.一根圆柱形钢材,截下2米,量得它得横截面得直径是4厘米,如果每立方厘米的钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数)12. 一列火车从甲地开往乙地,已经行了35,离乙地还有450千米,甲乙两地之间的路程是多少千米?13. 小红看一本故事书,第一天看了45页,第二天看了全书的 14,第二天看的页数恰好比第一天多20%,这本书一共有多少页?14. 把一个棱长6分米的正方体木块,削成一个最大的圆锥体,需要削去多少立方分米的木块?15. 服装厂接到生产1200件衬衫的任务,前3天完成了40%,照这样计算,完成生产任务还要多少天?16. 甲乙两港相距140千米,一艘轮船从甲港驶向乙港用了4。
奥数小学六年级数学竞赛试题及详细答案
小学六年级数学竞赛试题及详细答案一、计算下面各题,并写出简要的运算过程(共15分,每小题5分)二、填空题(共40分,每小题5分)1.在下面的“□”中填上合适的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。
那么,这个等腰梯形的周长是_ _厘米。
3.一排长椅共有90个座位,其中一些座位已经有人就座了。
这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。
原来至少有_ _人已经就座。
4.用某自然数a去除1992,得到商是46,余数是r。
a=_ _,r=_ _。
5.“重阳节”那天,延龄茶社来了25位老人品茶。
他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。
其中年龄最大的老人今年_ ___岁。
6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。
那么,至少__ __个学生中一定有两人所借的图书属于同一种。
7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。
那么得分最少的选手至少得__ __分,至多得__ __分。
(每位选手的得分都是整数)8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。
那么,只有当锯得的38毫米的铜管为__ __段、90毫米的铜管为_ ___段时,所损耗的铜管才能最少。
三、解答下面的应用题(要写出列式解答过程。
列式时,可以分步列式,可以列综合算式,也可以列方程)(共20分,每小题5分)1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。
现由甲工程队先修3天。
余下的路段由甲、乙两队合修,正好花6天时间修完。
问:甲、乙两个工程队每天各修路多少米?2.一个人从县城骑车去乡办厂。
2011年六年级数学综合试卷(四)
2011年六年级数学综合试卷(四)一、填空题。
(17分)1. 一个多位数由10个亿,6个百万,4个万和7个千组成,这个数读作( ),改用“万”作单位的数是( )。
2.两个圆的半径的比是2:7,它们的周长的比是( ),面积的比是( )。
3.两个质数的和为25,那么这两个质数的积是( )。
4. 一辆汽车行23千米用汽油81升,这辆汽车平均每行一百千米耗油( )升。
5. 一个圆柱的底面半径扩大3倍,高扩大2倍,它的底面积将扩大( )倍,侧面积扩大( )倍,体积扩大( )倍。
6. 甲、乙两个两位数,甲数31的与乙数的52一样大,甲乙两个数和的最小值是( )。
7. 一块布给成人做,可做12套服装,如给儿童做,可做20套服装,已知成人每套比儿童多用布0.8米,这块布共有( )米。
8.一个长方形长12厘米,如果将它的宽延长31后,就变成了一个正方形,原来这个长方形面积是( )平方厘米。
9. 学校买来排球和篮球的比是3:5,篮球比排球多24个,两种球共买了( )个。
10.一种商品的成本是200元,以盈利30%来定价,出售时将定价90%出售,仍能盈利 ( )%。
11. 买一辆汽车,分期付款购买要加价7%,如果现金购买可按85%交货。
张叔叔算了算,发现分期付款比现金购买要多付7920元。
这辆车的原价是( )元。
12. 一批零件平均分成两天完成,第一天零件合格率为90%,第二天零件合格率为95%,两天共生产出370个合格零件,两天共生产了( )个零件。
13. 学校举行科普知识答题比赛,张成同学答题已经答对了47题,答错了3道,如果他想使自己的答题正确率达到95%,那么至少还要连续答对( )题。
二、判断题。
(对的打“√”,错的打“×”)(4分)1. 甲有钱200元,乙有钱160元,甲拿出20%给乙后二人钱数相等。
( )2.圆周长与半径的比值是2π。
( )3.一个圆锥的体积是一个圆柱的13,那么这个圆锥一定与这个圆柱等底等高。