浅谈风电场风电机组基础设计

浅谈风电场风电机组基础设计
浅谈风电场风电机组基础设计

龙源期刊网 https://www.360docs.net/doc/c517963715.html,

浅谈风电场风电机组基础设计

作者:姜琳相鹏

来源:《风能》2015年第11期

风电机组基础具有承受360度方向重复荷载和大偏心受力的特殊性,对基础的稳定性和结构要求较高。根据风电机组荷载及地质情况的不同,应采取不同的风电机组基础形式。风电机组基础形式通常有三种:扩展基础、桩基础、岩石锚杆基础,其中扩展基础及桩基础在已建风电场风电机组基础中应用较多,岩石锚杆基础则鲜有应用,因而下面主要针对扩展基础和桩基础两种基础形式的设计进行分析,以供借鉴。

扩展基础

扩展基础是由台柱和底板组成使压力扩散的基础型式,当风场中地基条件较好、地基承载力较高时,如地基土为岩石、角砾等,应优先考虑采用扩展基础。

根据底板形状不同,扩展基础一般分为矩形、正八边形及圆形扩展基础三种。由于风电机组基础承受360度方向重复荷载,所以圆形扩展基础更有利于适应这种特点,而矩形及正八边形扩展基础在达到同等性能时需耗用更多的混凝土方量,因而圆形扩展基础是最经济合理的扩展基础型式。

一、设计原则

(一)体型构造要求

基础设计时,首先应根据《风电机组地基基础设计规定》中的构造要求拟定基础的尺寸。扩展基础底板直径D(或底宽)宜控制在轮毂高度的1/5 1/3范围内,基础高度(含台柱)宜

控制在轮毂高度的1/30-1/20范围内,基础边缘高度Ll宜为直径D(或底宽)的1/20-1/15,且不应小于l.Om。

同时,为满足基础底板抗冲切的要求及基底反力为线性分布的假设,要求底板悬挑部分的长/高≤2.5。

风电机组圆形扩展基础常用型式如图1。

(二)控制工况及控制设计核算

风电机组基础计算的荷载工况有以下几种:极端荷载工况、正常运行荷载工况、多遇地震工况、罕遇地震工况和疲劳强度验算工况等。

风电场风力发电机组调试作业指导书

附件9 中国国电集团公司 风电场风力发电机组调试作业指导书 1 目的 本作业指导书是为规风力发电机组的现场调试工作编制,主要包含了风力发电机组现场调试工作的项目、步骤和记录,为保证调试工作的标准化提供了参考依据。 2 围 本作业指导书适用于中国国电集团公司全资或控股建设的风力发电机组的现场调试工作,各项目公司应参照本指导书要求,结合风力发电机组型号,分别编制对应机型的调试作业指导书。 现场具体机型的调试作业指导书应包括但不限于本作业指导书中涉及到的技术容。 3引用标准和文件 《风力发电机组安全要求》GB/T 1845.1.1-2001 《风力发电机组通用试验方法》GB/T 19960.2-2005 《风力发电机组功率特性试验》GB/T 18451.2-2003,IEC61400-12:1998 《风力发电机组控制器试验方法》GB/T 19070-2003 《风力发电机组齿轮箱》GB/T 19073-2003 《风力发电机组验收规》GB/T 20319-2006 《电能质量公用电网谐波》GB/T 14549-93

《风力发电机组异步发电机试验方法》JB/T 19071.2-2003 《风力发电场安全规程》DL 796-2001 《风力发电机组偏航系统第2部分试验方法》JB/T 10425.2-2004 《风力发电机组制动系统第2部分试验方法》JB/T 10426.2-2004 《风力发电机组一般液压系统》JB/T 10427-2004 《风力机术语》JB/T 7878-1995 4 术语和定义 本作业指导书中的术语及定义均参照《风力机术语》使用。 根据风力发电机组不同机型具体调试容的差异,本指导书所涉及的特定术语的指示或有不同,宜根据调试的具体机型编制适用的术语和定义。 5 调试前的准备 调试前须确认风力发电机组、配电变压器等相关设备安装工作已通过验收,无遗留缺陷;检查基础接地报告检测数据合格;风力发电机组已具有紧急情况下能够使用的安全设备(安全带、安全绳、安全滑轨等)、灭火器、急救装置等。 5.1技术文件准备 (1)调试方案。 (2)调试技术手册:各零部件说明书及接线图,必要的电气、液压、机械图纸、机组通讯连接拓扑图等。 (3)对应机组的参数列表。 (4)出厂调试记录。

风电机组结构及选型

第一节风电机组结构 1.外部条件 根据最大抗风能力和工作环境的恶劣程度,按强度变化的程度对风电机组进行分级。根据IEC61400设计标准,共分为4级。 一类风场I:参考风速为50m/s,年平均风速为10m/s,50年一遇极限风速为70m/s,一年一遇极限风速为s; 二类风场II:参考风速为s,年平均风速为s,50年一遇极限风速为s,一年一遇极限风速为s; 三类风场III:参考风速为s,年平均风速为s,50年一遇极限风速为s,一年一遇极限风速为s; 四类风场IV:低于三类风场风速,属低风速区,鲜有商业风电场开发。 对电网的要求:电压波动为额定值±10%,频率波动为额定值±5%。2.机械结构 总体描述 整机是建立在钢结构底座上,该结构应具有很大的强韧度,底部由坚固底法兰组成,风电机组所有的主要部件都连接于其上。 发电机固定位置与机舱轴线偏离,以使得风电机组在满载运行时,整机质心与塔架和基础中心相一致。 偏航机构直接安装在机舱底部,机舱通过偏航轴承与偏航机构连

