矩阵的Kronecker乘积的性质与应用
(完整版)Kronecker积及其应用

矩阵的Kronecker 积及其应用陈蔚(集美大学理学院数学系2005届,厦门 361021)[摘要] 本文主要介绍了矩阵理论中的Kronecker 积,通过对概念的引入,性质、定理的推导,简单地体现出矩阵的Kronecker 积在求解几类矩阵方程中的应用.[关键词] Kronecker 积,特征值,拉直,1ti i i A XB F ==∑矩阵方程,AX +F XB =矩阵方程,X-F AXB =矩阵方程,矩阵微分方程0、引言众所周知,我们学习到的矩阵运算中,普遍提及的均是乘积问题,两矩阵可以相乘的条件是:前面矩阵的列数必须等于后面矩阵的行数,如果不满足这个条件,则我们就无法求解这两个矩阵的乘积,但我们却可以求它们的Kronecker 积。
对于矩阵的Kronecker 积问题,绝大多数人是陌生的。
本文主要介绍了Kronecker 积的定义、性质、应用,让大家一起来领略这个新知识点的风采。
文中所用到的符号均可从参考文献[1—11]中找到。
一、 矩阵的Kronecker 积的概念[1]1.1定义 设()m n ij A a C ⨯=∈, C b B qp ij ⨯∈=)(,则称如下的分块矩阵111212122212n n mp nq m m mn B B a a a B a a a BB B A BC a a a BBB ⨯⎛⎫⎪⎪⊗=∈ ⎪⎪⎝⎭为A 与B 的Kronecker 积(也称为直积或张量积)。
B A ⊗是一个n m ⨯块的分块矩阵,所以上式还可以简写为B A ⊗=()ij a B 。
例1.1 设),,(321a a a T A =, ),(21b b B T =,求B A ⊗和A B ⊗.解 B A ⊗=()111221223132123T a Ba ab a b a b a b a b a b Ba B⎛⎫⎪= ⎪ ⎪⎝⎭,,,,,,A B ⊗=()11121321222312Tb A b a b a b a b a b a b a b A ⎛⎫=⎪⎝⎭,,,,,。
kronecker运算

kronecker运算Kronecker运算是数学中的一种操作,是由德国数学家利奥波德·克罗内克于19世纪末提出的。
它在代数学、线性代数和群论等领域都有着广泛的应用。
下面我将详细介绍Kronecker运算的定义、性质以及应用。
首先,我们来看一下Kronecker运算的定义。
给定两个矩阵A和B,它们的Kronecker运算记作A ⊗ B。
设A是m×n阶矩阵,B是p×q阶矩阵,那么它们的Kronecker运算的结果是一个mp×nq阶矩阵,它的每个元素都是由矩阵A和B对应位置的元素相乘得到的。
举个例子来说明,假设有两个矩阵A和B如下:A = [a11 a12a21 a22]B = [b11 b12b21 b22]那么它们的Kronecker运算A⊗B的结果为:[a11B a12Ba21B a22B]其中每个元素都是由原矩阵的相应元素相乘得到的。
通过这样的定义,我们可以发现Kronecker运算具有一些特定的性质。
首先,Kronecker运算满足结合律,即对于任意的矩阵A、B和C,都有(A⊗B)⊗C = A⊗(B⊗C)。
其次,Kronecker运算还满足分配律,即对于任意的矩阵A、B和C,都有(A+B)⊗C = A⊗C + B⊗C,以及A⊗(B+C) = A⊗B + A⊗C。
另外,Kronecker运算还具有一些有用的性质。
例如,设A是m×n阶矩阵,B是p×q阶矩阵,C是n×s阶矩阵,D是q×r阶矩阵,那么有以下性质:1. (A⊗B)(C⊗D) = (AC)⊗(BD);2. (A⊗B)T = AT ⊗ BT;3.如果A和B均为对称矩阵,则它们的Kronecker积A⊗B也是对称矩阵;4.若A是奇异矩阵,则它的任意Kronecker乘积A⊗B也是奇异矩阵,其中B是一个任意矩阵。
Kronecker运算在代数学、线性代数以及群论等领域中都有广泛的应用。
kronecker product 解方程

kronecker product 解方程1. 引言在数学和计算机科学领域,kronecker product(克罗内克积)是一种常见的线性代数运算,它在解决方程组和矩阵运算中起着重要的作用。
本文将介绍kronecker product的基本概念,以及它在解方程中的应用。
2. kronecker product的定义kronecker product是指两个矩阵的乘积运算,其定义如下:设A是一个m×n的矩阵,B是一个p×q的矩阵,那么它们的kronecker product记作A⊗B,它是一个mp×nq的矩阵,其中每个元素是A矩阵中的元素乘以B矩阵中的所有元素。
3. kronecker product的性质- 结合律:(A⊗B)⊗C = A⊗(B⊗C)- 分配律:A⊗(B+C) = A⊗B + A⊗C- 数乘结合律:k(A⊗B) = (kA)⊗B = A⊗(kB),其中k为一个常数 - 归一性质:对于单位矩阵I,有I⊗A = A⊗I = A4. kronecker product在解方程中的应用kronecker product在解方程中起着重要的作用,通过使用kronecker product,我们可以将一个大型方程组拆分成较小的子方程组,从而简化求解过程。
5. 示例假设我们要解以下的线性方程组:Ax = b其中A是一个m×n的矩阵,x是一个n维向量,b是一个m维向量。
我们可以使用kronecker product将该方程组转化成一个更简单的形式。
我们将A分解为两个矩阵A1和A2,分别是p×q和r×s的矩阵,即A = A1⊗A2。
我们可以将x分解为两个向量x1和x2,分别是q维和s维的向量,即x = [x1;x2]。
同样地,b也可以分解为两个向量b1和b2,分别是p维和r维的向量,即b = [b1;b2]。
将原方程组改写为:(A1⊗A2)x = b(A1⊗A2)(x1⊗x2) = b(A1x1)⊗(A2x2) = bA1x1 = b1A2x2 = b2这样,我们将原方程组拆分成了两个较小的子方程组,分别是A1x1 = b1和A2x2 = b2。
-矩阵的Kronecker乘积的性质与应用

摘要按照矩阵乘法的定义,我们知道要计算矩阵的乘积AB,就要求矩阵A的列数和矩阵B的行数相等,否则乘积AB是没有意义的。
那是不是两个矩阵不满足这个条件就不能计算它们的乘积呢本文将介绍矩阵的一种特殊乘积BA ,它对矩阵的行数和列数的并没有具体的要求,它叫做矩阵的Kronecker积(也叫直积或张量积)。
本文将从矩阵的Kronecker积的定义出发,对矩阵的Kronecker积进行介绍和必要的说明。
之后,对Kronecker积的运算规律,可逆性,秩,特征值,特征向量等性质进行了具体的探究,得出结论并加以证明。
此外,还对矩阵的拉直以及矩阵的拉直的性质进行了说明和必要的证明。
矩阵的Kronecker积是一种非常重要的矩阵乘积,它应用很广,理论方面在诸如矩阵方程的求解,矩阵微分方程的求解等矩阵理论的研究中有着广泛的应用,实际应用方面在诸如图像处理,信息处理等方面也起到重要的作用。
本文讨论矩阵的Kronecker积的性质之后还会具体介绍它在矩阵方程中的一些应用。
关键词:矩阵;Kronecker积;矩阵的拉直;矩阵方程;矩阵微分方程Properties and Applications of matrix KroneckerproductAbstractAccording to the definition of matrix multiplication, we know that to calculate the matrix product AB, requires the number of columns of the matrix A and matrix B is equal to the number of rows, otherwise the product AB makes no is not two matrices not satisfy this condition will not be able to calculate their product doThis article will describe a special matrix product BA , the number of rows and columns of a matrix and its no specific requirements, it is called the matrix Kronecker product (also called direct product or tensor product).This paper will define the matrix Kronecker product of view, the Kronecker product matrix are introduced and the necessary instructions. Thereafter, the operation rules Kronecker product, the nature of reversibility, rank, eigenvalues, eigenvectors, etc. specific inquiry, draw