一次函数
《一次函数》课件

REPORTING
经济问题中的一次函数
总结词:经济模型
详细描述:一次函数在经济领域中常被用作简化经济模型,例如,消费和收入之 间的关系、生产成本和产量之间的关系等。通过一次函数,可以更直观地理解经 济现象和预测未来的经济趋势。
物理问题中的一次函数
总结词:物理定律
详细描述:在物理学中,许多定律和公式都可以用一次函数来表示,例如,重力与距离的关系、电流与电压的关系等。通过 一次函数,可以更准确地描述物理现象和预测实验结果。
2023
《一次函数最新》 ppt课件
REPORTING
2023
目录
• 一次函数简介 • 一次函数的表达式 • 一次函数的应用 • 一次函数的解析方法 • 一次函数的实际案例
2023
PART 01
一次函数简介
REPORTING
一次函数的定义
一次函数是形如y=kx+b的函 数,其中k和b是常数,k≠0。
一次函数在数学问题中的应用
线性规划
利用一次函数解决资源分 配问题,实现资源利用的 最大化。
代数方程求解
通过一次函数表示代数方 程,简化方程求解过程。
几何图形面积计算
利用一次函数计算几何图 形的面积,如三角形、矩 形等。
一次函数与其他数学知识的结合
与二次函数的结合
利用一次函数和二次函数的性质 ,解决更复杂的数学问题。
一次函数是线性函数的一种, 它的图像是一条直线。
一次函数在平面坐标系中表示 为一条直线,该直线经过点 (0,b)和斜率为k。
一次函数的图像
一次函数的图像是一 条直线,其斜率为k ,截距为b。
通过代入不同的x值 ,可以求出对应的y 值,从而得到函数的 图像。
一次函数讲解

一次函数讲解一次函数是初中数学中最基础、最简单的函数之一。
它是一种线性函数,由一个常数和一个一次项组成。
在本文中,我们将深入探讨一次函数的定义、图像、性质、应用以及解题技巧。
一、定义一次函数也称为线性函数,其定义为:f(x) = kx + b,其中k 和b分别是常数,x是自变量,f(x)是因变量。
其中,k称为函数的斜率,b称为截距。
二、图像一次函数的图像是一条直线。
其中,斜率k表示这条直线的倾斜程度,正斜率表示直线向上倾斜,负斜率表示直线向下倾斜,斜率为0表示直线水平。
截距b表示直线与y轴的交点。
三、性质1.一次函数是一种线性函数,其图像是一条直线。
2.斜率k表示直线的倾斜程度,正斜率表示直线向上倾斜,负斜率表示直线向下倾斜,斜率为0表示直线水平。
3.截距b表示直线与y轴的交点。
4.一次函数的自变量和因变量成正比例关系。
5.一次函数的定义域为实数集,值域为实数集。
四、应用1.物理学中,一次函数可以用来描述速度、加速度等物理量的变化规律。
2.经济学中,一次函数可以用来描述商品价格、销售量等经济变量的关系。
3.工程学中,一次函数可以用来描述电压、电流等工程量的变化规律。
4.统计学中,一次函数可以用来描述数据的线性趋势。
五、解题技巧1.求斜率k:斜率k可以通过两个点的纵坐标之差除以横坐标之差来求得。
2.求截距b:截距b可以通过直线与y轴的交点来求得。
3.求函数解析式:可以通过已知的两个点的坐标来求得函数解析式。
4.求函数值:可以直接代入自变量的值来求得函数值。
六、例题解析1.已知一次函数y = 2x + 3,求当x = 5时的函数值。
解:将x = 5代入函数中,得到y = 2 × 5 + 3 = 13。
因此,当x = 5时,函数值为13。
2.已知一次函数y = kx + 2,当x = 3时,y = 5;当x = 4时,y = 8。
求函数解析式。
解:根据已知条件,可以列出如下方程组:k × 3 + 2 = 5k × 4 + 2 = 8解得k = 1。
一次函数的图像和性质

一次函数的图像和性质一次函数是一个代数函数,也称为线性函数或直线函数。
它是最简单的一种函数形式,在数学和物理等领域中都有广泛的应用。