接,并安装在塔架上,整个机舱底部对叶轮转子到塔架造成的动力负载和疲劳负荷有很强的吸收作用。 机舱座上覆盖有机舱罩,材料是玻璃钢,具有轻质高强的特点,有效地密封,以防止外界侵蚀,如雨、潮湿、盐雾、风砂等。产品生产采用多种工艺,包括:滚涂、轻质RTM、真空灌注等,机舱罩主体部分设置PVC泡沫夹层,以增加强度。内层设置消音海绵,以降低主机噪声。 机舱上安装有散热器,用于齿轮箱和发电机的冷却;同时,在机舱内还安装有加热器,使得风电机组在冬季寒冷的环境下,机舱内保持在10℃以上的温度。 载荷情况 - 启动:从任一静止位置或空转状态到发电过渡期间,对风电机组产生的载荷。 - 发电:风电机组处于运行状态,有电负荷。 - 正常关机:从发电工况到静止或空转状态的正常过渡期间,对风电机组产生的载荷。 - 紧急关机:突发事件(如故障、电网波动等),引起的停机。 - 停机:停机后的风电机组叶轮处于静止状态,采用极端风况对其进行设计。 - 运输/安装/维护:整体装配结构便于运输,安装、维护易于实施。 叶片

系列风电机组事故分析及防范措施(五)——风电场运维与安全隐患

机组安全不仅与整机质量有关,而且与风电企业的管理体制、风电场管理与运维人员有着密不可分的关系。就中国目前大部分风电场的管理体制来看,风电场维护维修人员的技术水平和责任心,对保证机组正常运行及机组安全有着最为直接和关键性的作用。下面就现场人员、风电场管理、机组运维以及风电场现状等几个方面所存在的问题予以阐述和分析。 风电场存在的问题 一、现场人员的技术水平及运维质量堪忧目前,中国绝大部分风电场,主要依靠现场人员登机判断和处理机组故障,检查和排除安全隐患。公司总部和片区的技术人员不能通过远程直接参与风电场机组的故障判断和检查,难以给现场强有力的技术支持。设备厂家的公司总部、片区除了提供备件外,难以对现场机组管理、故障判断和处理起到直接的作用。风电场与公司总部、片区之间严重脱节。 中国大多数风电场地处偏远地区,条件艰苦,难以长期留住高水平的机组维护维修人才。再者,不少风电企业对风电场运维的重视度不够,促使现场人员大量流失,造成不少经验丰富的运维人员跳槽或改行。经验丰富、认真负责的现场服务技术人员严重匮乏,这也是中国风电场重大事故频发的重要原因之一。 如果说在质保期内不少风电场的现场服务存在人才和技术问题,那么,在机组出质保后,众多风电场的运维质量和现场人员的技术水平更令人担忧。尤其是保护措施完善、技术含量高的双馈机组,由于现场人员的技术水平有限,加之,众多风电场在机组出质保后备件供应不及时,要确保机组正常的维修和运行更加困难。为了完成上级下达的发电量指标,维修人员不按机组应有的安全保护和设计要求进行维修,不惜去掉冗余保护,采取短接线路、修改参数等方法导致机组长期带病运行,人为制造安全隐患。 在机组出质保后,有些风电场业主以低价中标的方式,把机组维修和维护外包。而外包运维企业为了盈利,把现场人员的工资收入压得很低,难以留住实践经验丰富的现场人员,现场人员极不稳定,因此,确保机组的安全运行变得更加困难。 二、目前风电场开“工作票”所存在的问题 在风电场机组进入质保服务期以后,大部分风电场的机组故障处理流程通常是:在风电场监控室的业主运行人员对机组进行监控,当发现机组故障停机后,告诉设备厂家的现场服务人员;能复位的机组,在厂家现场人员的允许下,对机组复位;不能复位的,通知设备厂家人员对机组进行维修;在维修之前,厂家人员必须到升压站开工作票;只有经过风电场业主相关部门的审批同意后,厂家现场人员方可进行故障处理;机组维修后,厂家服务人员再次到升压站去完结工作票。 在风电合同中,通常把机组利用率作为出质保考核的重要指标,一些风电场开工作票的时间远远超过机组维修时间。因此,开工作票、结工作票等一系列工作流程直接会影响机组利用率,同时还会造成不必要的发电量损失。有的风电场还有这样的要求,如设备厂家的现场服务人员第一次到该风电场服务,则需先在风电场接受为期三天至一周的入场教育,方能入场登机处理现场问题。 然而,在质保期内,监控机组的运行状态及故障处理理应由设备厂家及现场人员完成,以上流程则会造成设备厂家的现场人员处于被动处理机组故障的状态,使得不少风电场的厂家现场人员对其机组运行状态难以进行长期、持续地监控和故障跟踪。由于缺乏对机组运行状态及故障产生过程的了解,还可能错过提前发现机组安全隐患的机会,最终导致重大事故的发生。从原则上讲,业主人员可以对厂家服务人员的日常维修和维护工作进行监督、提出异议,但不应过度参与其中,以免造成管理混乱,影响正常的机组维修和维护工作。 以上开“工作票”的方式,不仅增加了机组故障的处理时间,更重要的是造成了职责不清,责任不明,管理错位等问题。设备厂家现场人员的培训工作应由设备厂家进行,派遣到现场

永磁同步风力发电机的设计说明

哈尔滨工业大学 《交流永磁同步电机理论》课程报告题目:永磁同步风力发电机的设计 院 (系) 电气工程及其自动化 学科电气工程 授课教师 学号 研究生 二〇一四年六月