conclusions and to prove it. In addition, the properties of the stretch of matrix and its nature have been described and the necessary proof.Kronecker product matrix is a very important matrix product, its use is very broad, theoretical research, and other matrix solving differential equations, such as solving the matrix equation matrix theory has been widely applied in practical applications such as image processing aspects of information processing, also play an important role. After the article discusses the nature of the matrix Kronecker product it will introduce a number of specific applications in the matrix equation. Keywords:Matrix; Kronecker product; Stretch of matrix; Matrix equation; Matrix Differential Equations目录摘要 ........................................................................ I Abstract ................................................................... II 第一章 矩阵的Kronecker 积 . (1)矩阵的Kronecker 积的定义 ................................................ 1 矩阵的Kronecker 积的性质 ................................................ 1 第二章 Kronecker 积的有关定理及推论 .......................................... 6 第三章 矩阵的拉直 (9)矩阵的拉直的定义 ......................................................... 9 矩阵的拉直的性质 ......................................................... 9 第四章 矩阵的Kronecker 积与矩阵方程 .. (11)矩阵的Kronecker 积与Lyapunov 矩阵方程 ................................... 11 矩阵的Kronecker 积与一般线性矩阵方程 .................................... 13 矩阵的Kronecker 积与矩阵微分方程 ........................................ 14 参考文献.................................................................... 16 致谢 .. (18)符号说明W a W a 属于集合元素nm ij a A ⨯=)( 矩阵的记法列元素的行为以n m j i a ij⨯ij A )( 列的元素行的矩阵j i AT A 的转置矩阵A H A 的共轭转置矩阵A1-A 的逆矩阵矩阵A→A 按行拉直得到的列向量矩阵AA det 的行列式方阵AtrA 的主对角元素之和的迹,方阵A A)(A rank 的秩矩阵A)(A λ 的特征值方阵An I 阶单位矩阵nR 实数域 C 复数域n C 维复向量的全体n n m C ⨯ 复矩阵全体n m ⨯O 零矩阵B A ⊗ 的和矩阵B A Kronecker 积第一章 矩阵的Kronecker 积矩阵的Kronecker 积的定义定义设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,定义A 和B 的Kronecker 积(或直积,张量积)B A ⊗为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B a B a B a B a B a B a B a B a B a B A mn m m n n 212222111211 可以看出,其结果是一个)()(nq mp ⨯矩阵,同时也是一个以B a ij 为子块的分块矩阵.例 设⎥⎦⎤⎢⎣⎡-=1201A ,[]31-=B ,则 ⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-=⊗316200312B B O BB A []⎥⎦⎤⎢⎣⎡---=-=⊗361203013A A A B 由此可见,B A ⊗与A B ⊗具有相同的阶数,但是它们并不相等,也就是说,Kronecker 积不满足交换律.矩阵的Kronecker 积的性质虽然Kronecker 积不满足交换律,但是具有以下一些性质: 性质 设矩阵n m C A ⨯∈,矩阵q p C O ⨯∈,则O O A A O =⊗=⊗(这个O 为)()(nq mp ⨯矩阵).证明:略.性质 设k 为任一常数,矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B A k kB A B kA ⊗=⊗=⊗.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n ka ka ka ka ka ka ka ka ka kA 212222111211, 根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B kA mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka kB a kB a kB a kB a kB a kB a kB a kB a kB a kB A mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, 即)(B A k B kA ⊗=⊗,)()(B A k kB A ⊗=⊗. 所以)()()(B A k kB A B kA ⊗=⊗=⊗.性质 设A ,B 为同阶矩阵(同阶是为了可以做加法),则C B C A C B A ⊗+⊗=⊗+)(,B C A C B A C ⊗+⊗=+⊗)(.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n b b b b b b b b b B 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=+mn mn m m m m n n n n b a b a b a b a b a ba b a b a b a B A221122222221211112121111,根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗+C b a C b a C b a C b a Cb aC b a C b a C b a C b a C B A mn mn m m m m n n n n )()()()()()()()()()(221122222221211112121111*,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C a C a C a C a C a C a C a C a C a C A mn m m n n 212222111211 *, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C b C b C b C b C b C b C b C b C b C B mn m m n n 212222111211 *,由*,*得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C A mn mn m m m m n n n n 221122222221211112121111 *, 由*,*可得:C B C A C B A ⊗+⊗=⊗+)(.同理设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n c c c c c cc c c C 212222111211可证:B C A C B A C ⊗+⊗=+⊗)(.