一次函数的一般形式为y = ax + b,其中a和b是常数,且a≠0。
一次函数的图像是一个直线,在平面直角坐标系中表示为一根斜率为a的直线,并且通过点(0,b)。
斜率a表示函数的变化率,即y随x的变化速度。
当a>0时,表明随着x增大,y也增大;当a<0时,表明随着x增大,y减小;当a=0时,函数是一个常数函数。
一次函数图像的性质包括斜率、截距、与坐标轴的交点等。
1.斜率:一次函数的斜率表示函数图像在x轴方向每单位变化时,y轴方向的变化量。
斜率的计算可以通过选择两个不同的x值,计算对应的y值的差异,然后除以对应x值的差异。
即斜率a=Δy/Δx。
斜率为正的函数图像向上倾斜,斜率为负的函数图像向下倾斜,斜率为零的函数图像是水平的。
2. 截距:一次函数的截距表示函数图像与y轴的交点,它的值可以从函数的形式y=ax+b中得到。
当x=0时,y=b,因此截距为b。
3. 与坐标轴的交点:一次函数的图像与x轴的交点为y=0时的x值,可以通过令y=0,解方程ax+b=0,得到x=-b/a。
图像与y轴的交点已经在上述截距部分提到,为(0, b)。
4.平行:两个斜率相等的一次函数图像是平行的,它们可能在坐标轴上的交点不同,但是平行于同一直线。
5. 垂直平分线:对于一次函数y = ax + b,它的垂直平分线为x =-a/2、如果两个函数的图像关于该直线对称,那么它们是互为反函数。
6. 对称轴:对于一次函数y = ax + b,它的对称轴为x = -b/(2a)。
如果交换a和b的位置,可以得到该函数关于y轴对称函数。
如果交换x和y的位置,可以得到原函数的倒数。
7.等差数列:一次函数的图像可以表示等差数列,其中公差为斜率a。
数列的第一个项为截距b。
8.增长率:一次函数的增长率等于斜率a的绝对值。
一次函数知识点总结

一次函数知识点总结一次函数是数学中的基础概念之一,也是学习更高级数学知识的基础。
它在数学、物理、经济学等领域都有着广泛的应用。
本文将对一次函数的相关知识点进行总结,希望能够帮助读者更好地理解和掌握这一重要的数学概念。
一、一次函数的定义。
一次函数是指形式为f(x) = ax + b的函数,其中a和b是常数且a不等于0。
在一次函数中,x的最高次数为1,因此也称为线性函数。
一次函数的图像是一条直线,其斜率为a,截距为b。
二、一次函数的性质。
1. 斜率,一次函数的斜率表示函数图像在x轴上每增加1个单位对应的y轴上的增加量。
斜率为正表示函数递增,斜率为负表示函数递减,斜率为零表示函数水平。
2. 截距,一次函数的截距表示函数图像与y轴的交点坐标,记作(0, b)。
截距决定了函数图像的位置关系。
3. 单调性,当斜率大于0时,函数递增;当斜率小于0时,函数递减。
4. 零点,一次函数的零点表示函数图像与x轴的交点坐标,记作(x, 0)。
零点决定了函数的根的位置。
5. 定义域和值域,一次函数的定义域为全体实数,值域为全体实数。
这意味着一次函数的图像可以覆盖整个坐标平面。
三、一次函数的图像。
一次函数的图像是一条直线,其特点是斜率和截距决定了直线的位置和倾斜程度。
当斜率增大时,直线越陡;当截距增大时,直线在y轴上的位置越高。
四、一次函数的应用。
1. 经济学中的应用,一次函数可以用来描述成本、收益、供求关系等经济学问题。
2. 物理学中的应用,一次函数可以用来描述速度、加速度、位移等物理学问题。
3. 工程学中的应用,一次函数可以用来描述线性电路、材料强度、温度变化等工程学问题。
五、一次函数的解题方法。
1. 求斜率,通过两点坐标的差值来求斜率,斜率为Δy/Δx。
2. 求截距,当已知斜率和一点坐标时,可以利用直线方程求截距。
3. 求零点,将函数值设为0,通过代数方法求解x的值。
4. 确定单调性,通过斜率的正负来确定函数的单调性。
一次函数的概念

一次函数的概念一次函数是一类在数学中常见的函数形式,其定义可以被表达为f(x) = ax + b的形式,其中a和b是常数,且a不等于零。