第1章小型永磁发电机的基本结构 小型风力发电机因其功率低,体积小,一般没有减速机构,多为直驱型。发电机型式多种多样,有直流发电机、电励磁交流发电机、永磁电机、开关磁阻电机等。其中永磁电机因其诸多优点而被广泛采用。 1.1小型永磁风力发电机的基本结构 按照永磁体磁化方向与转子旋转方向的相互关系,永磁发电机可分为径向式、切向式和轴向式。 (1)径向式永磁发电机径向式转子磁路结构中永磁体磁化方向与气隙磁通轴线一致且离气隙较近,漏磁系数较切向结构小,径向磁化结构中的永磁体工作于串联状态,只有一块永磁体的面积提供发电机每极气隙磁通,因此气隙磁密相对较低。这种结构具有简单、制造方便、漏磁小等优点。 径向磁场永磁发电机可分为两种:永磁体表贴式和永磁体内置式。表贴式转子结构简单、极数增加容易、永磁体都粘在转子表面上,但是,这需要高磁积能的永磁体(如钕铁硼等)来提供足够的气隙磁密。考虑到永磁体的机械强度,此种结构永磁电机高转速运行时还需转子护套。内置式转子机械强度较高,但制造工艺相对复杂,制造费用较高。 径向磁场电机用作直驱风力发电机,大多为传统的内转子设计。风力机和永磁体内转子同轴安装,这种结构的发电机定子绕组和铁心通风散热好,温度低,定子外形尺寸小;也有一些外转子设计。风力机与发电机的永磁体外转子直接耦合,定子电枢安装在静止轴上,这种结构有永磁体安装固定、转子可靠性好和转动惯量大的优点,缺点是对电枢铁心和绕组通风冷却不利,永磁体转子直径大,不易密封防护、安装和运输[1]。表贴式和径向式的结构如图1-1 a)所示。 a)径向式结构 b)切向式结构

风电机组地基基础设计规定

1 范围 1.0.1 本标准规定了风电场风电机组塔架地基基础设计的基本原则和方法,涉及地基基础的工程地质条件、环境条件、荷载、结构设计、地基处理、检验与监测等内容。 1.0.2 本标准适用于新建的陆上风电场风电机组塔架的地基基础设计。工程竣工验收和已建工程的改(扩建)、安全定检,应参照本标准执行。 1.0.3 风电场风电机组塔架的地基基础设计除应符合本标准外,对于湿陷性土、多年冻土、膨胀土和处于侵蚀环境、受温度影响的地基等,尚应符合国家现行有关标准的要求。

2 规范性引用文件 下列标准中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用标准,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些标准的最新版本。凡是不注日期的引用标准,其最新版本适用于本标准。 GB 18306 中国地震动参数区划图 GB 18451.1 风力发电机组安全要求 GB 50007 建筑地基基础设计规范 GB 50009 建筑结构荷载设计规范 GB 50010 混凝土结构设计规范 GB 50011 建筑抗震设计规范 GB 50021 岩土工程勘察规范 GB 50046 工业建筑防腐蚀设计规范 GB 50153 工程结构可靠度设计统一标准 GB 60223 建筑工程抗震设防分类标准 GB 50287 水力发电工程地质勘察规范 GBJ 146 粉煤灰混凝土应用技术规范 FD 002—2007 风电场工程等级划分及设计安全标准 DL/T 5082 水工建筑物抗冰冻设计规范 JB/T10300 风力发电机组设计要求 JGJ 24 民用建筑热工设计规程 JGJ 94 建筑桩基技术规范 JGJ 106 建筑基桩检测技术规范 JTJ 275 海港工程混凝土防腐蚀技术规范

风电场风电机组选型、布置及风电场发电量估算

风电机组选型、布置及风电场发电量估算 批准: 核定: 审查: 校核: 编写:

5 机型选择和发电量估算 5.1风力发电机组选型 在风电场的建设中,风力发电机机组的选择受到风电场自然环境、交通运输、吊装等条件等制约。在技术先进、运行可靠的前提下,选择经济上切实可行的风力发电机组。根据风场的风能资源状况和所选的风力发电机组,计算风场的年发电量,选择综合指标最佳的风力发电机组。 5.1.1 建设条件 酒泉地区南部为祁连山脉,北部为北山山系,中部为平坦的戈壁荒滩,形成两山夹一谷的地形,成为东西风的通道,风能资源丰富。场址位于祁连山山脉北麓山前冲洪积戈壁平原上,地势开阔,地形平缓,便于风机安装;风电场东侧距312国道约30km,可通过简易道路运输大型设备。 根据黑厓子北测风塔 2008年7月~2009年6月测风数据计算得到该风电场场址90m高度风功率密度分布图见图5.1(图中颜色由深至浅代表风能指标递减)。由图5.1可见,该风电场场址地势开阔,地形平坦,风能指标基本一致。根据风能资源计算结果,该风电场主风向和主风能方向一致,以E风和W风的风速、风能最大和频次最高。 用WASP9.0软件推算到预装风电机组轮毂高度90m高度年平均风速为7.32m/s,平均风功率密度为380W/m2,威布尔参数A=8.3, k=2.0;50m高度年平均风速为7.04m/s,平均风功率密度为330W/m2,威布尔参数A=7.9, k=2.06。根据《风电场风能资源评估方法》判定该风电场风功率密度等级为3级。 黑厓子西风电场90m高度年有效风速(3.0m/s~25.0m/s)时数为7131h,风速频率主要集中在3.0 m/s~12.0m/s ,3.0m/s以下和25.0m/s以上的无效风速少,无破坏性风速, 年内变化小,全年均可发电。 由玉门镇气象站近30年资料推算70m、80 m、90 m和100m高度标准空气密度条件下50年一遇极大风速分别为48.00m/s、48.90 m/s、49.71 m/s和50.45m/s,小于52.5m/s。50~90m高度15m/s风速段湍流强度介于0.0660~0.0754之间,小于0.1,湍流强度较小。根据国际电工协会IEC61400-1(2005)判定该风电场可选用适合IECⅢ及其

风力发电机设计

高等教育自学考试毕业设计(论文) 风力发电机设计题目 级机电一体化工程09专业班级 姓名高级工程师指导教师姓名、职称

所属助学单位 2011年 4月1 日 目录 1 绪论………………………………………………………………………………… 1 1.1 风力发电机简介 (1) 1.2 风力发电机的发展史简介 (1) 1.3 我国现阶段风电技术发展状况 (2) 1.4 我国现阶段风电技术发展前景和未来发展 (2) 2 风力发电机结构设计……………………………………………………………… 3 2.1 单一风力发电机组成 (3) 2.2 叶片数目 (3) 2.3 机舱 (4) 2.4 转子叶片 (5) 3 风力发电机的回转体结构设计和参数计算 (5) 3.1联轴器的型号及主要参数 (5) 3.2 初步估计回转体危险轴颈的大小 (5) 3.3 叶片扫描半径单元叶尖速比 (6) 4 风轮桨叶的结构设计……………………………………………………………… 6 4.1桨叶轴复位斜板设计 (6) 4.2托架的基本结构设计 (6) 5 风力发电机的其他元件的设计 (6) 5.1 刹车装置的设计 (6) 6 风力发电机在设计中的3个关键技术问题 (7) 6.1空气动力学问题 (7) 6.2结构动力学问题 (7) 6.3控制技术问题 (7)

