第一章 金属材料的性能
金属材料的主要性能

① HRA 硬、薄试件,如硬质合金、表面淬火层和渗碳层。 ② HRB 轻金属,未淬火钢,如有色金属和退火、正火钢等 ③ HRC 较硬,淬硬钢制品;如调质钢、淬火钢等。 洛氏硬度的优点:操作简便,压痕小,适用范围广。
②弹性:材料不产生塑性变形的情况下,所能承受的最 大应力。
弹性极限:σe=Fe/So 不产永久变形的最大抗力。
2)屈服强度s:材料发生微量塑性变形时的应力值。即 在拉伸试验过程中,载荷不增加,
试样仍能继续伸长时的应力。
s = Fs/So
s
条件屈服强度0.2:高碳钢等无屈服点, 国家标准规定以残余变形量为0.2%时的 应力值作为它的条件屈服强度,以0.2 来表示。
影响因素:循环应力特征、温度、材料成分和组织、夹 杂物、表面状态、残余应力等。
二、塑性 金属材料受力破坏前可承受最大塑性变形的能力。
1.延伸率
延伸率与试样尺寸有关:δ5、δ10 (L0=5d,10d)
2.断面收缩率 ψ=△S/So=(So-Sk)/So x 100%
> 时,无颈缩,为脆性材料表征; < 时,有颈缩,为塑性材料表征。
0.2
3)抗拉强度b:材料断裂前所承受的最大 应力值。(材料抵抗外力而不致断裂的极 限应力值)。
b = Fb/So
(5)灰铸铁拉伸时的力学性能 灰口铸铁是典型的脆性材料,其σ-曲线是一段微弯曲 线,如图a)所示,没有明显的直线部分,没有屈服和颈 缩现象,拉断前的应变很小,延伸率也很小。强度极限 σb是其唯一的强度指标。 铸铁等脆性材料的抗拉强度 很低,所以不宜作为受拉零 件的材料。
无论是塑性材料还是脆性材料,断裂时都不产生明显的 塑性变形,而是突然发生,具有很大的危险性,有相当多 零件的破坏属于疲劳破坏,对此必须引起足够的重视。
金属材料的力学性能

第一章金属材料的力学性能机械制造中使用的材料品种很多,为了正确使用材料,并把它加工成合格的工件,必须掌握材料的使用性能和工艺性能。
使用性能,是指为保证工件正常工作材料应具备的性能,包括力学性能、物理和化学性能等。
工艺性能,是指材料在加工过程中所表现出来的性能,包括铸造性能、锻压性能、焊接性能和切削加工性等。
所谓力学性能,是指材料在外力作用下所表现出来的性能,主要有强度、塑性、硬度、冲击韧性、疲劳强度等,是设计机械零件时选材的重要依据。
这些性能指标是通过试验测定的。
第一节刚度、强度、塑性刚度、强度和塑性是根据试验测定出来的。
将材料制成标准试样(图1-1a),然后把试样装在试验机上施加静拉力,随着拉力的增加试样逐渐变形,直到拉断为止(图1-1b)。
将试样从开始到拉断所受的力F 及所对应的伸长量ΔL绘制在F—ΔL坐标上,得出力一伸长曲线。
低碳钢的力一伸长曲线如图1—2所示。
从图1—2可知,在OE 阶段,试样的伸长量随拉力成比例增加,若去除拉力后试样恢复原状,这种变形称为弹性变形。
超过E 点后,若去除拉力试样不能完全恢复原状,尚有一部分伸长量保留下来,这部分保留下来的变形称为塑性变形。
当拉力增加到F s 时,力一伸长曲线在S 点呈现水平台阶,即表示外力不再增加而试样继续伸长,这种现象称为屈服,该水平台阶称为屈服台阶。
屈服以后,试样又随拉力增加而逐渐均匀伸长。
达到B 点,试样的某一局部开始变细,出现缩颈现象。
由于在缩颈部分试样横截面积迅速减小,因此使试样继续伸长所需的拉力也就相应减小。
当达到K 点时,试样在缩颈处断裂。
低碳钢在拉伸过程中经历了弹性变形、弹一塑性变形和断裂三个阶段。
F —ΔL 曲线与试样尺寸有关。
为了消除试样尺寸的影响,把拉力F 除以试样原始横截面积A0,得出试样横截面积上的应力,同时把伸长量ΔL 除以试样原始标距L 0,得到试样的应变LL ε∆=0F A σ=σ—ε曲线与F —ΔL 曲线形状一样,只是坐标不同。