一次函数也被称为线性函数或一次多项式。
一次函数的图像是一条直线,因此其特点包括斜率和截距。
斜率a 决定了直线的倾斜程度,其值为正时直线上升,为负时直线下降,而斜率为零则表示水平直线。
截距b表示直线与y轴的交点,即当x等于零时,函数的值为b。
同时,斜率通过其大小可以判断函数在x轴方向上的变化速率。
一次函数可以用来描述许多实际问题,比如直线运动、成本与收入关系等。
在直线运动中,位置与时间的关系可以由一次函数表示。
假设一个物体在时刻t=0时的位置为x=0,以恒定速度v运动,则可以用一次函数x(t) = vt来描述其位置与时间的关系。
在这个例子中,斜率v 表示物体在单位时间内移动的距离,截距0表示起始位置。
在经济学中,成本与收入之间的关系通常可以用一次函数来描述。
假设销售产品的成本是每个单位产品的固定成本加上每个单位的变动成本,且每个单位产品的售价是固定的。
则成本C和销售数量x之间的关系可以用一次函数表示为C(x) = a + bx,其中a代表固定成本,b 代表每个单位产品的变动成本。
这个函数告诉我们在不同销售数量下的总成本是多少。
一次函数也可以通过图像来帮助理解。
当斜率不等于零时,直线的斜率决定了直线的倾斜程度。
斜率越大,直线越陡峭;斜率越小,直线越平缓。
同时,直线与y轴的交点称为截距,它决定了直线在y轴上的位置。
不同的斜率和截距组合形成了一次函数的不同图像,帮助我们直观地理解函数的特性。
总结起来,一次函数是一种常见的数学模型,用来描述直线关系。
它的定义形式为f(x) = ax + b,并具有斜率和截距两个重要特征。
一次函数在实际问题中具有广泛的应用,能够帮助我们理解和解决各种与直线关系相关的情况。
通过对一次函数的研究和应用,我们可以更好地理解数学与现实世界的联系。
一次函数基本概念

一次函数基本概念篇一:一次函数是一种基本的数学函数,表示输入一次变量的值,就可以得到输出变量的值。
一次函数通常用于描述简单的数学计算,如求和、加减、乘除等。
在一元一次函数中,输入的变量只可能是一个整数,输出的变量也只会是一个整数。
例如,y = 2x + 1是一次函数,因为输入的变量x为2,输出的变量y为3。
在二元一次函数中,输入的变量可以是两个整数,输出的变量也可以是两个整数。
例如,z = 2x + 3和y = 4x + 2是一次函数,因为输入的变量x为2,输出的变量y为6,输入的变量z为3,输出的变量z为9。
一次函数的解析式通常可以用一次方程表示,例如y = 2x + 1。
一次方程是一个二元一次方程,它的解可以用一个整数来表示,例如x = 2,y = 3。
在实际应用中,我们可以使用代数方法来求解一次方程,例如消元、代入等方法。
除了基本的一次函数,还有很多其他的数学函数,例如二次函数、指数函数、对数函数等。
这些函数都有不同的输入和输出变量,但它们的共同点是都可以描述一些复杂的数学问题。
在数学研究中,我们可以使用这些函数来解决一些复杂的问题,例如几何、微积分等。
篇二:一次函数是一种基本的数学函数,描述了一个变量随着另一个变量的变化而变化的函数。
在数学中,一次函数通常用字母f(x) 表示,其中 x 是自变量,f(x) 是因变量。
一次函数可以写成这样的形式:f(x) = c,其中 c 是常数,通常被称为函数的“导数”。
这个表达式表示,当自变量 x 变化时,因变量 f(x) 的变化率等于常数 c。
一次函数具有一些特殊的性质,例如它的图像是一条直线、它的导数等于函数本身等。
这些性质使得一次函数在许多领域中都有广泛的应用,例如物理学、工程学、经济学等。
除了上面的基本概念外,一次函数还有一些更深入的拓展。
例如,一次函数可以表示为两个变量的线性关系,即 f(x) =k1x1 + k2x2,其中 k1 和 k2 是常数。
一次函数