7 风力发电机的分类………………………………………………………………… 7 8 风力发电机的选取标准 (8) 9 风力发电机对风能以及其它的技术要求………………………………………… 8 9.1风力发电机对风能技术要求 (8) 9.2风力发电机建模的技术是暂态稳定系统 (9) 9.3风力电动机技术之间的能量转换 (10) 10 风力发电机在现实中的使用范例 (10) 结论 (12) 致谢 (13) 参考文献 (14) 摘要 随着世界工业化进程不断加快,能源消耗不断增加,全球工业有害物质排放量与日俱增,造成了能源短缺和恶性疾病的多发,致使能源和环境成为当今世界两大问题。因此,风力发电的研究显得尤为重要。 我国风电场内无功补偿的方式是在风电场汇集站内装设集中无功补偿装置,这造成风电场无功补偿的投资很大。文章结合实例,通过对不同发电量下风电场的无功损耗和电压波动情况进行计算,提出利用风力发电机的无功功率可基本实现风电场的无功平衡,风电场母线电压的变化是无功补偿设备选型的依据,对于发电量变化引起的母线电压变化不超出电网要求的风电场,应利用风力发电机的无功功率减小汇集站内无功补偿装置的容量,降低无功补偿的投资。 关键词:风力发电、风电场、无功补偿、电压波动

风力发电基础桩基施工方案

天津大港沙井子风电四期工程 桩基施工方案 1.适用范围 本方案适用于天津大港沙井子四期风电工程风机桩基工程的沉桩施工。2.编制依据 《建筑工程施工质量验收统一标准》(GB50300-2013) 《建筑地基基础工程施工质量验收规范》(GB50202-2016) 《建筑地基基础设计规范》(GB50007-2011) 《建筑桩基技术规范》(JGJ94-2008) 《预制钢筋混凝土方桩》(04G361) 《建设工程施工安全强制性条文》 《施工现场临时用电技术规范》(JGJ46——2012) 《建筑施工安全检查标准》(JGJ 59—2011) 《电力建设施工质量验收及评定规程(第1部分:土建工程)》(DLT 5210.1-2012) 《工程建设标准强制性条文:房屋建筑部分》(2013年版) 3.工程概况 国电天津大港沙井子风电场位于大港区南部,大港区位于天津东南部,系天津市东南部滨海行政区,现辖原北大港区及南郊部分地区,大港区南面与河北省的黄骅市接壤,周边分别与塘沽、津南、西青和静海毗临。大港地区是退海之地,以后逐渐形成现在的滨海平原。天津大港沙井子风电四期工程机位位于北排河排、沧浪渠河滩(堤)上,共安装21台风机,其中1#-19#风机布置在翟庄子周围,20#、21#风机机位布置在窦庄子村东侧。 本期工程共安装21台联合动力UP115/2000MW级风力发电机组。风机叶轮直径115米,轮毂高度100米。 本场区内无活动断裂分布,第四系松散堆积物厚度大,场区抗震设防烈度为7度,根据《建筑抗震设计规范》(GB50011-2001),可忽略发震断裂错动对地面建筑的影响。通过上述报告分析,场区内不存在地震时可能发生崩塌、滑坡、泥石流、地陷、地裂等灾害的地段。场区内地层从上而下呈层状分布,除个别地层

1.5兆瓦风力发电机组塔筒及基础设计解析

1.5兆瓦风力发电机组塔筒及基础设计 摘要:风能资源是清洁的可再生资源,风力发电是新能源中技术最成熟、开发条件最具规模和商业化发展前景最好的发电方式之一。塔筒和基础构成风力发电机组的支撑结构,将风力发电机支撑在60—100m的高空,从而使其获得充足、稳定的风力来发电。塔筒是风力发电机组的主要承载结构,大型水平轴风力机塔筒多为细长的圆锥状结构。一个优良的塔筒设计,可以保证整机的动力稳定性,故塔筒的设计不仅要满足其空气动力学上得要求,还要在结构、工艺、成本、使用等方面进行综合分析。基础设计与基础所处的地质条件密不可分,良好的地质条件可以为基础提供可靠的安全保证,从风机塔筒基础特点的分析可以看出,风机塔筒基础的重要性及复杂性是不言而喻的。在复杂地质条件下如何确定安全合理的基础方案更是重中之重。 关键词:1.5兆瓦;风力发电机组;塔筒;基础;设计 1、我国风机基础设计的发展历程 我国风机基础设计总体上可划分为三个阶段,即2003年以前小机组基础的自主设计阶段,2003— 2007年MW机组基础设计的引进和消化阶段,2007年以后MW机组基础的自主设计阶段, 在2003年以前,由于当时的鼓励政策力度不大,风电发展缓慢,2002年末累计装机容量仅为46.8万kw,当年新增装机容量仅为6.8万kw,项目规模小、单机容量小,国外风机厂商涉足也较少,风机基础主要由国内业主或厂商委托勘测设计单位完成,设计主要依据建筑类的地基规范。 从2003年开始,由于电力体制改革形成的电力投资主体多元化以及我国开始实施风电特许权项目,尤其是2006年《可再生能源法》生效以后,国外风机开始大规模进入中国,且有单机容量600kw、750kw很快发展到850kw、1.0MW、1.2MW、1.5MW 和2.0MW,国外厂商对风机基础设计也非常重视,鉴于国内在MW风机基础设计方面的经验又不够丰富,不少情况下基础设计都是按照厂商提供的标准图、国内设计院

