变压器短路阻抗计算.docx

变压器短路阻抗计算.docx

毕业论文范文模板

变压器短路阻抗计算

短路阻抗的定义是当一个绕组接成短路时,在另一个绕组中为产生额定电流所施加的额定频率的电压。此电压常以额定电压为基准,用标么值或百分数表示。也可以用短路阻抗的标么值或百分数表示,它包括两个分量:电阻和电抗分量。电阻分量需要换算到绕组的参考温度,油浸式变压器的电阻分量为75℃时的数值。对于中小型变压器,需计算电阻电压,而对于大型变压器,它占的比例很小,可以忽略不计。电抗分量为额定频率下的值。

1.阻抗的电阻分量

如果短路阻抗以额定电压的百分数表示,则电阻分量为:

(),%10%1001000%100%100%u 757575275k a N k N

k N N k N N k N P P P p I U r I U r I ?=??=?=?=

式中N I ——额定电流,A

N U ——额定电压,V

75k r ——换算到参考温度为75℃时的绕组电阻,Ω

75k P ——参考温度为75℃时的负载损耗,W

N P ——额定容量,Kva

2.短路阻抗的电抗分量

电抗分量是本节要讨论的重点,它涉及到变压器绕组联接方式,绕组的布置方式,当然也涉及到变压器的型式。

如果短路阻抗以额定电压百分数表示,则电抗分量为:

()%100%?=N

K N kx U x I u 式中K x ——短路阻抗,Ω

实质上,电抗分量的计算最终归结到计算出不同变压器型式、不同接线方式以及不同布置方式下的短路电抗。而不同类型的变压器、不同接线方式以及绕组不同布置方式决定了变压器的漏磁大小及分布规律,所以短路电抗是由漏磁场大小及分布规律来决定的。

3.短路阻抗

计算出短路电阻和短路电抗后,就不难求出短路阻抗。由于电阻分量是有功分量,而电抗分量是无功分量,二者相位差90°,故短路阻抗为:

()()()22%%%kx ka k u u u +=

短路阻抗是变压器设计计算中一个十分重要的参数,它的大小涉及到变压器的成本、效率、电压变化率、机械强度及短路电流大小等。为了降低负载损耗,提高效率,较小电压波动率,短路阻抗应该小;而为了降低短路电流和增加变压器耐受短路时的机械强度,短路阻抗应该大。当然减小短路阻抗,制造厂成本会适当的降低。

变压器的空载试验和短路试验等各类知识点

变压器的空载试验和短路试验 变压器的空载试验指的是通过变压器的空载运行来测定变压器的空载电流和空载损耗。一般说来,空载试验可以在变压器的任何一侧进行。通常将额定频率的正弦电压加在低压线圈上而高压侧开路。为了测出空载电流和空载损耗随电压变化的曲线,外施电压要能在一定范围内进行调节。 变压器空载时,铁芯中主磁通的大小是由绕组端电压决定的,当变压器施加额定电压时,铁芯中的主磁通达到了变压器额定工作时的数值,这时铁芯中的功率损耗也达到了变压器额定工作下的数值,因此变压器空载时输入功率可以认为全部是变压器的铁损。一般电力变压器在额定电压时,空载损耗约为额定容量的0.1%~1%。 变压器的短路试验通常是将高压线圈接至电源,而将低压线圈直接短接。由于一般电力变压器的短路阻抗很小,为了避免过大的短路电流损坏变压器的线圈,短路试验应在降低电压的条件下进行。用自耦变压器调节外旋电压,使电流在0.1~1.3倍额定电流范围变化。原边电流达到额定值时,变压器的铜损相当于额定负载时的铜损,因外施电压较低,铁芯中的工作磁通比额定工作状态小得多,铁损可以忽略不计,所以短路试验的全部输入功率基本上都消耗在变压器绕组上,短路试验可测出铜损。通常电力变压器在额定电流下的短路损耗约为额定容量的0.4%~4%,其数值随变压器容量的增大而下降。 变压器空载试验和负载试验的目的和意义 变压器的损耗是变压器的重要性能参数,一方面表示变压器在运行过程中的效率,另一方面表明变压器在设计制造的性能是否满足要求。变压器空载损耗和空载电流测量、负载损耗和短路阻抗测量都是变压器的例行试验。 变压器的空载试验就是从变压器任一组线圈施加额定电压,其它线圈开路的情况下,测量变压器的空载损耗和空载电流。空载电流用它与额定电流的百分数表示,即: 进行空载试验的目的是:测量变压器的空载损耗和空载电流;验证变压器铁心的设计计算、工艺制造是否满足技术条件和标准的要求;检查变压器铁心是否存在缺陷,如局部过热,局部绝缘不良等。