知识要点一、一次函数的概念(一)一次函数概念1、一般地,解析式形如y kx b =+(其中k 、b 是常数,且k ≠0)的函数叫做一次函数 定义域是一切实数2、正比例函数是一次函数的特例3、常值函数:一般地,我们把函数y c =(c 为常数)叫做常值函数(二)待定系数法求一次函数1、待定系数法:先设出待求函数的关系式,再根据条件求出未知系数,从而得到所求结果的方法,叫做待定系数法2、用待定系数法确定一次函数关系式的一般步骤:① 设函数关系式为y kx b =+(其中k 、b 为待定系数);② 将已知点的坐标代入函数关系式,解方程(组)③ 求出k 与b 的值,得到函数关系式二、一次函数的图像1、一次函数y kx b =+(其中k 、b 是常数,且k ≠0)的图像是一条直线。
一次函数y kx b =+的图像也称为直线y kx b =+2、一次函数图像的画法画一次函数的图像可通过“列表、描点、连线”获得。
也可由“两点确定一条直线”的知识,只需描出两个点,然后过这两点作一条直线一次函数与x 轴、y 轴的交点分别为,0b k ⎛⎫- ⎪⎝⎭、()0,b ,在画一次函数时,只需取者两点就可以了3、直线的截距一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距 截距与距离是两个完全不一样的概念,截距可以是任意实数,而距离总是非负数4、一般地,一次函数y kx b =+(b ≠0)的图像可由正比例函数y kx =的图像平移得到。
当0b >时,向上平移b 个单位;当0b <时,向下平移b 个单位5、如果12b b ≠,那么直线1y kx b =+于直线2y kx b =+平行;反过来,如果直线12y k x b =+与直星之韵---睿思理科 2014 春季 一 次 函 数线22y k x b =+平行,那么12k k =,12b b ≠三、一次函数的性质0,0 0,0 0,0 0,0 k b y kx b k b y kx b k b y kx b k b y kx b >>=+⎧⎪><=+⎪⎨<>=+⎪⎪<<=+⎩直线经过第一、二、三象限直线经过第一、三、四象限直线经过第一、二、四象限直线经过第二、三、四象限题型1:一次函数的概念☆☆(一)选择题1、下列函数中,是y 关于x 的一次函数的是 ( )A. 2125y x =+ B. 2y =- C. 2、下列函数解析式中,属于一次函数的是( )① ()()20y a x a =+≠ ② ()10y ax a a=-≠ ③()()11y a x a =-+≠- ④ ()0a y a x a x =+≠ A ① B ①②③ C ①③ D 全部都是3、已知函数32y x =+,当x a =时的函数值为1,则a 的值为( ) A. 13 B. -1 C. -13D. 1 4、下列四个命题中,错误的是( )A. 正比例函数一定是一次函数B. 反比例函数不是一次函数C. 若1y -和x 成正比例,则y 是x 的一次函数D. 若1y -和x 成反比例,则y 是x 的一次函数5、下列函数:①()()50y m x m =-≠; ②()10y ax a a=+≠ ③()()33y k x k =-+≠- ④k y kx x =+()0k ≠ 其中是一次函数的有( )A. ①②③④B. ①C. ①②③D. ①③(二)填空题1、 已知常值函数()3f x =-,则()1f =____________2、 已知函数()52y m x b =+-+,当___________时,此函数是一次函数;当____________时,此函数是正比例函数。
一次函数
一次函数自变量x和因变量y有如下关系:y=kx+b (k为任意不为零实数,b为任意实数)则此时称y是x的一次函数。
特别的,当b=0时,y是x的正比例函数。
即:y=kx (k为任意不为零实数)定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际有意义。