风电机组设计与制造课程设计最终版

课程设计(综合实验)报告( 2012 – 2013 年度第二学期) 名称:《风力发电机组设计与制造》 课程设计报告 院系:可再生能源学院 班级:风能xxxxx班 学号: xxxxxxxxxxxx 学生姓名: xxxxxx 指导教师:田德、王永 设计周数: 2 成绩: 日期:20xx年 x月x日

目录 任务书 (4) 一设计内容 (4) 二目的与任务 (4) 三主要内容 (4) 四进度计划 (7) 五设计(实验)成果要求 (7) 六考核方式 (8) 总体参数设计 (8) 一额定功率 (8) 二设计寿命 (8) 三额定风速、切入风速、切除风速 (8) 四重要几何尺寸 (8) 1风轮直径和扫掠面积 (8) 2轮毂高度 (8) 五总质量 (9) 六发电机额定转速和转速范围 (9) 七叶片数B (9) 八功率曲线和C T曲线 (9) 1功率曲线 (9) 2C T曲线 (10) 九确定攻角Α,升力系数C L,叶尖速比Λ,风能利用系数C P (10) 十风轮转速 (12) 十一其他 (12) 十二风电机组等级选取 (12) 叶片气动优化设计 (13) 一优化过程 (13) 二叶片优化结果 (14) 主要部件载荷计算 (14) 一叶片载荷计算 (15) 1作用在叶片上的离心力F C (15) 2作用在叶片上的风压力F V (15)

3作用在叶片上的气动力矩 (16) 4作用在叶片上的陀螺力矩M K (16) 二主轴载荷计算 (16) 三塔架载荷计算 (17) 1暴风工况风轮气动推力计算 (17) 2塔架的强度设计(考虑塔架高度折减系数的强度计算) (18) 主要部件功率 (20) 一发电机 (20) 二变流器 (21) 三齿轮箱 (21) 四联轴器 (21) 五偏航 (22) 风电机组布局 (22) 设计总结 (24) 参考文献 (25) (25)

风电场基础知识

风电场基础知识 一、风力发电的基本原理 并网型风力发电机组的功能是将风中的动能转化成机械能,再将机械能转化为电能,输送到电网中。 对并网型风力发电机组的基本要求:在当地风况、气候和电网条件下能够长期安全运行,取得最大的年发电量和最低的发电成本。 二、风电场的组成 1. 升压站部分 升压站的作用是把低电压等级电压转化成高电压等级电压,降低电能损耗,从而经济、稳定的完成电能的输送。 升压站电压等级:10KV 35KV 110KV 220KV 500KV 750KV 1000KV 升压站一次系统的组成: ①主变压器 主变压器原理:利用电磁感应原理,把一个电压等级转化成另一等级。 变压器的分类:按冷却方式分类:干式(自冷)变压器、油浸(自冷)变压器、氟化物(蒸发冷却)变压器。 按电源相数分类:单相变压器、三相变压器、多相变压器。 ②无功补偿部分 无功补偿作用:当电网中电压不稳定或电压降低时,通过补偿无功以保证电网的稳定、可靠. 电容器分类:全补偿式电容器、SVC自动无功补偿 ③风机进线部分 ④ 站用电部分 2. 风机部分 风机的组成: 叶轮(叶片+轮毂)、机舱、塔筒、基础(如下图) ① 叶轮 叶轮由叶片和轮毂组成. 叶片:主要材料有玻璃纤维增强塑料(GRP)、碳纤维增强塑料(CFRP)、木材、钢和铝等复合材料组成。叶片的刚度、固有特性和经济性是主要的,所以对材料的的选用很重要。

复合材料的优点: ㈠复合材料的可设计性强 ㈡易成型性好 ㈢耐腐蚀性强 ㈣维护少、易修补 轮毂:轮毂是联接叶片和主轴的重要部件,,如下图 轮毂作用是传递风轮的力和力矩到后面的机械结构中去,由此叶片上的载荷

风电场风电机组选型、布置及风电场发电量估算2

5 风电机组选型、布置及风电场发电量估算

批准:宋臻核定:董德兰审查:吉超盈校核:牛子曦编写:李庆庆

5 机型选择和发电量估算 5.1风力发电机组选型 在风电场的建设中,风力发电机机组的选择受到风电场自然环境、交通运输、吊装等条件等制约。在技术先进、运行可靠的前提下,选择经济上切实可行的风力发电机组。根据风场的风能资源状况和所选的风力发电机组,计算风场的年发电量,选择综合指标最佳的风力发电机组。 5.1.1 建设条件 酒泉地区南部为祁连山脉,北部为北山山系,中部为平坦的戈壁荒滩,形成两山夹一谷的地形,成为东西风的通道,风能资源丰富。场址位于祁连山山脉北麓山前冲洪积戈壁平原上,地势开阔,地形平缓,便于风机安装;风电场东侧距312国道约30km,可通过简易道路运输大型设备。 根据黑厓子北测风塔 2008年7月~2009年6月测风数据计算得到该风电场场址90m高度风功率密度分布图见图5.1(图中颜色由深至浅代表风能指标递减)。由图5.1可见,该风电场场址地势开阔,地形平坦,风能指标基本一致。根据风能资源计算结果,该风电场主风向和主风能方向一致,以E风和W风的风速、风能最大和频次最高。 用WASP9.0软件推算到预装风电机组轮毂高度90m高度年平均风速为7.32m/s,平均风功率密度为380W/m2,威布尔参数A=8.3, k=2.0;50m高度年平均风速为7.04m/s,平均风功率密度为330W/m2,威布尔参数A=7.9, k=2.06。根据《风电场风能资源评估方法》判定该风电场风功率密度等级为3级。 黑厓子西风电场90m高度年有效风速(3.0m/s~25.0m/s)时数为7131h,风速频率主要集中在3.0 m/s~12.0m/s ,3.0m/s以下和25.0m/s以上的无效风速少,无破坏性风速, 年内变化小,全年均可发电。 由玉门镇气象站近30年资料推算70m、80 m、90 m和100m高度标准空气密度条件下50年一遇极大风速分别为48.00m/s、48.90 m/s、49.71 m/s和50.45m/s,小于52.5m/s。50~90m高度15m/s风速段湍流强度介于0.0660~0.0754之间,小于0.1,湍流强度较小。根据国际电工协会IEC61400-1(2005)判定该风电场可选用适合IECⅢ及其