变压器容量、短路、电流计算

1.变压器容量计算 P=√3×U×I×COS¢ 一次侧额定电流:I=630000÷10000÷1.732=36.37A 二次侧额定电流:I=630000÷400÷1.732=909A 【2】变压器电抗的计算 110KV, 10.5除变压器容量;35KV, 7除变压器容量;10KV{6KV}, 4.5除变压器容量。 例:一台35KV 3200KVA变压器的电抗X*=7/3.2=2.1875 MVA 一台10KV 1600KVA变压器的电抗X*=4.5/1.6=2.813 MVA 【3】电抗器电抗的计算 电抗器的额定电抗除额定容量再打九折。 例:有一电抗器 U=6KV I=0.3KA 额定电抗 X=4% 额定容量 S=1.73*6*0.3=3.12 MVA. 电抗器电抗X*={4/3.12}*0.9=1.15 MVA 【4】架空线路及电缆电抗的计算 架空线:6KV,等于公里数;10KV,取1/3;35KV,取 3%0 电缆:按架空线再乘0.2。 例:10KV 6KM架空线。架空线路电抗X*=6/3=2 10KV 0.2KM电缆。电缆电抗X*={0.2/3}*0.2=0.013。 这里作了简化,实际上架空线路及电缆的电抗和其截面有关,截面越大电抗越小。 【5】短路容量的计算 电抗加定,去除100。 例:已知短路点前各元件电抗标么值之和为X*∑=2, 则短路点的短路容量

Sd=100/2=50 MVA。 短路容量单位:MVA 【6】短路电流的计算 6KV,9.2除电抗;10KV,5.5除电抗; 35KV,1.6除电抗; 110KV,0.5除电抗。 0.4KV,150除电抗 例:已知一短路点前各元件电抗标么值之和为X*∑=2, 短路点电压等级为6KV, 则短路点的短路电流 Id=9.2/2=4.6KA。 短路电流单位:KA 【7】短路冲击电流的计算 1000KVA及以下变压器二次侧短路时:冲击电流有效值Ic=Id, 冲击电流峰值ic=1.8Id 1000KVA以上变压器二次侧短路时:冲击电流有效值Ic=1.5Id, 冲击电流峰值ic=2.5Id 例:已知短路点{1600KVA变压器二次侧}的短路电流 Id=4.6KA, 则该点冲击电流有效值Ic=1.5Id,=1.5*4.6=7.36KA,冲击电流峰值ic=2.5Id=2.5*406=11.5KA。 可见短路电流计算的关键是算出短路点前的总电抗{标么值}.但一定要包括系统电抗。 变压器工作电流是多少?计算公式怎么列 可以用经验公式:10KV/0.4KV变压器低压侧 I=1.5S(变压器容量*1.5)高压侧 I=0.06S (变压器容量*0.06) 或:I=S/U*cos(变压器容量1000除以电压0.4再乘以功率因数) 你的高压是多少(10KV) 高压电流=1000/1.732/10=57.7A 低压电流=1000/1.732/0.38=1519A

变压器电压调整率与短路阻抗的关系

变压器电压调整率与短路阻抗的关系 1 说明 从变压器厂家订制变压器时,与变压器厂家的技术人员进行沟通,要求对方在变压器参数上标明电压调整率。对方回答“已经注明短路阻抗了,短路阻抗与电压调整率等效,不需要注明电压调整率。”当时没有考虑清楚,没有进行反驳。自己进行了资料查找与计算,经过查找计算,以前自己的理解不准确,厂家的技术人员的理解也不正确,下面试分析短路阻抗与电压调整率的关系: 2 名词定义 ? 电压调整率:变压器某一个绕组的空载电压和同一绕组在规定负载和功率因数时 的电压之差与该绕组满载电压的比,称为电压调整率,通常用百分数表示。 %10022 2×?= ΔN N U U U U U Δ:电压调整率; N U 2:二次侧空载时的输出电压,额定电压; 2U :在规定的功率因数额定负载时二次侧的输出电压。 ? 短路阻抗:变压器短路阻抗也称阻抗电压,在变压器行业是这样定义的:当变压 器二次绕组短路(稳态),一次绕组流通额定电流而施加的电压称阻抗电压Uz 。通常Uz 以额定电压的百分数表示。 %10011×= N Z Z U U U Z U :短路阻抗; Z U 1:二次侧短路,一次侧流额定电流时,一次侧的电压; N U 1:一次侧的额定电压。 3 电压调整率计算公式 ? 电压调整率的计算公式: 参考《电力变压器手册》(保定天威保变电气股份有限公司组编—谢毓城主编—机械工业出版社),电压调整率的计算公式为:

% )sin cos (2001sin cos % 100*% 100*212122 2?? ? ??????+?+?=?=?= Δ? ????KR KX KX KR N N N N U U U U U U U U U U U %20021 cos ??? ? ????+=Δ=KX KR U U U ? U Δ:电压调整率; N U 2:二次侧空载时的输出电压,额定电压; 2U :在规定的功率因数额定负载时二次侧的输出电压; N U 1:一次侧的额定电压; ? 2U :是2U 折算到一次侧的电压; KR U :短路阻抗的电阻分量; KX U :短路阻抗的电抗分量; ?cos :负载功率因数; 说明:上述公式是在N I I 22?的条件下得出,如果负载电流不是额定值,则计算出的U Δ应乘以N I I 22/。 ? 计算用向量图:

变压器阻抗计算word资料24页

设 计 手 册 油 浸 电 力 变 压 器 阻 抗 计 算 目 录 1 概述 SB1-007.5 第1页 1.1 漏磁通及漏抗电势 SB1-007.5 第1页 1.2 短路阻抗 SB1-007.5 第1页 1.3 短路阻抗允许偏差 SB1-007.5 第2页 2 电抗分量计算 SB1-007.5 第2页 2.1 电抗计算公式中的符号代表意义 SB1-007.5 第2页 2.2 双绕组变压器电抗计算 SB1-007.5 第5页 2.3 双绕组有载变压器电抗计算 SB1-007.5 第6页 2.4 双绕组变压器 (高-低-高) 电抗计算 SB1-007.5 第7页 2.4.1 双绕组变压器(高-低-高)电抗计算方法之一 SB1-007.5 第7页 2.4.2 双绕组变压器(高-低-高)电抗计算方法之二 SB1-007.5 第8页 共 第 01 01 油 浸 电 力 变 压 器 阻 抗 计 算

2.5双绕组变压器 ( 高-低-高-低 ) 电抗计算SB1-007.5第9页 2.6三绕组变压器电抗计算SB1-007.5第10页2.7三绕组自耦变压器电抗计算SB1-007.5第11页2.8双绕组变压器 ( 低压Z形联结) 电抗计算SB1-007.5第12页 2.9分裂变压器电抗计算SB1-007.5第13页2.9.1单相分裂变压器电抗计算SB1-007.5第13页2.9.2三相径向分裂变压器电抗计算SB1-007.5第14页2.9.3三相轴向分裂变压器电抗计算SB1-007.5第15页 2.10单相旁轭有载调压自耦变压器(低压励磁)电抗计算SB1-007.5第16页3电阻分量计算SB1-007.5第17页4短路阻抗计算SB1-007.5第17页

变压器短路电流计算

这本身就不是一个简单的事! 你既然用到短路电流了,就肯定不是初中阶段的计算了吧 所以你就不用找省劲的法子了 当然你也可以找个计算软件嘛就不用自己计算了 供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件. 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多. 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗. 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻. 3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流. 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法. 在介绍简化计算法之前必须先了解一些基本概念. 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流 和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定

三绕组变压器的短路容量计算

短路容量计算 (1)110kV : 最大短路容量 m a x 1825d S M VA =; 最小短路容量 m i n 855d S M VA =; 110 kV :m in 6.630s X =Ω ; m i n 21.104s L m H =; max 14.152s X =Ω ; m a x 45.047s L m H =; 10kV :min 0.0548s X =Ω ; m i n 0.1744s L m H =; m a x 0.11696s X =Ω ; m a x 0.3723s L m H =; 6kV :m in 0.01973s X =Ω; m i n 0.0628s L m H =; m a x 0.0421s X =Ω; m a x 0.1340s L m H = ; (2) 3#主变: 6kV :2 6 0.10090.145325 T X = ?Ω=Ω;T 0.4625L m H = ; (3) 1#或2#主变阻抗计算 11%(10.1 18.0 6.5)% 10.8%2 k u = +-=; 21%(10.1 6.518.0)%0.7%2k u =+-=-; 31%(18.0 6.510.1)%7.2% 2 k u = +-=; 10kV :2 110 0.1080.34331.5T X = ?Ω=Ω, 1 1.091T L m H =; 2 210 (0.007)0.02231.5T X = ?-Ω=-Ω, 20.0707T L m H =-; 2 310 0.0720.228631.5 T X = ?Ω=Ω; 30.728T L m H =; 6kV : 1360.1080.123431.5T X =?Ω=Ω , 10.3929T L m H =; 236(0.007)0.00831.5T X =?-Ω=-Ω , 20.0255T L m H =-; 336 0.0720.082331.5 T X = ?Ω=Ω ; 30.262T L m H =; (5) 10kV 母线短路容量计算

变压器短路容量的计算

变压器短路容量的计算 变压器短路容量-短路电流计算公式-短路冲击电流的计算 一.概述 供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。

在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量 Sjz =100 MVA 基准电压 UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV) 37 10.5 6.3 0.4 因为S=1.73*U*I 所以 IJZ (KA)1.565.59.16144 (2)标么值计算 容量标么值 S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量 S* = 200/100=2. 电压标么值 U*= U/UJZ ; 电流标么值 I* =I/IJZ

变压器并列运行及负荷分配的计算

变压器并列运行及负荷 分配的计算 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、变压器并列运行的条件是什么 1.变比相等。变压器比不同,二次电压不等,在二次绕组中也会产生环流,并占据变压器的容量,增加变压器的损耗。差值最多不超过±%。 2.联结组序号必须相同。接线组别不同在并列变压器的二次绕组中会出现电压差,在变压器的二次侧内部产生循环电流。 3.两台变压器容量比不超过3:1。容量不同的变压器短路电压不同,负荷分配不平衡,运行不经济。 4.短路电压相同。 关于短路电压要求相同的说明:实际上是非常接近即可,因为试验值往往与设计理论值有一定的偏差,铭牌上写的都是试验值,即实际值。 如果短路电压相差过大,会导致短路电压小的发生过负荷现象,建议允许差一般不超过10%。至于为什么,请看文末的变压器并列运行负荷分配计算。 二、什么叫变压器的短路电压 这里要先说一下变压器的阻抗电压 变压器的阻抗电压百分数由电抗电压降和电阻电压降组成。在数值上与变压器的阻抗百分数相等,表明变压器内阻抗的大小。阻抗电压百分数表明了变压器在满载(额定负荷)运行时变压器本身的阻抗压降的大小。它对于变压器在二次侧发生短路时,将产生的短路电流大小有决定性意义,对变压器制造价格和变压器的并联运行也有重要意义,也是考虑短路电流热稳定和动稳定及继电保护整定的重要依据。此数值在变压器设计时遵从国家标准。