一次函数的图象特征和性质:b>0 b<0 b=0k>0 经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0 经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小一次函数的性质1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k≠0) (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
3.k为一次函数y=kx+b的斜率,k=tg角1(角1为一次函数图象与x轴正方向夹角)形。
取。
象。
交。
减一次函数的图像及性质1.作法与图形:通过如下3个步骤(1)列表[一般取两个点,根据两点确定一条直线];(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.函数不是数,它是指某一变量过程中两个变量之间的关系。
4.k,b与函数图像所在象限:y=kx时当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
y=kx+b时:当k>0,b>0, 这时此函数的图象经过一,二,三象限。
当k>0,b<0, 这时此函数的图象经过一,三,四象限。
当k<0,b<0, 这时此函数的图象经过二,三,四象限。
一次函数知识点
一次函数知识点一次函数作为中学数学中的重要内容之一,具有广泛的应用场景。
它是代数学的基础,也是我们日常生活中遇到的最简单的函数之一。
在这篇文章中,我将介绍一次函数的定义、性质以及一些常见的应用。
一、定义和性质一次函数又称线性函数,它的定义非常简单:y = kx + b,其中 k 和b 是常数,k 表示斜率,b 表示截距。
一次函数是一条直线,可以通过两个点来确定一条直线,也可以通过一个点和斜率来确定。
1. 斜率斜率表示了直线的倾斜程度,可以看做是 y 值的变化率。
斜率的计算公式为:k = Δy / Δx,其中Δy 表示 y 坐标的增量,Δx 表示 x 坐标的增量。
当斜率为正数时,直线向右上方倾斜;当斜率为负数时,直线向右下方倾斜;当斜率为零时,直线为水平线。
2. 截距截距表示直线与 y 轴的交点的纵坐标值,也可以说是直线在 x 轴上的截点。
当 x = 0 时,y = b,即直线与 y 轴的交点的纵坐标值为 b。
3. 平行和垂直的直线两条直线平行的条件是它们的斜率相等;两条直线垂直的条件是它们的斜率的乘积为 -1。
这些性质对于解题和理解直线的关系有着重要的作用。
二、常见应用一次函数在现实生活中有着广泛的应用,例如经济学中的供求关系、物理学中的速度与时间的关系等等。
1. 货币兑换当我们去旅行或者购买跨境商品时,可能需要进行货币兑换。
一次函数可以描述不同货币之间的汇率关系,通过观察不同货币对之间的汇率,我们可以计算出需要兑换的金额。
2. 距离与时间的关系在物理学中,一次函数可以描述物体在匀速直线运动中的位置与时间的关系。
例如,当一辆汽车以恒定的速度行驶时,它的位置与时间的关系可以表示为 y = kx + b,其中 y 表示汽车所在的位置,x 表示时间,k 表示汽车的速度,b 表示初始位置。
3. 成本和收益在经济学中,一次函数可以描述成本和收益之间的关系。
例如,在一家工厂中,生产的产品数量和成本之间存在一定的关系。
一次函数知识点总结
一次函数知识点总结一次函数是数学中非常重要的一个概念,它在解决实际问题和理解数学关系方面有着广泛的应用。
下面我们就来详细总结一下一次函数的相关知识点。
一、一次函数的定义一般地,形如$y = kx + b$($k$,$b$是常数,$k≠0$)的函数,叫做一次函数。
其中$x$是自变量,$y$是因变量。