性质 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s r C F ⨯∈,则)()(F B A F B A ⊗⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⊗⊗⊗⊗⊗⊗⊗⊗⊗=⊗⊗)()()()()()()()()()(212222111211F B a F B a F B a F B a F B a F B a F B a F B a F B a F B A mn m m n n)(212222111211F B A F B a B a B a B a B a B a B a B a B a mn m m n n ⊗⊗=⊗⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 得证.性质设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s n C F ⨯∈,矩阵t q C D ⨯∈,则)()())((BD AF D F B A ⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ns n n s s f f f f f f f f f F212222111211, 则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗⊗D f D f Df D f D f Df D f D f D f B a B a B a B a B a B a B a B a B a D F B A ns n n s s mn m m n n212222111211212222111211))(()()()()()()()()()()()(112111112211211121111BD AF BD f a BD f a BD f a BD c a BD f a BD f a BD f a BD f a BD f a nk ks mk n k k mk n k k mk nk ks k n k k k n k k k n k ks k n k k k n k k k ⊗=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑∑∑∑=========得证.性质 设矩阵m m C A ⨯∈可逆, 且矩阵n n C B ⨯∈可逆,则B A ⊗可逆,且111)(---⊗=⊗B A B A .证明:mn n m I I I BB AA B A B A =⊗=⊗=⊗⊗----)()())((1111(这里I n 与数的乘法中的1起到相同的作用), 故111)(---⊗=⊗B A B A .性质 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则T T T B A B A ⊗=⊗)(H H H B A B A ⊗=⊗)(证明: ij T T T ji ij T B A B a B A ][])[(⊗==⊗ 得证.同理可证:H H H B A B A ⊗=⊗)(.性质 两个正交(酉)矩阵的Kronecker 积还是正交(酉)矩阵. 证明:设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈.因为A ,B 都是正交(酉)矩阵,所以有m T T I A A AA ==,n T T I B B BB ==. 由性质和性质可得:mn n m T T T T T I I I BB AA B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(())((. mn m n T T T T T I I I B B A A B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(()()(.故mn T T I B A B A B A B A =⊗⊗=⊗⊗)()())((. 得证.第二章 Kronecker 积的有关定理及推论定理 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B rank A rank B A rank =⊗.证明:设rank A=r ,rank B=s ,A ,B 的标准形分别为:1111--⎥⎦⎤⎢⎣⎡=Q O O O I P A r ,1212--⎥⎦⎤⎢⎣⎡=Q O O O I P B s其中i P ,i Q =i (1,2)均为非奇异矩阵,则由性质和可以得:`1211211211121112121111)()()()(----------⊗⎥⎦⎤⎢⎣⎡⊗=⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⊗=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡=⊗Q Q O O O I P P Q Q O O O I O O O I P P Q O O O I P Q O O O I P B A rss r s r 所以)()()(B rank A rank s r B A rank =•=⊗ 得证.定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B A ⊗对应特征值λμ的一个特征向量.证明:因为x ,y 都是非零向量,所以x ⊗y 也是非零向量,由性质和性质可得:)()()()()())((y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗λμμλ.所以,y x ⊗是B A ⊗对应特征值λμ的一个特征向量.推论 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若A 的特征值是1λ,2λ,…,m λ;B 的特征值是1μ,2μ,…,n μ,则B A ⊗的特征值为t s μλ,m s ≤≤1,n t ≤≤1(k 重根算k 个).定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.证明:由性质,性质可以得到:)()()()())((y x y x y I Ax y x I A n n ⊗=⊗=⊗=⊗⊗λλ, )()()()())((y x y x By x I y x B I m m ⊗=⊗=⊗=⊗⊗μμ,故))(())(())(())((y x y x B I y x I A y x B I I A m n m n ⊗+=⊗⊗+⊗⊗=⊗⊗+⊗μλ.所以,y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.推论 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m s C x ∈和n t C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y ,2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,则B I I A m n ⊗+⊗的n m •个特征值为{t s μλ+}.(s=1,2,…,m ;t=1,2,…,n ).例 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m i C x ∈和n j C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y , 2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,证明:矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量为j i y x ⊗.(i=1,2,…,m ;j=1,2,…,n ).证明:由性质和性质可得:))(()()()()())((j i j i j j i i j i j i y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗μλμλ,故有:))(1())(()())(()())(())(())](()[(j i j i j i j i j i j i j i j i mn j i j i n m j i n m y x y x y x y x y x I y x B A y x I I y x B A I I ⊗-=⊗-⊗=⊗-⊗=⊗⊗-⊗⊗=⊗⊗-⊗μλμλμλ所以,矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量j i y x ⊗. 定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则trB trA B A tr •=⊗)(证明:由Kronecker 积和迹的定义可得:trBtrA trB a trB a trB a B a tr B a tr B a tr B A tr nn nn •=+++=+++=⊗ 22112211)()()()(得证.