【加工】原创金属材料与热处理习题集

【关键字】加工《金属材料学》习题第一章金属材料的性能1.在设计机械零件时多用哪两种强度指标?为什么?2.在设计刚度好的零件,应根据何种指标选择材料。
采用何种材料为宜?材料的E越大,其塑性越差,这种说法是否正确?为什么?3.常用的硬度试验方法有几种?其应用范围如何?这些方法测出的硬度值能否进行比较?4.标锯不相同的伸长率能否进行比较?为什么?5.反映材料的受冲击载荷的性能指标是什么?不同条件下测得的这种指标能否比较?怎样应用这种性能指标?6.疲劳破坏是怎样形成的?提高零件疲劳寿命的方法有哪些?为什么表面粗糙和零件尺寸增大能使材料的疲劳强度值减小?7.断裂韧度是表明材料何种性能的指标?为什么要求在设计零件时考虑这种指标?第二章金属的结构与结晶1.解释下列名词:晶体,非晶体,金属键;晶格,晶胞,晶格常数,致密度,配位数;晶面指数,晶向指数;晶体的各向异性,同素异构(晶)转变;点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,位错;单晶体,多晶体;过冷度,形核率,成长率,自由能差;蜕变处理,蜕变剂。
2.常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?α-Fe、γ-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn各属何种晶体结构?3.已知Cu的原子直径为2.56,求Cu的晶格常数,并计算1mm3Cu中的原子数。
4.在立方晶体结构中,一平面通过y=1/2、z=3并平行于X轴,它的晶面指数是多少?试绘图表示。
5.在面心立方晶格中,哪个晶面和晶向的原子密度最大?6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?7.过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?8.金属结晶的基本规律试什么?晶核的形成率和成长率受到哪些因素的影响?9.在铸造生产中,采用哪些措施控制晶粒大小?在生产中如何应用蜕变处理?举例说明。
10.简述铸钢锭的组织和缺陷。
11.为什么钢锭希望尽量减少柱状晶区?而铜锭、铝锭往往希望扩大柱状晶区?12.如果其他条件相同,试比较在下列铸造条件下,铸件晶粒的大小:(1)金属模浇注与沙模浇注;(2)高温浇注与低温浇注;(3)铸成薄件与铸成厚件;(4)浇注时采用震动与不采用震动。
《机械常识》课件-第一章 常用金属材料

常用铸铁的类别、牌号、主要性能和用途
类别
牌号
主要性能
用途
灰铸铁
HT100 HT150
低负荷和不重要的零件,如盖、外罩、
有良好的铸造性
手轮、支架、重锤等
能和切削性能, 承受中等负荷的零件,如气轮机泵体、
较高的耐磨性和 轴承座、齿轮箱、工作台、底座、刀架
减振性,抗压强
等
HT200HT25 0
度和硬度较高, 抗拉强度较低, 塑性和韧性差
压力加 工特殊
黄铜
HSn90-1 HMn58-2 HPb59-1
与同等含铜量的普通黄铜相比,具有 更高的强度和硬度,并具有一些特殊
性能,如耐蚀性和耐磨性等
适用于制作船舶上的零件、汽车和拖拉 机上的弹性套管等
适用于制作弱电电路中的零件和在腐蚀 条件下工作的重要零件
适用于制作热冲压及切削加工零件,如 销钉、螺钉、螺母、轴瓦等
综合力学性能
适用于制作较高强度的运动零件,如活塞、叶轮轴、连 杆、蜗杆、齿条、齿轮、连接销等
具有相当高的强度、硬度及弹性,切削加 工性不高,冷变形塑性低,淬透性低
适用于制作受力较大、在摩擦条件下工作,要求具有较 高强度、耐磨性和一定弹性的零件,如直轴、曲轴、轧 辊、离合器、钢丝绳、弹簧垫圈、弹簧圈、减振弹簧、