当$b = 0$时,$y = kx$($k≠0$),这时称$y$是$x$的正比例函数。
二、一次函数的图像一次函数$y = kx + b$的图像是一条直线。
当$k > 0$时,直线从左到右上升;当$k < 0$时,直线从左到右下降。
直线$y = kx + b$与$y$轴的交点坐标为$(0, b)$,与$x$轴的交点坐标为$(\frac{b}{k}, 0)$。
三、一次函数的性质1、当$k > 0$时,$y$随$x$的增大而增大;当$k < 0$时,$y$随$x$的增大而减小。
2、直线$y = kx + b$经过的象限:当$k > 0$,$b > 0$时,直线经过第一、二、三象限;当$k > 0$,$b < 0$时,直线经过第一、三、四象限;当$k < 0$,$b > 0$时,直线经过第一、二、四象限;当$k < 0$,$b < 0$时,直线经过第二、三、四象限。
四、求一次函数解析式的方法1、待定系数法设一次函数的解析式为$y = kx + b$,然后将已知条件中的两个点的坐标代入解析式中,得到一个关于$k$和$b$的方程组,解这个方程组,求出$k$和$b$的值,就得到了一次函数的解析式。
五、一次函数与方程、不等式的关系1、一次函数与一元一次方程一次函数$y = kx + b$($k≠0$)的函数值为$0$时,相应的自变量的值就是一元一次方程$kx + b = 0$的解。
2、一次函数与一元一次不等式一元一次不等式$kx + b > 0$(或$kx + b < 0$)的解集,就是一次函数$y = kx + b$的图像在$x$轴上方(或下方)时对应的自变量$x$的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、一次函数的定义
如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数,当b=0时,这个函数
即为y=kx,这时y叫做x的正比例函数。
从定义容易看出:
(1)一次函数有两个基本特征:一是自变量x的次数是1;二是自变量x的系数k≠0,
实际上等号右边是关于x的一次整式,违背这两个特征的函数,如y=5x2-1,y=3/x,y=4都 不
是一次函数;
(2)正比例函数是特殊的一次函数;
(3)如果把y、x都看作未知数,那么y=kx+b就变成了一个二元一次方程,函数y=kx+b
的一对对应值就是方程y=kx+b的一个解。
2、一次函数的图象和性质
(1)一次函数y=kx+b(k≠0)的图象是一条直线,根据几何知识:两点确定一条直线,
所以画一次函数的图象时,只要先描出两点,再连成直线即可。通常选取(0,b)和(kb,
0)两点。
(2)直线y=kx+b(k≠0)的大致位置是由k和b的符号决定的,其中k的值决定直线
的倾斜的方向和程度,当k>0时,直线从左至右呈上升趋势,当k<0时,直线从左至右呈
下降趋势。b是直线y=kx+b与y轴交点的纵坐标,当b>0时,直线和y轴的正半轴相交,
当b=0时,直线和y轴交点为原点,当b<0时,直线和y轴的负半轴相交。总之,k决定倾
斜方向,b决定直线y=kx+b与y轴交点的位置,共有六种情况,如下表
(3)由(2)可知当两条直线平行时,它们的倾斜程度相同,因而x的系数k相同,两
条直线l1:y=k1x+b1和l2:y=k2x+b2的位置关系可由它们的系数确定:①k1≠k2时l1和l2相
交;②k1=k2,且b1≠b2时,l1和l2平行;③k1=k2,且b1=b2时,l1和l2重合。
(4)直线y=kx+b(k≠0)与x轴交点的坐标为(kb,0),与y轴交点的坐标为(0,b),
与两条坐标轴围成的直角三角形的面积为kbS22。
(5)一次函数的性质:
① 当k>0时,y随x的增大而增大;
② 当k<0时,y随x的增大而减小。
3、一次函数解析式的确定