定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则m n B A B A )(det )(det )det(=⊗证明:设A 的特征值为1λ,2λ,…,m λ,B 的特征值为1μ,2μ,…,n μ, 由推论可得:mn m n n m n m m n n nj j m nj j mnji nj j j i B A B A )(det )(det )()()())(())(()()()()()det(21211212111112,11=====⊗∏∏∏∏===μμμλλλμλμλμλμλμλμλμλμλμλμλ得证.第三章 矩阵的拉直矩阵的拉直的定义定义 设n m ij a A ⨯=)(,定义矩阵A 的按行拉直为:T mn m n n a a a a a a A A vec )()(1221111,,,,,,,,, ==→即矩阵A 的拉直是一个mn 元的列向量,它是由矩阵A 所有元素按行顺序依次排成一列得到的.例如:⎥⎦⎤⎢⎣⎡=d c b a A ,则矩阵A 的拉直为T d c b a A )(,,,=→.矩阵的拉直的性质矩阵的拉直具有以下性质: 性质 设矩阵nm C A ⨯∈,矩阵nm CB ⨯∈,k 和l 是常数,则(lB kA +=→→+B l A k .证明:略.性质 设n m ij t a t A ⨯=))(()(,则dtt dA (=dt d)(t A . 证明:左边==))((dtt dA vet ij a vet ((′)))(n m t ⨯ = [(a 11′(t ),…,a n 1′(t ),a 21′(t ),…,a n 2′(t ),…,a 1m ′(t ),…,a mn ′(t ) ]T=[(a 11(t ),…,a n 1(t ),a 21(t ),…,a n 2(t ),…,a 1m (t ),…,a mn (t ) )T ]′ = ))](([t A vet ′=))](([t A vec dtd=右边,得证. 性质设矩阵nm C A ⨯∈,矩阵pn CX ⨯∈,矩阵qp CB ⨯∈,则→⊗=X B A T)(.证明:设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,T n x x X )(1,, =→,其中,T i x 是X 的第i 行=i (1,2,…,)n ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=B x a x a B x a x a AXB T n mn T m Tn n T )()(111111 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=→n x x X 1 所以T Tn mn T m T n n T B x a x a B x a x a ])()[(111111++++= ,, →⊗=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=X B A x x B a B a B a B a x a x a B x a x a B n T mn T m T n T n mn m T n n T )()()()()(11111111111 得证. 推论 设矩阵m m C A ⨯∈,矩阵n m C X ⨯∈,矩阵n n C B ⨯∈,则有1.AX →⊗=X I A n )( 2.→⊗=X B I Tm )(.3(AX +)→⊗+⊗=X B I I A Tm n )(.第四章 矩阵的Kronecker 积与矩阵方程矩阵的Kronecker 积与Lyapunov 矩阵方程设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,矩阵n m C F ⨯∈,解Lyapunov 矩阵方程:AX+XB=F.第一步:将方程两边拉直,由推论可得:→→=⊗+⊗C X B I I A Tm n )(.第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程有解的充要条件是:Tm n B I I A rank ⊗+⊗(┊)()T m n B I I A rank C ⊗+⊗=→,:有唯一解的充要条件是det(A ⊗I n + I m ⊗B T )≠0,即A 和(-B )没有公共的特征值或者说A 和B 无互为相反数的特征值.例 分别在下2列条件下解矩阵方程AX+XB=C.(1) ⎥⎦⎤⎢⎣⎡-=0112A ,⎥⎦⎤⎢⎣⎡=42-1-3B ,⎥⎦⎤⎢⎣⎡--=1081710C (2) ⎥⎦⎤⎢⎣⎡=3201A ,⎥⎦⎤⎢⎣⎡--=1052B ,⎥⎦⎤⎢⎣⎡--=11353C 解:(1) 首先计算A 和B 的特征值,解0=-A I λ得:121==λλ,解0=-B I μ得:5221==μμ,.观察有无互为相反数的特征值发现,A 和B 没有互为相反数的特征值,所以矩阵方程有唯一解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(.设⎥⎦⎤⎢⎣⎡=4321x x x x X ,计算⎥⎦⎤⎢⎣⎡--=4123TB ,将A ,T B ,X ,C 代入得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡-108171041231001100101124321x x x x ,计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------108171041102301106101254321x x x x , 根据矩阵的乘法的定义可以求得:21314321-===-=x x x x ,,,. 故矩阵方程AX+XB=C 的唯一解为:⎥⎦⎤⎢⎣⎡--=2131X . (2) 同样先计算A 和B 的特征值,解0=-A I λ得:3121==λλ,, 解0=-B I μ得:1221-==μμ,.通过观察可知:021=+μλ. 一所以矩阵方程的解不唯,即存在通解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(.设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡--=1502TB ,将A ,T B ,X ,C 代入得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡1135315021001100132014321x x x x , - 计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--113532520050200050034321x x x x ,根据矩阵的乘法的定义可以求得:c x x c x x -=-===3114321,,,. 故矩阵方程AX+XB=C 的通解为:⎥⎦⎤⎢⎣⎡--=c c X 311(c 为任意常数).矩阵的Kronecker 积与一般线性矩阵方程设矩阵n m k C A ⨯∈,矩阵q p C B ⨯∈,矩阵q m C F ⨯=,解一般线性矩阵方程:F XB Ark k k=∑=1(r = 1,2,…).第一步,将矩阵方程两边拉直,由性质可以得到:∑=→→=⊗rk T kk F X B A 1)][(.第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程有解的充要条件是:∑⊗)((Tkk B A rank ┊))(()1∑=→⊗=rk Tkk B A rank F . 即∑=⊗rk Tkk B A 1)(的所有特征值均不为0. 例 设A 和C 都是n ⨯n 矩阵,A 的特征值λi (i=0,1,2,…,n )R ∈(实数),求证:矩阵方程C XA A AXA X =++22有唯一解.证明:将两边方程拉直得到:→→=⊗+⊗+⊗C X A A A A I I T T n n ])([(22,化简得到:→→=⊗+⊗+C X A A A A I TTn ])()([22.由定义可知:T A A ⊗的2n 个特征值是=j i j i ,(λλ0,1,2,…,n ). 故:2)()(2T T n A A A A I ⊗+⊗+的2n 个特征值是:22)21(43)()(1j i j i j i λλλλλλ++=++>00(=j i ,,1,2,…,n ). 即2)()(2T T n A A A A I ⊗+⊗+是可逆的,由唯一解的判断方法可知:矩阵方程C XA A AXA X =++22有唯一解.例 在下列条件下解矩阵方程C XB A XB A =+2211.已知:⎥⎦⎤⎢⎣⎡-=20311A ,⎥⎦⎤⎢⎣⎡-=13101B ,⎥⎦⎤⎢⎣⎡-=11022A ,⎥⎦⎤⎢⎣⎡-=01232B ,⎥⎦⎤⎢⎣⎡--=48213C . 解:将矩阵方程两边拉直得到:→→=⊗+⊗C X B A B A T T)(2211. *设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡-=11301T B 和 ⎥⎦⎤⎢⎣⎡-=02132TB 代入*得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-4821302131102113020314321x x x x .计算化简得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------4821320027313331390564321x x x x . 