海上风力发电机组基础设计

摘要 这篇文章介绍了海上风电场建设概况、海上风力发电机组的组成、海上风电机组基础的形式、海上风电机组基础的设计。 关键词电力系统;海上风电场;海上风电机组基础;设计

Abstract This article describes the overview of offshore wind farm construction, the composition ofthe offshore wind turbine, offshore wind turbines based on the form-based design ofoffshore wind turbines. Key Words electric power system;Offshore wind farm; Offshore wind turbine foundation; design

1前言 1.1全球海上风电场建设概况 截止到2012年2月7日,全球海上风电场累计装机容量达到238,000MW,比上年增加了21%。 1.2 中国 截至2010年底,中国的风电累计装机容量达到44.7GW,首次居世界首位,亚洲的另外一个发展中大国印度也首次跻身风电累计装机容量世界前五位。 1.3海上风力发电机组通常分为以下三个主要部分: (1)塔头(风轮与机舱) (2)塔架 (3)基础(水下结构与地基) ?与场址条件密切相关的特定设计;?约占整个工程成本的20%-30%; ?对整机安全至关重要。支撑结构

2 海上风电机组基础的形式 2.1海上风电机组基础的形式 目前经常被讨论的基础形式主要涵盖参考海洋平台的固定式基础,和处于概念阶段的漂浮式基础,具体包括: ?单桩基础; ?重力式基础; ?吸力式基础; ?多桩基础; ?漂浮式基础 2.1.1单桩基础:(如图1所示) 采用直径3~5m 的大直径钢管桩,在沉好桩后,桩顶固定好过渡段,将塔架安装其上。单桩基础一般安装至海床下10-20m,深度取决于海床基类型。此种方式受海底地质条件和水深约束较大,需要防止海流对海床的冲刷,不适合于25m 以上的海域。 2.1.2重力式基础:(如图2所示) 图1 单桩基础示意图

风力发电机组总体设计

1.总体设计 一、气动布局方案 包括对各类构形、型式和气动布局方案的比较和选择、模型吹风,性能及其他气动特性的初步计算,确定整机和各部件(系统)主要参数,各部件相对位置等。最后,绘制整机三面图,并提交有关的分析计算报告。 二、整机总体布置方案 包括整机各部件、各系统、附件和设备等布置。此时要求考虑布置得合理、协调、紧凑,保证正常工作和便于维护等要求,并考虑有效合理的重心位置。最后绘制整机总体布置图,并编写有关报告和说明书。 三、整机总体结构方案 包括对整机结构承力件的布置,传力路线的分析,主要承力构件的承力型式分析,设计分离面和对接型式的选择,和各种结构材料的选择等。整机总体结构方案可结合总体布置一起进行,并在整机总体布置图上加以反映,也可绘制一些附加的图纸。需要有相应的报告和技术说明。 四、各部件和系统的方案 应包括对各部件和系统的要求、组成、原理分析、结构型式、参数及附件的选择等工作。最后,应绘制有关部件的理论图和有关系统的原理图,并编写有关的报告和技术说明。五、整机重量计算、重量分配和重心定位 包括整机总重量的确定、各部分重量的确定、重心和惯量计算等工作。最后应提交有关重量和重心等计算报告,并绘制重心定位图。 六、配套附件 整机配套附件和备件等设备的选择和确定,新材料和新工艺的选择,对新研制的部件要确定技术要求和协作关系。最后提交协作及采购清单等有关文件。总体设计阶段将解决全局性的重大问题,必须精心和慎重地进行,要尽可能充分利用已有的经验,以求总体设计阶段中的重大决策建立在可靠的理论分析和试验基础上,避免以后出现不应有重大反复。阶段的结果是应给出风力发电机组整机三面图,整机总体布置图,重心定位图,整机重量和重心计算报告,性能计算报告,初步的外负载计算报告,整机结构承力初步分析报告,各部件和系统的初步技术要求,部件理论图,系统原理图,新工艺、新材料等协作要求和采购清单等,以及其他有关经济性和使用性能等应有明确文件。 2.总体参数 在风轮气动设计前必须先确定下列总体参数。 一、风轮叶片数B 一般风轮叶片数取决于风轮的尖速比λ。目前用于风力发电一般属于高速风力发电机组,即λ=4-7 左右,叶片数一般取2—3。用于风力提水的风力机一般属于低速风力机,叶片数较多。叶片数多的风力机在低尖速比运行时有较低的风能利用系数,即有较大的转矩,而且起动风速亦低,因此适用于提水。而叶片数少的风力发电机组的高尖速比运行时有较高的风能利用系数,且起动风速较高。另外,叶片数目确定应与实度一起考虑,既要考虑风能

风电场风机基础设计方案标准

附件3 中国国电集团公司 风电场风机基础设计标准 1 目的 为规范中国国电集团公司的风力发电工程中的风机基础设计工作,统一风机基础设计的内容、深度,本着因地制宜、保护环境和节约资源的原则,做到技术先进、安全适用、经济合理、便于施工,特制定本标准。本标准主要规定了风力发电工程中风机基础设计基本原则和方法,涉及地基基础的工程地质条件、荷载、基础选型、设计流程、地基处理、基础构造等内容。 2 范围 本标准适用于中国国电集团公司全资和控股建设的的陆上风力发电工程风机的地基基础设计。 3 引用标准和文件 《风电场工程等级划分及设计安全标准》FD002-2007 《风电机组地基基础设计<试行)》FD003-2007 《建筑地基基础设计规范》GB 50007-2002 《高耸结构设计规范》GBJ 50135-2006 《混凝土结构设计规范》GB 50010-2018 《建筑地基处理技术规范》JGJ79-2002