阻抗电压百分数的大小与变压器的容量有关,一般变压器容量越大短路阻抗也就越大(一般情况哦)。我国生产的电力变压器,阻抗电压百分数一般在4%~24%的范围内。 再说变压器的短路电压 变压器的短路电压百分数是当变压器一侧短路,而另一侧通以额定电流时的电压,此电压占其额定电压百分比。实际上此电压是变压器通电侧和短路侧的漏抗在额定电流下的压降。同容量的变压器,其电抗愈大,这个短路电压百分数也愈大,同样的电流通过,大电抗的变压器,产生的电压损失也愈大,故短路电压百分数大的变压器的电抗变化率也越大。 所以说:短路电压百分数=阻抗电压百分数(有时说成短路阻抗百分数)。 三、变压器短路阻抗大好,还是小了好(我习惯叫短路阻抗,最直观) 变压器的短路阻抗大小各有利弊。如果选择大的,当变压器的负载端发生短路时,短路电流会小些,变压器所承受的短路力会小,所受破坏也相对小些。但平时线路压降会增大,线路损耗增加、发热量加大,有时靠分接开关甚至调不过来,使设备无法获得合适电压,从而影响设备的正常运转。 另一方面,短路阻抗大的,产品的几何尺寸相对增加,即材料要增加,制造成本加大。如果太小,短路电流大,变压器所承受的短路力会大,为防止对设备的破坏,设备选型等都要增加短路容量,经济不划算。 所以,在选取变压器短路阻抗这个数值时要综合考虑,综合考虑,综合考虑。重要的事要说3遍,因为我不懂。 四、变压器并列运行负荷分配计算

030 变压器零序阻抗的实测与计算

变压器零序阻抗的实测与计算   袁凌   (武汉大学电气工程学院,湖北武汉430072)   摘要:文章阐述了变压器零序电抗的实测方法并给出了折算成标幺值的公式,同时分析了常用的变压器零序电抗与正序阻抗之间的关系,为简化计算提供了方便。 关键词:变压器;零序阻抗;实测;简化   1变压器零序阻抗及等值电路图 电力系统中为了对接地性质的系统短路故障采用相应的有效的保护措施,需要确定系统中各电气设备的零序参数,变压器的零序阻抗便是其中之一。 变压器零序阻抗是指零序电流流过变压器三相对称电路时遇到的阻抗。 变压器的零序等值电路可以用三端T型电路来表示,见图 1。X G0、X Z0相当于零序漏电抗,X m0为零序激磁电抗。     2 实测与计算目的 三相变压器的零序阻抗特性与绕组的连接方式有关。在有三角形接线绕组时,在三角形接线绕组形成的平衡安匝作用的情况下,电压与电流间的关系是线性的,也就是说,零序阻抗是个定值。但对于没有三角形接线绕组的变压器,例如全星形三相三芯式自耦变压器来说,其零序阻抗由于油箱外壳磁化作用的影响,是一个变化的数值。图2所示为全星形三相三芯式自耦变压器做零序开路试验的特性曲 线,Z1,0(%)、Z2,0(%)、Z3,0(%)代表从高、中、低三侧加压时,Z0(%)

随着外施零序电压U0(%)的变化而呈现的非线性变化关系。因此其零序阻抗的稳定饱和值要实测确定。     零序阻抗还取决于绕组和铁芯之间的结构布置,因此在不同绕组上测量时就会有差异。零序阻抗也与铁芯结构型式有关。三相三柱式铁芯结构的变压器,零序磁通必须通过铁芯与油箱之间的空气隙和油箱形成回路,其零序阻抗较小。而三相五柱式铁芯结构的变压器,零序磁通则可通过旁轭形成回路,因此其零序阻抗较大。 即使2台相同规格,但绕组排列方式不同的变压器,例如Y0/y0/Δ型接线与Y0/Δ/y0接线的变压器零序阻抗也有差别。因此,在实际计算中,变压器零 序阻抗最好取实测值。 3不同类型变压器零序阻抗实测、计算与等值电路图 根据变压器接线组别、中性点引出线的不同,零序阻抗的测试方法有所不同,下面对电网中应用广泛的几种变压器的零序阻抗的测量、计算方法逐一论述。 3.1Y0/y0/Δ和Y0/Δ型接线变压器 Y0/Δ接线双绕组变压器与Y0/y0/Δ接线三绕组变压器,只有一个中性点引出线,其Y、Δ绕组中零序电流无法流通,零序阻抗的测量只需在带有中性点的Y0绕组上进行,将单相电压U0施加于Y0绕组中接在一起的