根据矩阵的乘法的定义可以求得:10214321===-=x x x x ,,,.计算T T B A B A rank 2211(⊗+⊗┊4)()2211=⊗+⊗=TT B A B A rank C , 所以方程有唯一解:⎥⎦⎤⎢⎣⎡-=1021X . 矩阵的Kronecker 积与矩阵微分方程设m m C A ⨯∈矩阵,n n C B ⨯∈矩阵,n m C t X ⨯∈)(,求下列矩阵微分方程初值问题的解:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX 引理:设m m C A ⨯∈矩阵A ,矩阵n m C B ⨯∈,则n A I A I e e n ⊗=⊗,B m B I e I e m ⊗=⊗. 证明:因为性质可得:∑∑∞=∞=⊗⊗=⊗=11)(!1)(!1k k k k kI A I A k I A k enn A k kI e I A k ⊗=⊗=∑∞=1)!1(. 同理可证:B m B I e I e m ⊗=⊗.将矩阵微分方程两边拉直,由推论可以得到:⎪⎩⎪⎨⎧=⊗+⊗=→00(()()(X X t X B I I A dt t X d T m n 由引理可得:T t B At tB AtB I I A t TT m n e X e X ee X et X )()()(000)(=⊗==→→⊗+⊗,又因为∑∑∞=∞====11!1))(!1()(k Bt k k T k k k T Tt B e t B k t B k eT ,故Bt At e X e t X 0)(= 这就是微分方程的解.例 求解下列矩阵微分方程的初值问题:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX已知:⎥⎦⎤⎢⎣⎡=0011A ,⎥⎦⎤⎢⎣⎡-=0011B ,⎥⎦⎤⎢⎣⎡=10010X . 解:可计算得到:⎥⎦⎤⎢⎣⎡-=101t tAte e e,⎥⎦⎤⎢⎣⎡-=101t t Bte e e .由式可以得到: ⎥⎦⎤⎢⎣⎡--==10)1()(220t tBtAt e e eX e t X . 即的解为⎥⎦⎤⎢⎣⎡--=10)1()(22t te e t X . 通过本章的学习,我们知道矩阵的Kronecker 积在解矩阵方程领域有很大的作用,利用Kronecker 积的性质,我们可以解决Lyapunov 矩阵方程,一般矩阵方程,矩阵微分方程的初值问题等问题.参考文献[1]矩阵论简明教程(第三版).徐仲等编.北京:科学出版社..[2]矩阵论教程(第2版).张绍飞,赵迪编.北京:机械工业出版社..[3]矩阵论引论(第2版).陈祖明,周家胜编.北京:北京航空航天大学出版社..[4]矩阵论十讲.李乔,张晓东编.合肥:中国科学技术大学出版社..[5]矩阵理论及方法.谢冬秀,雷纪刚,陈桂芝编.北京:科学出版社.2012.[6]H-矩阵类的理论及应用.徐仲等编.北京:科学出版社.2013.[7]高等代数教程(上).王萼芳编.北京:清华大学出版社.1997(2008重印).[8]常微分方程(第二版).东北师范大学微分方程教研室.北京:高等教育出版社.(重印).[9]矩阵分析与应用(第2版).张贤达编.北京:清华大学出版社.2013(重印).[10]线性代数及其应用.毛立新,咸美新编.北京:高等教育出版社..[11]线性代数(第2版).钟玉泉,周建编.北京:科学出版社..[12]矩阵理论与方法(第2版).吴昌悫,魏洪增编.北京:电子工业出版社..[13]线性代数学习指导.赵春燕,单净,王麟编.哈尔滨:哈尔滨工程大学出版社..[14]矩阵论.张凯院等编.北京:科学出版社.2013.[15]矩阵论导教·导学·导考.张凯院,徐仲编.西安:西北工业大学出版社..[16]矩阵函数与矩阵方程.柏兆俊,高卫国,苏仰锋编.北京:高等教育出版社..[17]矩阵分析.姜志侠,孟品超,李延忠编.北京:清华大学出版社.2015.[18]矩阵论札论.梁昌洪编.北京:科学出版社.2014.[19]线性代数及其应用.马新顺,王涛,郭燕编.北京:高等教育出版社..[20]矩阵论引论.田振际,王永铎,吴德军编.北京:科学出版社.2013.[21]线性代数及其应用(第2版).河北农业大学理学院编.北京:高等教育出版社..(重印).[22]线性代数及其应用.王坤龙编.北京:电子工业出版社..[23]线性代数(第2版).许峰,范爱华编.合肥:中国科学技术大学出版社..[24]线性代数及其应用.俞方元编.上海:同济大学出版社..[25]线性代数学习指导.谢政,陈挚编.北京:清华大学出版社..[26]高等线性代数学.黎景辉,白正简,周国晖编.北京:高等教育出版社..[27]线性代数讲义.江惠坤,邵荣,范红军编.北京:科学出版社.2013.[28]线性代数.贾屹峰编.上海:上海交通大学出版社.2012.[29]线性代数.侯亚君,艾玲,沙萍,林洪娟编.北京:机械工业出版社.(重印).[30]线性代数.郝秀敏,姜庆华编.北京:经济科学出版社..[31]线性代数.韩旸,王静宇,周莉编.北京:化学工业出版社..[32]线性代数重点难点考点辅导与精析.高淑萍,张剑湖编.西安:西北工业大学出版社..[33]线性代数.傅媛编.武汉:武汉大学出版社.(重印).[34]跟我学线性代数:导学与习题精解.董晓波编.北京:机械工业出版社..[35]线性代数同步学习辅导.陈绍林,唐道远编.北京:科学出版社,.[36]线性代数及应用.刘三明编.南京:南京大学出版社..[37]线性代数.谭福锦,黎进香编.北京.人民邮电出版社..[38]工程数学.线性代数(第6版).同济大学数学系编.北京:高等教育出版社..[39]矩阵分析与计算.李继根,张新发编.武汉:武汉大学出版社..[40]矩阵计算的理论与方法.徐树方编.北京:北京大学出版社..[41]矩阵分析及其应用.曾祥金,吴华安编.武汉:武汉大学出版社..[42]矩阵理论与应用.张跃辉编.北京:科学出版社..致谢通过一个月来不断的努力,终于完成了这篇毕业论文。
几类特殊矩阵kronecker积

几类特殊矩阵kronecker积Kronecker积是将两个矩阵A和B乘积,也就是向量积(outer product或tensor prodct)。
它可以理解为“非常大的”网格中每一对元素进行乘积,并将这些乘积汇总到一个新的矩阵中。
具体而言,它的定义如下:Kronecker积:Given two matrices A and B, their Kronecker product is denoted as A#B, and defined by an m×n matrix C of the following form:C_{ij}=A_{i1}B_{1j}+A_{i2}B_{2j}+...+A_{in}B_{nj}Kronecker积有几类特殊的应用:1、向量积矩阵:Kronecker积可以用来表示两个向量的向量积矩阵,即A#B=vec(b)vec(a)T。
其中vec(b)和vec(a)T表示两个向量,另外一个向量作为列,另一个向量作为行,并且转置后形成一个m×n矩阵。
2、数值分解矩阵:Kronecker积可以用来表示一个数字分解矩阵,即A#B=UTV,其中UT和V可以看作是特征向量,它们可以用来分解原矩阵,而T是某个对角矩阵,用来表示特征值。
3、傅里叶变换:Kronecker积也可以用来表示傅里叶变换,即A#B=FDFT,其中FDFT表示两个实矩阵D和F的乘积,它们可以用来将原信号进行快速傅里叶变换。
4、卷积矩阵:Kronecker积也可以用来表示卷积矩阵,即A#B=C,其中C可以看作是一个m×n矩阵,它可以用来表示两个向量的卷积形式。
5、单位阵:Kronecker积也可以用来表示单位阵,即A#B=I,其中I可以看作是一个m×n矩阵,它可以用来表示两个向量的单位阵形式。
6-3_矩阵Kronecker积

n i 1 n
B1 , B2 可乘,则
b1 s B2 b2 s B2 bns B2
a1n B1 b11 B2 b12 B2 a2 n B1 b21 B2 b22 B2 amn B1 bn1 B2 bn 2 B2
a b B B 1 i is 1 2 i 1 n a 2 i bis B1 B2 i 1 n ami bis B1 B2 i 1
mm nn A C , B C 定理3: 设 ,则
( 1)
| A B || A | | B |
n
m
( 2)
tr ( A B) tr ( A) tr ( B)
Department of Mathematics
证明:设 1 , 2 ,...,m 是 的特征值,
J 是 A 的约当标准型。则存在非奇异阵 P
矩阵论电子教程
哈尔滨工程大学理学院应用数学系
Department of Mathematics, College of Sciences
第 六 章
矩阵分析
Department of Mathematics
§6.3 矩阵Kronecker积
矩阵的Kronecker积(直积)是一种重要的 矩阵乘积,它不仅在矩阵理论的研究中有着广 泛的应用,而且在诸如信号处理与系统理论中
Department of Mathematics
证明:我们仅证明(5),
矩阵Kronecker乘积性质及应用
矩阵Kronecker乘积的性质与应用摘要按照矩阵乘法的定义,我们知道要计算矩阵的乘积AB,就要求矩阵A的列数和矩阵B的行数相等,否则乘积AB是没有意义的。