《冻土地区建筑地基基础设计规范》JGJ 118-98 《建筑抗震设计规范》GB 50011-2018 《构筑物抗震设计规范》GB 50191-93 《建筑桩基技术规范》JGJ 94- 2008 《工业建筑防腐蚀设计规范》GB 50046-2008 《水工建筑物抗冰冻设计规范》DL/T 5082-1998 《混凝土外加剂应用技术规范》GB50119-2003 《大体积混凝土施工规范》GB50496-2009 《湿陷性黄土地区建筑规范》GB 50025-2004 《膨胀土地区建筑技术规范》GBJ 112-1987 《建筑变形测量规程》JGJ/T8-97 4 术语和定义 本标准中的术语定义与下列标准中的规定相同: 《风电机组地基基础设计设计规定<试行)》FD003-2007 《混凝土结构设计规范》GB50010-2018 5 一般规定 5.1基础设计应本着因地制宜、保护环境和节约资源的原则,做到安全适用、经济合理、技术先进、便于施工。 5.2风电机组地基基础主要按《风电机组地基基础设计规定<试行)》设计。对于湿陷性土、多年冻土、膨胀土和处于侵蚀环境、受温度影响的地基等,尚应符合国家现行有关标准的要求。 5.3风机基础设计采用极限状态设计方法,荷载和分项系数的取

风电场设计基础知识

风电场基础知识 风电场建设项目,其实施是一个较复杂的综合过程。风电场的规划设计,属风电场建设项目的前期工作,需要综合考虑许多方面,包括风能资源的评估、风电场的选址、风力发电机组机型选择和设计参数、装机容量的确定、风电场风力发电机组微观选址、风电场联网方式选择、机组控制方式、土建及电气设备选择及方案确定、后期扩建可能性、经济效益分析等因素。其中,对风能资源进行精确的评估,则直接关系到风电场效益,是风电场建设成功与否的关键。 以下对风能资源评估、风电场选址和风资源分析与发电量计算软件介绍如下。 一风能资源的评估 风况是影响风力发电经济性的一个重要因素。风能资源的评估是建设风电场成败的关键所在。随着风力发电技术的不断完善,根据国内外大型风电场的开发建设经验,为保证风力发电机组高效率稳定地运行,达到预期目的,风电场场址必须具备有较丰富的风能资源。 1 风能资源评估步骤 对某一地区进行风能资源评估,为风电场建设项目前期所必须进行的重要工作。风能资源评估分如下几个阶段: 1) 资料收集、整理分析 从地方各级气象台、站及有关部门收集有关气象、地理及地质数据资料,对其进行分析和归类,从中筛选出具代表性的完整的数据资料。能反映某地风气候的多年(10年以上,最好30 年以上)平均值和极值,如平均风速和极端风速,平均和极端(最低和最高)气温,平均气压,雷暴日数以及地形地貌等。 2) 风能资源普查分区 对收集到的资料进行进一步分析,按标准划分风能区域及其风功率密度等级,初步确定风能可利用区。

3) 风电场宏观选址 风电场宏观选址遵循的原则一般是,应根据风能资源调查与分区的结果,选择最有利的场址,以求增大风力发电机组的出力,提高供电的经济性、稳定性和可靠性;最大限度地减少各种因素对风能利用、风力发电机组使用寿命和安全的影响;全方位考虑场址所在地对电力的需求及交通、电网、土地使用、环境等因素。 根据风能资源普查结果,初步确定几个风能可利用区,分别对其风能资源进行进分析、对地形地貌、地质、交通、电网及其他外部条件进

风电场风电机组选型布置及风电场发电量估算

风电场风电机组选型布置及风电场发电量估算集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

5 风电机组选型、布置及风电场发电量估算 批准:宋臻 核定:董德兰 审查:吉超盈 校核:牛子曦 编写:李庆庆

5 机型选择和发电量估算 风力发电机组选型 在风电场的建设中,风力发电机机组的选择受到风电场自然环境、交通运输、吊装等条件等制约。在技术先进、运行可靠的前提下,选择经济上切实可行的风力发电机组。根据风场的风能资源状况和所选的风力发电机组,计算风场的年发电量,选择综合指标最佳的风力发电机组。 建设条件 酒泉地区南部为祁连山脉,北部为北山山系,中部为平坦的戈壁荒滩,形成两山夹一谷的地形,成为东西风的通道,风能资源丰富。场址位于祁连山山脉北麓山前冲洪积戈壁平原上,地势开阔,地形平缓,便于风机安装;风电场东侧距312国道约 30km,可通过简易道路运输大型设备。 根据黑厓子北测风塔 2008年7月~2009年6月测风数据计算得到该风电场场址90m高度风功率密度分布图见图(图中颜色由深至浅代表风能指标递减)。由图可见,该风电场场址地势开阔,地形平坦,风能指标基本一致。根据风能资源计算结果,该风电场主风向和主风能方向一致,以E风和W风的风速、风能最大和频次最高。 用软件推算到预装风电机组轮毂高度90m高度年平均风速为s,平均风功率密度为380W/m2,威布尔参数A=, k=;50m高度年平均风速为s,平均风功率密度为 330W/m2,威布尔参数A=, k=。根据《风电场风能资源评估方法》判定该风电场风功率密度等级为3级。 黑厓子西风电场90m高度年有效风速(s~s)时数为7131h,风速频率主要集中在 m/s~s ,s以下和s以上的无效风速少,无破坏性风速, 年内变化小,全年均可发电。 由玉门镇气象站近30年资料推算70m、80 m、90 m和100m高度标准空气密度条件下50年一遇极大风速分别为s、 m/s、 m/s和s,小于s。50~90m高度15m/s风速段湍流强度介于~之间,小于,湍流强度较小。根据国际电工协会IEC61400-1(2005)判定该风电场可选用适合IECⅢ及其以上安全等级的风机。 图黑厓子西风电场90m高度风功率密度分布图