变压器短路阻抗测试和计算公式

概述 变压器短路阻抗试验的目的是判定变压器绕组有无变形。 变压器是电力系统中主要电气设备之一,对电力系统的安全运行起着重大的作用。在变压器的运行过程中,其绕组难免要承受各种各样的短路电动力的作用,从而引起变压器不同程度的绕组变形。绕组变形以后的变压器,其抗短路能力急剧下降,可能在再次承受短路冲击甚至在正常运行电流的作用下引起变压器彻底损坏。为避免变压器缺陷的扩大,对已承受过短路冲击的变压器,必须进行变压器绕组变形测试,即短路阻抗测试。 变压器的短路阻抗是指该变压器的负荷阻抗为零时变压器输入端的等效阻抗。短路阻抗可分为电阻分量和电抗分量,对于110kV及以上的大型变压器,电阻分量在短路阻抗中所占的比例非常小,短路阻抗值主要是电抗分量的数值。变压器的短路电抗分量,就是变压器绕组的漏电抗。变压器的漏电抗可分为纵向漏电抗和横向漏电抗两部分,通常情况下,横向漏电抗所占的比例较小。变压器的漏电抗值由绕组的几何尺寸所决定的,变压器绕组结构状态的改变势必引起变压器漏电抗的变化,从而引起变压器短路阻抗数值的改变。 二、额定条件下短路阻抗基本算法

三、非额定频率下的短路阻抗试验 当作试验的电源频率不是额定频率(一般为50Hz)时,应对测试结果进行校正。由于短路阻抗由直流电阻和绕组电流产生的漏磁场在变压器中引起的电抗组成。可以认为直流电阻与频率无关,而由绕组电流产生的漏磁场在变压器中引起的电抗与试验频率有关。当试验频率与额定频率偏差小于5%时,短路阻抗可以认为近似相等,阻抗电压则按下式折算: 式中u k75 --75℃下的阻抗电压,%; u kt—试验温度下的阻抗电压,%; f N --额定频率(Hz); f′--试验频率(Hz); P kt --试验温度下负载损耗(W); S N --变压器的额定容量(kVA); K—绕组的电阻温度因数。 四、三相变压器的分相短路阻抗试验 当没有三相试验电源、试验电源容量较小或查找负载故障时,通常要对三相变压器进行单相负载试验。 1、供电侧为Y接法 当高压绕组为Y联结时,另一侧为y或d联结时,分相试验是将试品低压三相线端短路,由高压侧AB、BC、CA分别施加试验电压。此时折算到三相阻抗电压和三相负载损耗可

短路电流计算计算方法.docx

短路电流计算 > 计算方法 短路电流计算 > 计算方法短路电流计算方法一、高压短 路电流计算(标幺值法) 1、基准值 选择功率、电压、电流电抗的基准值分别为、、、时,其对应关系为: 为了便于计算通常选为线路各级平均电压;基准容量 通常选为 100MVA 。由基准值确定的标幺值分别如下: 式中各量右上标的“ * “用来表示标幺值右,下标的“ d”表示在基准值下的标幺值。 2、元件的标幺值计算 (1)电源系统电抗标幺值 —电源母线的短路容量 (2)变压器的电抗标幺值 由于变压器绕组电阻比电抗小得多,高压短路计算时 忽略变压器的绕组电阻,以变压器的阻抗电压百分数(% )

作为变压器的额定电抗,故变压器的电抗标幺值为: —变压器的额定容量,MVA (3)限流电抗器的电抗标幺值 % —电抗器的额定百分电抗—电抗器额定电压, kV —电抗器的额定电流, A (4)输电线路的电抗标幺值 已知线路电抗,当=时 —输电线路单位长度电抗值,Ω/km 3、短路电流计算 计算短路电流周期分量标幺值为 —计算回路的总标幺电抗值 —电源电压标幺值,在=时, =1 = 短路电流周期分量实际值为 = 对于电阻较小,电抗较大(<1/3 )的高压供电系统,三相短路电流冲击值=2.55三相短路电流最大有效值

=1.52 常用基准值 (=100MVA) 电网额定电压(kV ) 3.0 6.0 10.0 35.0 60.0 110 基准电压( kV ) 3.15 6.3 10.5 37 63 115 基准电流( kA ) 18.3 9.16

5.5 1.56 0.92 0.502 二、低压短路电流计算(有名值法) 1. 三相短路电流 2.两相短路电流 3.三相短路电流和两相短路电流之间的换算关系 4.总电阻和总电抗 5.系统电抗 6.高压电缆的阻抗 7.变压器的阻抗