确定一次函数的解析式通常用待定系数法,根据定义,先设出式子中的未知系数,再根
据题目中所给的条件得到关于这些未知字母系数的方程(组),通过解方程(组)的办法求
出未知字母系数的值,一般步骤是:
① 设一次函数的解析式y=kx+b(k≠0);
② 把已知条件代入解析式得到关于k、b的方程(组);
③ 解方程(组),求出k、b的值;
④ 将k、b的值代回所设的解析式。一次函数的解析式中有两个待定系数,因而需要两
个条件。
4、一次函数的图象与坐标轴的交点
(1)因为x轴上的点的纵坐标都是0,所以求直线y=kx+b(k≠0)与x轴的交点,只要
令y=0,即可求出x=kb,故该直线与x轴交点坐标为(kb,0)。
(2)因为y轴上的点的横坐标都为0,所以求直线y=kx+b(k≠0)与y轴的交点,只要
令x=0,即可求出y=b,故该直线与y轴交点坐标为(0,b)。
(3)因为直线y1=k1x+b1和直线y2=k2x+b2的交点的坐标同时满足这两个解析式,所以
求这两直线的交点坐标就归结为解方程组222111bxkybxky,求其它函数图象的交点坐标可用
同样的方法。
例1:根据下列条件求函数的解析式:
(1)直线y=kx+b平行于y=3x-2且经过点(-2,2);
(2)直线y=kx+b经过点(3,0),且与两坐标轴围成的直角三角形的面积为12;
(3)若反比例函数y= 与一次函数y=mx-2的图象交于点P(a,1),求m。
分析:要求一次函数的解析式,须找到两个条件,运用待定系数法求解。
解:(1)∵ 直线y=kx+b平行于y=3x-2 ∴ k=3 且b≠-2
又 ∵ 直线y=kx+b经过点(-2,2)
∴ 2=-2k+b 即 2=-2×3+b b=8
∴ 直线y=kx+b的解析式为y=3x+8
(2)∵ 直线y=kx+b经过点(3,0), ∴0=3k+b b=-3k
∴ 直线的函数解析式可写成y=kx-3k,它与y轴交于(0,-3k)。
根据题意,得:123321k。
∴ k=38。
∴ 直线的函数解析式为y=x38+8或838xy。
(3)∵ 点P(a,1)在反比例函数y= 图象上。
∴ a61。得:6a。
∴ P点坐标为(-6,1)
又 ∵ P点也在直线y=mx-2上
∴ 261m。得:31m。
∴ 31m。
说明:第(2)题中如何把“面积为12”转化为方程是关键;第(3)题中点P(a,1)
在已知函数y =x6的图象上,故可先求出a,得交点P的坐标.再代入y=mx-2中从而求出
m,遇到交点要注意灵活运用。
例2:某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,
那么服药后2小时血液中含药量最高,达每毫升6微克,接着逐步衰减,10小时时血液中
含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间t(小时)的变化如图所示,
当成人按规定剂量服药后:
(1)分别求出x≤2和x≥2时之间的函数关系式;
(2)如果每毫升血液中含药量为4毫克时,对治疗疾病是有效的,那么这个有效的时
间是多少?
分析:由图可以看出要求的函数关系式一个为正比例函数,另一个为一次函数;可借助
于图中的已知点求得。
解:(1)当x≤2时,线段过原点,是正比例函数,故可设函数解析式为y=kx,它的图
象经过(2,6)得:6=2k。∴ k=3。
当x≥2时,由图象是线段,故可设它的解析式为y=kx+b,它经过点(2,6)和(10,
3),得:31062bkbk。解得:83k,427b。
∴ 当x≤2时和x≥2时,y与x之间的函数关系式分别为 (0≤x≤2) 和
4278
3
xy
(2≤x≤18)。
(2)把y=4代入y=3x得:34x。把y=4代入42783xy得:37x。
∴ 这个有效时间为 小时。
说明:第(2)题中4微克是y值,所要求的有效时间计算出从含药量增加到4微克时
到下降到4微克时用的时间差。