那是不是两个矩阵不满足这个条件就不能计算它们的乘积呢?本文将介绍矩阵的一种特殊乘积BA ,它对矩阵的行数和列数的并没有具体的要求,它叫做矩阵的Kronecker积(也叫直积或张量积)。
本文将从矩阵的Kronecker积的定义出发,对矩阵的Kronecker 积进行介绍和必要的说明。
之后,对Kronecker积的运算规律,可逆性,秩,特征值,特征向量等性质进行了具体的探究,得出结论并加以证明。
此外,还对矩阵的拉直以及矩阵的拉直的性质进行了说明和必要的证明。
矩阵的Kronecker积是一种非常重要的矩阵乘积,它应用很广,理论方面在诸如矩阵方程的求解,矩阵微分方程的求解等矩阵理论的研究中有着广泛的应用,实际应用方面在诸如图像处理,信息处理等方面也起到重要的作用。
本文讨论矩阵的Kronecker积的性质之后还会具体介绍它在矩阵方程中的一些应用。
关键词:矩阵;Kronecker积;矩阵的拉直;矩阵方程;矩阵微分方程Properties and Applications of matrix KroneckerproductAbstractAccording to the definition of matrix multiplication, we know that to calculate the matrix product AB, requires the number of columns of the matrix A and matrix B is equal to the number of rows, otherwise the product AB makes no sense.That is not two matrices not satisfy this condition will not be able to calculate their product do?This article will describe a special matrix product BA , the number of rows and columns of a matrix and its no specific requirements, it is called the matrix Kronecker product (also called direct product or tensor product).This paper will define the matrix Kronecker product of view, the Kronecker product matrix are introduced and the necessary instructions. Thereafter, the operation rules Kronecker product, the nature of reversibility, rank, eigenvalues, eigenvectors, etc. specific inquiry, draw conclusions and to prove it. In addition, the properties of the stretch of matrix and its nature have been described and the necessary proof.Kronecker product matrix is a very important matrix product, its use is very broad, theoretical research, and other matrix solving differential equations, such as solving the matrix equation matrix theory has been widely applied in practical applications such as image processing aspects of information processing, also play an important role. After the article discusses the nature of the matrix Kronecker product it will introduce a number of specific applications in the matrix equation. Keywords:Matrix; Kronecker product; Stretch of matrix; Matrix equation; Matrix Differential Equations目录摘要 .................................................................................................................................................... Abstract ............................................................................................................................................ I 第一章 矩阵的Kronecker 积 01.1 矩阵的Kronecker 积的定义 ........................................................................................... 0 1.2 矩阵的Kronecker 积的性质 ........................................................................................... 0 第二章 Kronecker 积的有关定理及推论 ...................................................................................... 5 第三章 矩阵的拉直 . (8)3.1矩阵的拉直的定义 ............................................................................................................ 8 3.2矩阵的拉直的性质 ............................................................................................................ 8 第四章 矩阵的Kronecker 积与矩阵方程 .. (10)4.1矩阵的Kronecker 积与Lyapunov 矩阵方程 ................................................................ 10 4.2矩阵的Kronecker 积与一般线性矩阵方程 .................................................................. 12 4.3矩阵的Kronecker 积与矩阵微分方程 .......................................................................... 13 参考文献......................................................................................................................................... 15 致谢 (17)符号说明W a W a 属于集合元素nm ij a A ⨯=)( 矩阵的记法列元素的行为以n m j i a ij⨯ij A )( 列的元素行的矩阵j i AT A 的转置矩阵A H A 的共轭转置矩阵A 1-A 的逆矩阵矩阵A→A 按行拉直得到的列向量矩阵AA det 的行列式方阵AtrA 的主对角元素之和的迹,方阵A A)(A rank 的秩矩阵A)(A λ 的特征值方阵An I 阶单位矩阵nR 实数域 C 复数域n C 维复向量的全体n n m C ⨯ 复矩阵全体n m ⨯O 零矩阵B A ⊗ 的和矩阵B A Kronecker 积第一章 矩阵的Kronecker 积1.1 矩阵的Kronecker 积的定义定义1.1设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,定义A 和B 的Kronecker 积(或直积,张量积)B A ⊗为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B a B a B a B a B a B a B a B a B a B A mn m m n n 212222111211 可以看出,其结果是一个)()(nq mp ⨯矩阵,同时也是一个以B a ij 为子块的分块矩阵.