变压器短路电流的实用计算方法

变压器短路电流的实用计算方法 胡浩,杨斌文,李晓峰 (湖南文理学院,湖南常德415000) 基金项目:湖南省科技厅计划项目(2007FJ3046) 1前言 在电力系统中,对于电气设备的选用、电气接线方案的选择、继电保护装置的设计与整定以及有关设备热稳定与动稳定的校验等工作,都需要对变压器的短路电流进行计算。短路电流的计算,一般采用有名制或标幺值算法,再者是应用曲线法。然而,无论哪种方法应用起来都比较繁琐,尤其是对于企业的技术人员与农村的电工,因缺乏相应的技术资料,又不能从变压器铭牌上查到所有计算短路电流的数据,所以想快速算出短路电流值是相当困难的。笔者在多年的实际工作中,依据变压器的基本原理与基本关系式,总结出快速计算短路电流值的实用方法,以满足现场与工程上的需要。 2变压器低压三相短路时高压侧短路电流的计算 变压器的阻抗电压是在额定频率下,变压器低压绕组短接,高压绕组施加逐步增大的电压,当高压绕组中的电流达到额定电流时,所施加的电压为阻抗电压Ud,一般以高压侧额定电压U1N为基础来表示: Ud%=Ud/U1N×100% (1) 由变压器的等值电路可知,低压侧短路后的阻抗折算到高压侧,与高压侧阻抗相加后得总的阻抗Zd,在阻抗电压Ud时,高压绕组电流为额定值I1N, 即: I1N=Ud/Zd (2) 如果高压绕组的电压为U1,则此时高压绕组的电流I1为: I1=U1/Zd (3) 由式(2)和式(3)可得: I1=U1/Ud*I1N (4) 对于单个变压器,其容量远小于电力系统的容量,故可以认为当变压器低压侧出现短路时,高压侧电压不变,即为U1N,代入式(4)就可得到变压器低压侧短路时,高压侧的短路电流I1d: I1d=U1N/Ud*I1N (5) 将式(1)中的Ud代入式(5)得: I1d=I1N/Ud%×100 (6) 而变压器高压绕组的额定电流I1N可表示为: I1N=SN/√3U1N (7) 式中SN———变压器的额定容量 将式(7)代入式(6)可得: I1d=100SN/√3U1NUd% (8) 由式(6)或式(8)可计算出变压器低压三相短路时,高压侧的短路电流值。 3变压器低压三相短路时低压侧短路电流的计算 由于变压器的励磁电流仅为I1N的1%~3%,忽略励磁电流,则高、低压绕组的电流I1、I2与电压U1、 U2的关系为: I1/I2=U2/U1=U2N/U1N 式中

变压器短路容量-短路电流计算公式-短路冲击电流的计算

变压器短路容量-短路电流计算公式-短路冲击电流的计算 供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键.

输出变压器阻抗计算

谈谈输出变压器---左增军 输出牛是胆机的咽喉,其内在品质的优劣直接影响著整机的重放质量。由于输出牛的专业性较强,加之考虑厂家 的利 益,故很少有刊物作高保真输出牛的介绍。发烧友在评论某某胆机之输出牛时仅以外表或者品牌效应点评,甚至仅 以个人 听感为依据,缺乏对输出牛的定性的认识(虽然变压器所涉及的技术并不深,但一支高保真输出牛并非人人都能作 得好 的)。另外各胆机生产厂所生产的输出牛可以说各具特色,各有千秋。对于称得上“Hi-Fi” 级(严格地讲胆机的 输出牛 无法算Hi-Fi)的输出牛,一个厂家一个“味”,甚至一个批次一种音色。 当然在这“云云众生”众多的胆机中,也不乏有那不够Hi-Fi甚至失真较大,频率响应较窄的输出牛“滥竽充 数”。 而我们业余发烧友又无“孙悟空”那“火眼金睛”,来识破那些“笨牛”。本来不够Hi-Fi的“牛”,却奉为上 品,那可 就残了。这里笔者给大家谈一谈胆机的输出牛及其业余测试方法,让大家对“牛”有一个定性的了解和认识,也让 输出牛 不在那么“牛气”。 一颗理想的Hi-FI输出牛要求其: 1.初级电感(pri-inductor)为无穷大(infinite),以应付很低的低频信号; 2.漏感(leakage)为零,分布电感(distributed inductance)、电容(distributed capacitance)为零, 以 便高保真的传输现代音乐的超高频信号; 3.不产生各种形式的串联或并联谐振(resonance),以免使音频信号发生畸变(distortion); 4.不产生任何非线性(nonlinear distortion)或相位延迟失真(phase-delay distortion)。 从变压器的原理上讲,现今无论何种形式的变压器均无法同时满足以上条件的。首先说变压器要用铁心 (core)做导 磁媒体,其非线性失真一般很大。再有若需诺大的初级电感(pri-inductor),其漏感(leakage)、

变压器短路电流计算法

1、变压器短路电流计算法: 例:变压器容量Se=1250KVA ,变比:U1/U2=10/0.4KV ,短路阻抗电压:Uk=6%,计算低压侧三相短路时高低压侧三相短路电流值。 172.2 I A === 21804 I A === 172.2(3)112030.06I I A U k = == 2 1804 (3)23006730.070.06I I A K A U k ==== 2、无功补偿装置容量计算: 例:变压器容量Se=1000KVA ,变比:U1/U2=10/0.4KV ,短路阻抗电压:Uk=6%,额定功率因数cos ¢=0.8,现电力部门要求用户受电侧的功率因数cos ¢1达到0.95,则无功补偿装置应选择多大容量的电容器? 变压器的额定有功为:*co s 1000*0.8800P e S e K W ?=== 额定无功为:600Q e K V a r === 即当变压器达到额定出力时,将从电网吸收600KVar 的无功功率。 当电力部门要求用户受电侧的功率因数cos ¢1达到0.95, 则有功:*co s 1000*0.95950P e S e K W ?1=== 用户只能从电网吸收无功功率为:312Q e K V a r === 故用户需增加无功补偿电容器的容量为:600-312=288KVar ,故选择的电容器容量为300KVar 2)、空压机If =Kx ?cos U 3P e ∑=0.95* 132*1000/1.732*380*0.75=253A 考虑环境温度可能高于30度,根据表3可知选择3*120mm2+2*70mm2铜芯电缆线。 3)、2X135KW 通风机If =Kx ?cos U 3P e ∑=0.95* 270*1000/1.732*380*0.8=518A