3.铸造碳钢
铸造碳钢(简称铸钢)的碳质量分数一般为 0.20%~ 0.60%,具有较高的强度、塑性和韧性,生产成本较低。
铸造碳钢主要用来制造形状复杂、力学性能要求较高 的零件。
常用铸造碳钢的牌号、主要特性和用途
牌号
主要特性
用途
具有较好的塑性、韧性,焊接性 适用于制作受力不大、要求具
ZG230-450 良好,切削性能尚可,但强度和 有一定韧性的零件,如砧座、
机械制造基础课件第一章

(金属材料中:银、铜、金、铝、铍、镁、 钼、钴、锌、镍、镉、铁、锡导电性依次减 弱)。 2.设计散热器、热交换器时考虑其材料的散热 性; 3.设计化工、医疗器械时考虑材料的耐蚀性; 4.设计机械零件时考虑材料的受力情况, 因此,选择材料时要考虑材料的力学性能。
根据载荷的作用 于零件上(子弹、火箭、大炮的发射, 性质载荷分为:汽车、飞机的碰撞)
C.交变载荷:大小和方向至少有一个随时间 周期性的变化。 (匀速运转的轴承、齿轮的啮合)
第一章 金属材料的性能及热处理
第一章 金属材料的性能及热处理
鸟巢设计者:the designer “鸟巢”是国内在建筑结构上首次使用
机械制造基础
甘肃省水利水电学校
教学重难点 2.了解常用的硬 度指标
教学目的 3.了解常用的硬 度指标
1.了解金属材 料的力学性能 及工艺性能的 概念
2.理解力-伸长曲 线示意图
1.了解常用的硬度 指标
授课方法: 讲授法 授课时数: 2课时 教学内容及 过程:
第一章 金属材料的性能及热处理
第一章 金属材料的性能及热处理
A:断后伸长率(%) L0:试样的原始标距(mm) LU:试样拉断后的标距(mm) 断后伸长量的示意图:
第一章 金属材料的性能及热处理
2.断面收缩率(Z): 指试样拉断处横截面积的收缩量与原始横截面积 的百分比,用符号Z表示,其计算公式为:
Z S 0 SU X100%
Z:断面收缩率(S%0) S0:试样的原始横截面积(mm2) SU:试样拉断后的断口处的最小横截面积(mm) 注意:断面收缩率不受试样尺寸的影响,能比较 确切地反应金属材料的塑形。A、Z值越大,表示 金属材料的塑性越好。塑性好的金属易通过塑性 变形加工成形状复杂的零件。
1.1材料的力学性能

洛氏硬度测试示意图
洛 氏 硬 度 计
h1-h0
(2)符号及标注 符号:HR 常用三种标度符号:HRA HRB 标注方法: 数值+符号 如:52 HRC 70 HRA (3)应用
HRC
压痕小,在批量成品或半成品质量检验中广 泛应用,并可测量较薄的工件或较薄的硬化层。
HRA用于测量高硬度材料, 如
三、硬度 含义:是指材料在外力作用下抵抗局部变形, 特别是塑性变形、压痕或 划痕的能力,通俗 说材料抵抗外力压入其表面的能力。硬度是 衡量材料软硬程度的判据。 硬度判据:布氏硬度HB 洛氏硬度HR 维氏硬度HV
测量方法:硬度实验法
1、布氏硬度HB
(1)测量方法:用直径D钢球或硬质合金球, 一定载荷p ,保持一定时间卸除,由读数显微 镜测得压痕直径d,计算得到。(单位Mpa) 注:实际应用中,不需计算,根据d查布氏硬度 表即可。
2、塑性
含义:材料受力破坏前可承受最大塑性变形的能力。 指标(两个): 伸长率: 断面收缩率:
l1 l 0 100% l0
F0 F1 100% F0
断裂后
拉 伸 试 样 的 颈 缩 现 象
说明:
① 用表示塑性比伸长率更接近真实变形。 ② 与试样尺寸 有关,d0 相同时,l0,,故5> 10。只 有l0/d0 为常数时, 才有可比性。 ③ > 时,无颈缩,为脆性材料表征
关
Titanic 号钢板(左图)和近代船用钢板(右图) 的冲击试验结果
Titanic
近代船用钢板
五、疲劳强度