风力发电机设计

摘要 自然风的速度和方向是随机变化的,风能具有不确定特点,如何使风力发电机的输出功率稳定,是风力发电技术的一个重要课题。迄今为止,已提出了多种改善风力品质的方法,例如采用变转速控制技术,可以利用风轮的转动惯量平滑输出功率。由于变转速风力发电组采用的是电力电子装置,当它将电能输出输送给电网时,会产生变化的电力协波,并使功率因素恶化。 风能利用发展中的关键技术问题风能技术是一项涉及多个学科的综合技术。而且,风力机具有不同于通常机械系统的特性:动力源是具有很强随机性和不连续性的自然风,叶片经常运行在失速工况,传动系统的动力输入异常不规则,疲劳负载高于通常旋转机械几十倍。 本文通过对风力发电机的总体设计,叶片、轮毂机构的设计,水平回转机构的设计,齿轮箱系统的设计,以达到利用风能发电的目的,有效利用风能资源,减少对不可再生资源的消耗,降低对环境的污染。 关键词:风能;风力发电机;叶片;轮毂;齿轮箱

Abstract Natural wind speed and direction of change is random, wind characteristics of uncertainty, how to make wind turbine output power stability, wind power technology is an important subject. So far, have raised a variety of ways to improve the quality of the wind, such as the use of variable speed control technology, can make use of wind round the moment of inertia smooth power output. Because variable speed wind power group using a power electronic devices, when it will transfer to the output of electric power grids, will change in the wave's power, and power factor deterioration. Use of wind energy in the development of key technical issues involved in wind energy technology is one of a number of integrated technical disciplines. Moreover, the wind turbine is usually different from the mechanical system characteristics: a strong power source is not random and continuity of the natural wind, the leaves often run in the stall condition, the power transmission system very irregular importation, fatigue load than Rotating Machinery usually several times. Based on the wind turbine design, leaves, the wheel design, level of rotating the design, gear box system design, use of wind power to achieve the objective of effective use of wind energy resources, reduce non-renewable resources Consumption, reduce the environmental pollution. Key words: wind power;wind power generators;blade;wheel;Gearbox

基于风电场风资源评估的风电机组布局优化研究

基于风电场风资源评估的风电机组布局优化研究 摘要:风电场实际发电量低于预估发电量是制约风电可持续发展的一个突出问题。导致该问题的主要原因是在建设某一风电场前,对该风场的风资源评估不精确,以及风电场微观选址的失误造成发电量损失。另外,获得预装轮毂高度的风 速是风资源评估的前提条件,而实际测风仪器高度很难满足要求。因此,本文针 对提高风资源评估精度及风电机组布局优化等问题展开深入研究。 关键词:风电场风资源评估;风电机组;布局优化 引言 随着全球经济的迅速发展,人类对能源的产量和质量的要求越来越高。煤炭、石油、天然气属于不可再生能源,储量有限,人类终将面临能源短缺的问题,另 一方面,化石能源的过度利用对生态环境造成严重破坏和污染,对人类的生产和 生活构成严重威胁。针对能源短缺和环境威胁的问题,人类开始大力开发和利用 清洁环保的新能源,如:太阳能、风能、水能、生物质能和地热能等。其中,风 能具有清洁可再生、分布广、风资源储量丰富等优点,因此对风能进行合理的开 发和利用有利于缓解能源短缺的压力和带来的环境污染问题。 1、风电场风电机组优化布局理论基础 风电场机组布局优化研宄现状风电场机组布局优化对风电场发电能力及经济 效益起着决定性作用,因此国内外学者对其进行了大量的研究?例如,M〇Setti 学者采用化11此11尾流模型进行风电场尾流风速预测,考虑风电场的投资成本 及发电量,利用遗传算法对风电场进行优化布局,这也是首次有学者将遗传算法 运用于风电场的优化布局?Grady学者在Mosetti学者的研究基处上,采用改进遗 传算法进行风电场优化布局研宄,获得了比Mosetti更好的优化结果?RiqUelme学者则以风电场的投资成本最小为最优目标函数,采用可变长度遗传算法对风电场 机组的布局进行优化研究?Kusiakt%以不同的风向及风速为输入风况,考虑风电场 采用不同型号的风电机组?尾流模型和机组运行维修费用对风电场布局优化进行 了详细的研究?Wan学者采用实数编码遗传算法以及粒子群优化算法针对风电场 机组的优化布局进行研究?Chowdhury者采用Frandsen尾流模型进行风电场的布 局研究,考虑了风电机组叶轮直径?风电场风电机组安装台数?风电场机组型号? 风电场占地面积对风电场布局的影响?Man'a Isabel Blanc〇t64]学者以欧洲某风电 场为研究对象,建模计算了风电场的投资成本,对风电场的经济效益进行了分析,对比了海上和陆地上的风电场不同的投资差异和经济效益?ElkintontM等通过调试 整个风电场的成本函数模型,使其包含投资成本、运行成本、运维成本等,并测 试了各种不同的优化算法在求解风电场优化问题时的收敛速度和计算精度[1]。 2、考虑尾流效应的风电场风电机组布局优化分析 2.1、尾流效应原理 风从上游风电机组吹向下游风电机组时,上游风电机组会吸收一部分能量用 来发电,根据能量守恒定理,风吹过风电机组后的能量比之前减少了。风不停地吹,上游风电机组就会不停地对下游风电机组造成影响,即尾流效应[58]。尾流 效应会使风速下降、湍流增加,导致风功率下降,发电量减少同时威胁着风电机 组的安全运行[2]。图1为由 Vattenfall 公司提供的海上风电场风电机组的尾流所 形成的云雾,图片相当震撼。与上游来风相比较,风电机组下游风的能量损失可 能高达20%~30%。因此,在进行风电机组布局优化时,风电场的尾流效应是必须 要考虑的因素之一,这将是风电场经济收益达到最佳的关键。

相关文档
最新文档