关于变压器并列运行及负荷分配的计算

问一、变压器并列运行的条件是什么? 1.变比相等。变压器比不同,二次电压不等,在二次绕组中也会产生环流,并占据变压器的容量,增加变压器的损耗。差值最多不超过±0.5%。 2.联结组序号必须相同。接线组别不同在并列变压器的二次绕组中会出现电压差,在变压器的二次侧内部产生循环电流。 3.两台变压器容量比不超过3:1。容量不同的变压器短路电压不同,负荷分配不平衡,运行不经济。 4.短路电压相同。 关于短路电压要求相同的说明:实际上是非常接近即可,因为试验值往往与设计理论值有一定的偏差,铭牌上写的都是试验值,即实际值。 如果短路电压相差过大,会导致短路电压小的发生过负荷现象,建议允许差一般不超过10%。至于为什么,请看文末的变压器并列运行负荷分配计算。 问二、什么叫变压器的短路电压? 这里要先说一下变压器的阻抗电压 变压器的阻抗电压百分数由电抗电压降和电阻电压降组成。在数值上与变压器的阻抗百分数相等,表明变压器内阻抗的大小。阻抗电压百分数表明了变压器在满载(额定负荷)运行时变压器本身的阻抗压降的大小。它对于变压器在二次侧发生短路时,将产生的短路电流大小有决定性意义,对变压器制造价格和变压器的并联运行也有重要意义,也是考虑短路电流热稳定和动稳定及继电保护整定的重要依据。此数值在变压器设计时遵从国家标准。 阻抗电压百分数的大小与变压器的容量有关,一般变压器容量越大短路阻抗也就越大(一般情况哦)。我国生产的电力变压器,阻抗电压百分数一般在4%~24%的范围内。 再说变压器的短路电压 变压器的短路电压百分数是当变压器一侧短路,而另一侧通以额定电流时的电压,此电压占其额定电压百分比。实际上此电压是变压器通电侧和短路侧的漏抗在额定电流下的压降。同容量的变压器,其电抗愈大,这个短路电压百分数也愈大,同样的电流通过,大电抗的变压器,产生的电压损失也愈大,故短路电压百分数大的变压器的电抗变化率也越大。 所以说:短路电压百分数=阻抗电压百分数(有时说成短路阻抗百分数)。

变压器并列运行及负荷分配的计算

一、变压器并列运行的条件是什么? 1.变比相等。变压器比不同,二次电压不等,在二次绕组中也会产生环流,并占据变压器的容量,增加变压器的损耗。差值最多不超过±0.5%。 2.联结组序号必须相同。接线组别不同在并列变压器的二次绕组中会出现电压差,在变压器的二次侧内部产生循环电流。 3.两台变压器容量比不超过3:1。容量不同的变压器短路电压不同,负荷分配不平衡,运行不经济。 4.短路电压相同。 关于短路电压要求相同的说明:实际上是非常接近即可,因为试验值往往与设计理论值有一定的偏差,铭牌上写的都是试验值,即实际值。 如果短路电压相差过大,会导致短路电压小的发生过负荷现象,建议允许差一般不超过10%。至于为什么,请看文末的变压器并列运行负荷分配计算。 二、什么叫变压器的短路电压? 这里要先说一下变压器的阻抗电压 变压器的阻抗电压百分数由电抗电压降和电阻电压降组成。在数值上与变压器的阻抗百分数相等,表明变压器内阻抗的大小。阻抗电压百分数表明了变压器在满载(额定负荷)运行时变压器本身的阻抗压降的大小。它对于变压器在二次侧发生短路时,将产生的短路电流大小有决定性意义,对变压器制造价格和变压器的并联运行也有重要意义,也是考虑短路电流热稳定和动稳定及继电保护整定的重要依据。此数值在变压器设计时遵从国家标准。 阻抗电压百分数的大小与变压器的容量有关,一般变压器容量越大短路阻抗也就越大(一般情况哦)。我国生产的电力变压器,阻抗电压百分数一般在4%~24%的范围内。 再说变压器的短路电压 变压器的短路电压百分数是当变压器一侧短路,而另一侧通以额定电流时的电压,此电压占其额定电压百分比。实际上此电压是变压器通电侧和短路侧的漏抗在额定电流下的压降。同容量的变压器,其电抗愈大,这个短路电压百分数也愈大,同样的电流通过,大电抗的变压器,产生的电压损失也愈大,故短路电压百分数大的变压器的电抗变化率也越大。 所以说:短路电压百分数=阻抗电压百分数(有时说成短路阻抗百分数)。 三、变压器短路阻抗大好,还是小了好(我习惯叫短路阻抗,最直观)? 变压器的短路阻抗大小各有利弊。如果选择大的,当变压器的负载端发生短路时,短路电流