何为疲劳?材料在低于s的循环交变应力作 用下发生断裂的现象。(举例) 疲劳强度的含义:材料抵抗疲劳破坏的能力。 指标: 疲劳极限:材料在规定次数应力循环后仍不 发生断裂时的最大应力称为疲劳极限。用N 表示(对称循环交变应力-1 。) 钢铁材料规定次数为107,有色金属合金为 108。
金属材料的力学性能
金属材料的力学性能(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除复习旧课1、材料的发展历史2、工程材料的分类讲授新课第一章金属材料的力学性能材料的性能有使用性能和工艺性能两类使用性能是保证工件的正常工作应具备的性能,主要包括力学性能、物理性能、化学性能等。
工艺性能是材料在被加工过程中适应各种冷热加工的性能,包括铸造性能、锻压性能、焊接性能、热处理性能、切削加工性能等。
力学性能是指金属在外力作用下所显示的性能能。
金属力学性能指标有:强度、刚度、塑性、硬度、韧性和疲劳强度等。
第一节刚度、强度与塑性一、拉伸试验及力—伸长曲线L 0——原始标距长度;L1——拉断后试样标距长度d 0——原始直径。
d1——拉断后试样断口直径国际上常用的是L0=5 d0(短试样),L0=10 d0(长试样)[拉伸曲线]:拉伸试验中记录的拉伸力F与伸长量ΔL(某一拉伸力时试样的长度与原始长度的差ΔL=Lu-L0)的F—ΔL曲线称为拉伸曲线图。
Oe段:为纯弹性变形阶段,卸去载荷时,试样能恢复原状Es段:屈服阶段Sb段:强化阶段,试样产生均匀的塑性变形,并出现了强化Bk段:局部塑性变形阶段二、刚度刚度:金属材料抵抗弹变的能力指标:弹性模量 E E= σ / ε (Gpa )弹性范围内. 应力与应变的比值(或线形关系,正比)E↑刚度↑一定应力作用下弹性变形↓三、强度指标σ= F/S o强度:强度是指材料抵抗塑性变形和断裂的能力。
强度表示:强度一般用拉伸曲线上所对应某点的应力来表示。
单位采用N/mm2(或MPa 兆帕)σ= F/Aoσ——应力(MPa);F——拉力(N);S o——截面积(mm2)。
常用的强度判据主要有屈服点、条件屈服强度(也称为规定残余伸长应力)和抗拉强度等。
1、屈服点与条件屈服强度[屈服强度]σs 产生屈服时的应力(屈服点),亦表示材料发生明显塑性变形时的最低应力值。
金属材料的结构与性能
第一章材料的性能第一节材料的机械性能一、强度、塑性及其测定1、强度是指在静载荷作用下,材料抵抗变形和断裂的才能。
材料的强度越大,材料所能承受的外力就越大。
常见的强度指标有屈服强度和抗拉强度,它们是重要的力学性能指标,是设计,选材和评定材料的重要性能指标之一。
2、塑性是指材料在外力作用下产生塑性变形而不断裂的才能。
塑性指标用伸长率δ和断面收缩率ф表示。
二、硬度及其测定硬度是衡量材料软硬程度的指标。
目前,消费中测量硬度常用的方法是压入法,并根据压入的程度来测定硬度值。
此时硬度可定义为材料抵抗外表局部塑性变形的才能。
因此硬度是一个综合的物理量,它与强度指标和塑性指标均有一定的关系。
硬度试验简单易行,有可直接在零件上试验而不破坏零件。
此外,材料的硬度值又与其他的力学性能及工艺能有亲密联络。
三、疲劳机械零件在交变载荷作用下发生的断裂的现象称为疲劳。
疲劳强度是指被测材料抵抗交变载荷的才能。
四、冲击韧性及其测定材料在冲击载荷作用下抵抗破坏的才能被称为冲击韧性。
为评定材料的性能,需在规定条件下进展一次冲击试验。
其中应用最普遍的是一次冲击弯曲试验,或称一次摆锤冲击试验。
五、断裂韧性材料抵抗裂纹失稳扩展断裂的才能称为断裂韧性。
它是材料本身的特性。
六、磨损由于相对摩擦,摩擦外表逐渐有微小颗粒别离出来形成磨屑,使接触外表不断发生尺寸变化与重量损失,称为磨损。
引起磨损的原因既有力学作用,也有物理、化学作用,因此磨损使一个复杂的过程。