例1.1 设⎥⎦⎤⎢⎣⎡-=1201A ,[]31-=B ,则 ⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-=⊗316200312B B O BB A []⎥⎦⎤⎢⎣⎡---=-=⊗361203013A A A B 由此可见,B A ⊗与A B ⊗具有相同的阶数,但是它们并不相等,也就是说,Kronecker 积不满足交换律.1.2 矩阵的Kronecker 积的性质虽然Kronecker 积不满足交换律,但是具有以下一些性质: 性质1.2.1 设矩阵n m C A ⨯∈,矩阵q p C O ⨯∈,则O O A A O =⊗=⊗(这个O 为)()(nq mp ⨯矩阵).证明:略.性质1.2.2 设k 为任一常数,矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B A k kB A B kA ⊗=⊗=⊗.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n ka ka ka ka ka ka ka ka ka kA 212222111211,根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B kA mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka kB a kB a kB a kB a kB a kB a kB a kB a kB a kB A mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, 即)(B A k B kA ⊗=⊗,)()(B A k kB A ⊗=⊗. 所以)()()(B A k kB A B kA ⊗=⊗=⊗.性质1.2.3 设A ,B 为同阶矩阵(同阶是为了可以做加法),则C B C A C B A ⊗+⊗=⊗+)(,B C A C B A C ⊗+⊗=+⊗)(.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n b b b b b b b b b B 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=+mn mn m m m m n n n n b a b a b a b a b a ba b a b a b a B A221122222221211112121111,根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗+C b a C b a C b a C b a Cb aC b a C b a C b a C b a C B A mn mn m m m m n n n n )()()()()()()()()()(221122222221211112121111(1.1)*,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C a C a C a C a C a C a C a C a C a C A mn m m n n 212222111211 (1.2)*, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C b C b C b C b C b C b C b C b C b C B mn m m n n 212222111211 (1.3)*,由(1.2)*,(1.3)*得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C A mn mn m m m m n n n n 221122222221211112121111 (1.4)*, 由(1.1)*,(1.4)*可得:C B C A C B A ⊗+⊗=⊗+)(.同理设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n c c c c c cc c c C 212222111211可证:B C A C B A C ⊗+⊗=+⊗)(.性质1.2.4 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s r C F ⨯∈,则)()(F B A F B A ⊗⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⊗⊗⊗⊗⊗⊗⊗⊗⊗=⊗⊗)()()()()()()()()()(212222111211F B a F B a F B a F B a F B a F B a F B a F B a F B a F B A mn m m n n)(212222111211F B A F B a B a B a B a B a B a B a B a B a mn m m n n ⊗⊗=⊗⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 得证.性质1.2.5设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s n C F ⨯∈,矩阵t q C D ⨯∈,则)()())((BD AF D F B A ⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ns n n s s f f f f f f f f f F212222111211, 则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗⊗D f D f D f D f D f Df D f D f D f B a B a B a B a B a B a B a B a B a D F B A ns n n s s mn m m n n212222111211212222111211))(()()()()()()()()()()()(112111112211211121111BD AF BD f a BD f a BD f a BD c a BD f a BD f a BD f a BD f a BD f a nk ks mk n k k mk n k k mk nk ks k n k k k n k k k n k ks k n k k k n k k k ⊗=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑∑∑∑=========得证.性质1.2.6 设矩阵m m C A ⨯∈可逆, 且矩阵n n C B ⨯∈可逆,则B A ⊗可逆,且111)(---⊗=⊗B A B A .证明:mn n m I I I BB AA B A B A =⊗=⊗=⊗⊗----)()())((1111(这里I n 与数的乘法中的1起到相同的作用), 故111)(---⊗=⊗B A B A .性质1.2.7 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则T T T B A B A ⊗=⊗)(H H H B A B A ⊗=⊗)(证明: ij T T T ji ij T B A B a B A ][])[(⊗==⊗ 得证.同理可证:H H H B A B A ⊗=⊗)(.性质1.2.8 两个正交(酉)矩阵的Kronecker 积还是正交(酉)矩阵. 证明:设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈.因为A ,B 都是正交(酉)矩阵,所以有m T T I A A AA ==,n T T I B B BB ==. 由性质1.2.7和性质1.2.5可得:mn n m T T T T T I I I BB AA B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(())((. mn m n T T T T T I I I B B A A B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(()()(.故mn T T I B A B A B A B A =⊗⊗=⊗⊗)()())((. 得证.第二章 Kronecker 积的有关定理及推论定理2.2.2 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B rank A rank B A rank =⊗.证明:设rank A =r ,rank B=s ,A ,B 的标准形分别为:1111--⎥⎦⎤⎢⎣⎡=Q O O O I P A r ,1212--⎥⎦⎤⎢⎣⎡=Q O O O I P B s其中i P ,i Q =i (1,2)均为非奇异矩阵,则由性质1.2.5和1.2.6可以得:`1211211211121112121111)()()()(----------⊗⎥⎦⎤⎢⎣⎡⊗=⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⊗=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡=⊗Q Q O O O I P P Q Q O O O I O O O I P P Q O O O I P Q O O O I P B A rss r s r 所以)()()(B rank A rank s r B A rank =•=⊗ 得证.