变压器试验基本计算公式

变压器试验基本计算公式 一、电阻温度换算: 不同温度下的电阻可按下式进行换算:R=R t (T+θ)/(T+t) θ:要换算到的温度;t:测量时的温度;R t:t温度时测量的电阻值; T :系数,铜绕组时为234.5,铝绕组为224.5。 二、电阻率计算: ρ=RtS/L R=(T+θ)/(T+t)电阻参考温度20℃ 三、感应耐压时间计算: 试验通常施加两倍的额定电压,为减少励磁容量,试验电压的频率应大于100Hz,最好频率为150-400Hz,持续时间按下式计算: t=120×f n /f, 公式中:t为试验时间,s;f n 为额定频率,Hz;f为试验频率, Hz。 如果试验频率超过400 Hz,持续时间应不低于15 s。 四、负载试验计算公式: 通常用下面的公式计算:P k =(P kt +∑I n 2R×(K t 2-1))/K t 式中:P k 为参考温度下的负载损耗; P kt 为绕组试验温度下的负载损耗; K t 为温度系数; ∑I n 2R为被测一对绕组的电阻损耗。 三相变压器的一对绕组的电阻损耗应为两绕组电阻损耗之和,计算方法如下:“Y” 或“Y n ”联结的绕组:P r =1.5I n 2R xn =3 I n 2R xg ; “D”联结的绕组:P r =1.5I n 2R xn =I n 2R xg 。 式中:P r 为电阻损耗; I n 为绕组的额定电流; R xn 为线电阻; R xg 为相电阻。 五、阻抗计算公式: 阻抗电压是绕组通过额定电流时的电压降,标准规定以该压降占额定电压的百分数表示。阻抗电压测量时应以三相电流的算术平均值为准,如果试验电流无法达到额定电流时,阻抗电压应按下列公式折算并校准到表四所列的参考温度。e kt = (U kt ×I n )/(U n ×I k )×100%, e k =1) - (K ) /10S (P e2 2 N kt 2 kt % 式中:e kt 为绕组温度为t℃时的阻抗电压,%; U kt 为绕组温度为t℃时流过试验电流I k 的电压降,V; U n 为施加电压侧的额定电压,V; I n 为施加电压侧的额定电流,A; e k 为参考温度时的阻抗电压,%; P kt 为t℃的负载损耗,W;S n 为额定容量,kVA; K t 为温度系数。案例1:

一分钟搞明白变压器短路阻抗

一分钟搞明白变压器短路阻抗 1、什么是变压器的短路阻抗? 变压器的短路阻抗,是指在额定频率和参考温度下,一对绕组中、某一绕组的端子之间的等效串联阻抗Zk=Rk+jXk。由于它的值除计算之外,还要通过负载试验来确定,所以习惯上又把它称为阻抗电压。 2、怎么测量变压器的短路阻抗? 用试验测量的方法为:将变压器二次侧短路,在一次侧逐渐施加电压,当二次绕阻通过额定电流时,一次绕阻施加的电压Uz与额定电压Un之比的百分数,即: Uz%=Uz/Un×100%。 3、变压器的短路阻抗实质是什么? 变压器的短路阻抗是变压器的一个重要参数,它表明变压器内阻抗的大小,即变压器在额定负荷运行时变压器本身的阻抗压降大小。 4、为什么说“变压器阻抗的实质是绕组间的漏抗”? 我们知道,变压器短路阻抗是由两部分组成,是变压器线圈及其他的电阻分量与变压器线圈之间的漏抗的向量和组成,即Zk=Rk+jXk。但在大型变压器中,电阻分量远远小于电抗分量,其数值与电抗分量相比,可以忽略不计,所以工程计算时往往将电抗分量的值,替代阻抗值,所以有“变压器阻抗的实质是绕组间的漏抗”的说法。 当然,还可以这样理解:如果没有漏抗时,变压器副边短路,电压为0,原边电压也应该等于0。但是大家都知道,副边短路时,变压器原边电压不等于零,是因为有漏抗。所以说,变压器阻抗的实质是绕组间的漏抗。 5、实际学习时,怎么理解变压器的短路阻抗? 1)如果把变压器当作一个电源来看的话,它的阻抗相当于任何一个电源的

内阻。这个内阻只有在有电流(负载电流)流过时,才表现出来。空载 时,它就反映不出了,但不等于它不存在。当变压器满载运行时,短路 阻抗的高低对二次侧输出电压的高低有一定的影响,短路阻抗小,电压 降小,短路阻抗大,电压降大。 2)如果把变压器作为电网的一个负载来看的话,它是一个感性负载(电阻 部分很小)。短路阻抗所表现出来的特性,就是它的负载特性--电感。 此电感就是两两线圈间的互感,由漏磁通产生(漏磁通由变压器负载电 流产生)。 6、系统设计时,如何选择变压器短路阻抗? 1)当负载的功率因数一定时,变压器的电压调整率与短路阻抗基本成正比, 变压器的无功损耗与短路阻抗的无功分量成正比。短路阻抗大的变压器,电压调整率也大,短路阻抗越小,供电电压质量也更高。因此,短路阻 抗小较为适宜。 2)然而,短路电流倍数与短路阻抗成反比,短路阻抗越小,则短路电流倍 数越大,电网所受的影响大,系统中断路器开断的短路电流也大。对变 压器则是,当变压器短路时,绕组会遭受巨大的电动力,并产生更高的 短路温升。为了限制短路电流,则希望较大短路阻抗。 3)对心式变压器而言,当取的短路阻抗越大,需要要增加绕组的匝数就越 多,即增加了导线重量,或者增大漏磁面积和降低绕组的电抗高度,从 而增加了铁芯的重量。由此可见,高阻抗变压器,要相应增加变压器的 制造成本。 4)所以,短路阻抗的选择,需要在(损耗、制造成本)和短路电流之间做

相关文档
最新文档