按磨损的机理和条件的不同,通常将磨损分为粘着磨损、磨料磨损、接触疲劳磨损和腐蚀磨损四大根本类型。
第二节材料的物理化学性能1、物理性能:材料的物理性能主要是密度、熔点、热膨胀性、导电性和导热性。
不同用途的机械零件对物理性能的要求也各不一样。
2、化学性能:材料的化学性能主要是指它们在室温或高温时抵抗各种介质的化学侵蚀才能。
第三节材料的工艺性能一、铸造性能:铸造性能主要是指液态金属的流动性和凝固过程中的收缩和偏析的倾向。
金属材料的主要性能
外力不增长或是上下波 动而试样继续产生塑性变 形而伸长旳现象。
d到b点: 均匀塑性变形阶段 B点后: 缩颈现象
变形集中在试样某段 k点: 断裂
2、拉伸时旳强度指标
1)要求非百分比延伸强度Rp
2)弹性模量E 在弹性范围内,应力应变旳比值。
材料在受力时抵抗产生弹 性变形旳能力称为刚度。
5.热处理性能 金属经热处理可使性能顺利改善旳性质称为热处理性能。
钢铁:200GPa 铝合金:70GPa
镁合金:40GPa
3)屈服强度
Re H上屈服强度
0εp
Re L下屈服强度
0 εt
延伸率
要求残余延伸强度(Rr0.2) 没有明显旳屈服现象,
产生0.2%残余伸长所相应旳应力
4) 抗拉强度 Rm 试样能承受旳最大载荷除以试 样原始截面积所得旳应力.
表征了材料对最大均匀变形旳抗力。 屈强比=Re/ Rm 小,构件可靠,但材料利用率低 5) 断裂强度RK
压头和载荷不同又分为多种:HRC、HRB、HRA。。。
表达措施:如50HRC、60HRC 优点:操作迅速、简便,可由表盘上直接读出硬度值; 缺陷:精度较差,硬度值波动较大。
不同标尺不能比较。
(三) 维氏硬度 物理意义:压痕表面上单位面积所承受旳压力 压头是136°金刚石四棱锥体 表达措施(与HB相同)
aku 或akv H h
第二节 金属材料旳物理、化学及工艺性能
一、物理性能: 密度、熔点、导电性、导热性、磁性及热膨胀性等 二、化学性能:抗氧化性和抗腐蚀性
三、工艺性能:铸造性能、锻压性能、焊接性能、 切削加工性能和热处理工艺性能等
一、金属材料旳物理性能
清华大学工程材料第五版第一章
晶向指数一般标记为[uvw],
表示一组原子排列相同的平行晶向。
清华大学工程材料第五版第一章
若两个晶向的全部指数数值相同而符号 相反, 则它们相互平行或为同一原子列, 但 方向相反。
如[110]与 。 若只研究原子排列情况, 则晶向[110]与 可用同一个指数[110]表示。
清华大学工程材料第五版第一章
清华大学工程材料第五版第一章
面心立方晶胞的特征:
(1)晶格常数
a=b=c, α=β=γ=90°
(2)晶胞原子数 (个) 4
(3)原子半径
(4)致密度 0.74 (74%)
清华大学工程材料第五版第一章
(5)空隙半径
●四面体空隙半径: r四=0.225r原子 ●八面体空隙半径: r八=0.414r原子
(6)配位数 12
清华大学工程材料第五版第一章
老师提示 由于原子排列紧密程度不一样, 当金属从面心立方晶格向体心立方晶格 转变时, 体积会发生变化。
钢在淬火时因晶格转变发生体积变化。 不同晶体结构中原子排列的方式不同, 使它们的形变能力不同。
清华大学工程材料第五版第一章
二、晶体中的晶面和晶向 通过晶体中原子中心的平面叫做晶面; 通过原子中心的直线为原子列,代表的方 向叫做晶向。 晶面用晶面指数表达。 晶向用晶向指数表达。
晶向族 原子排列情况相同而在空间位向不同 的晶向组成晶向族。
晶向族用尖括号表示, 即<uvw>。
如: <100> = [100] + [010] + [001]
清华大学工程材料第五版第一章
在立方晶系中, 一个晶面指数与一 个晶向指数数值和符号相同时, 则该晶 面与该晶向互相垂直。