定理2.2.3 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B A ⊗对应特征值λμ的一个特征向量.证明:因为x ,y 都是非零向量,所以x ⊗y 也是非零向量,由性质1.2.2和性质1.2.5可得:)()()()()())((y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗λμμλ.所以,y x ⊗是B A ⊗对应特征值λμ的一个特征向量.推论2.2.4 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若A 的特征值是1λ,2λ,…,m λ;B 的特征值是1μ,2μ,…,n μ,则B A ⊗的特征值为t s μλ,m s ≤≤1,n t ≤≤1(k 重根算k 个).定理2.2.5 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.证明:由性质1.2.3,性质1.2.5可以得到:)()()()())((y x y x y I Ax y x I A n n ⊗=⊗=⊗=⊗⊗λλ, )()()()())((y x y x By x I y x B I m m ⊗=⊗=⊗=⊗⊗μμ,故))(())(())(())((y x y x B I y x I A y x B I I A m n m n ⊗+=⊗⊗+⊗⊗=⊗⊗+⊗μλ.所以,y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.推论2.2.6 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m s C x ∈和n t C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y ,2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,则B I I A m n ⊗+⊗的n m •个特征值为{t s μλ+}.(s=1,2,…,m ;t=1,2,…,n ).例2.2 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m i C x ∈和n j C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y , 2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,证明:矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量为j i y x ⊗.(i=1,2,…,m ;j=1,2,…,n ).证明:由性质1.2.3和性质1.2.5可得:))(()()()()())((j i j i j j i i j i j i y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗μλμλ,故有:))(1())(()())(()())(())(())](()[(j i j i j i j i j i j i j i j i mn j i j i n m j i n m y x y x y x y x y x I y x B A y x I I y x B A I I ⊗-=⊗-⊗=⊗-⊗=⊗⊗-⊗⊗=⊗⊗-⊗μλμλμλ所以,矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量j i y x ⊗. 定理2.2.7 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则trB trA B A tr •=⊗)(证明:由Kronecker 积和迹的定义可得:trBtrA trB a trB a trB a B a tr B a tr B a tr B A tr nn nn •=+++=+++=⊗ 22112211)()()()(得证.定理2.2.8 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则m n B A B A )(det )(det )det(=⊗证明:设A 的特征值为1λ,2λ,…,m λ,B 的特征值为1μ,2μ,…,n μ, 由推论2.2.4可得:mn m n n m n m m n n nj j m nj j mnji nj j j i B A B A )(det )(det )()()())(())(()()()()()det(21211212111112,11=====⊗∏∏∏∏===μμμλλλμλμλμλμλμλμλμλμλμλμλ得证.第三章 矩阵的拉直3.1矩阵的拉直的定义定义3.1 设n m ij a A ⨯=)(,定义矩阵A 的按行拉直为:T mn m n n a a a a a a A A vec )()(1221111,,,,,,,,, ==→即矩阵A 的拉直是一个mn 元的列向量,它是由矩阵A 所有元素按行顺序依次排成一列得到的.例如:⎥⎦⎤⎢⎣⎡=d c b a A ,则矩阵A 的拉直为T d c b a A )(,,,=→.3.2矩阵的拉直的性质矩阵的拉直具有以下性质:性质 3.2.1 设矩阵n m C A ⨯∈,矩阵n m C B ⨯∈,k 和l 是常数,则)(lB kA +=→→+B l A k .证明:略.性质3.2.2 设n m ij t a t A ⨯=))(()(,则dtt dA )(=dt d)(t A . 证明:左边==))((dtt dA vet ij a vet ((′)))(n m t ⨯ = [(a 11′(t ),…,a n 1′(t ),a 21′(t ),…,a n 2′(t ),…,a 1m ′(t ),…,a mn ′(t ) ]T =[(a 11(t ),…,a n 1(t ),a 21(t ),…,a n 2(t ),…,a 1m (t ),…,a mn (t ) )T ]′ = ))](([t A vet ′=))](([t A vec dtd=右边,得证. 性质 3.2.3设矩阵n m C A ⨯∈,矩阵p n C X ⨯∈,矩阵q p C B ⨯∈,则AXB →⊗=X B A T)(.证明:设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,T n x x X )(1,, =→,其中,T i x 是X 的第i 行=i (1,2,…,)n ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=B x a x a B x a x a AXB T n mn T m Tn n T )()(111111 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=→n x x X 1 所以AXB T Tn mn T m T n n T B x a x a B x a x a ])()[(111111++++= ,, →⊗=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=X B A x x B a B a B a B a x a x a B x a x a B n T mn T m T n T n mn m T n n T )()()()()(11111111111 得证. 推论3.2.4 设矩阵m m C A ⨯∈,矩阵n m C X ⨯∈,矩阵n n C B ⨯∈,则有1.AX →⊗=X I A n )( 2.XB →⊗=X B I Tm )(.3(AX +XB )→⊗+⊗=X B I I A Tm n )(.第四章 矩阵的Kronecker 积与矩阵方程4.1矩阵的Kronecker 积与Lyapunov 矩阵方程设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,矩阵n m C F ⨯∈,解Lyapunov 矩阵方程: AX+XB=F .第一步:将方程两边拉直,由推论3.2.4可得:→→=⊗+⊗C X B I I A Tm n )(. (4.1) 第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程(4.1)有解的充要条件是:Tm n B I I A rank ⊗+⊗(┊)()T m n B I I A rank C ⊗+⊗=→,:有唯一解的充要条件是det(A ⊗I n + I m ⊗B T )≠0,即A 和(-B )没有公共的特征值或者说A 和B 无互为相反数的特征值.例4.1 分别在下2列条件下解矩阵方程AX+XB=C.(1) ⎥⎦⎤⎢⎣⎡-=0112A ,⎥⎦⎤⎢⎣⎡=42-1-3B ,⎥⎦⎤⎢⎣⎡--=1081710C (2) ⎥⎦⎤⎢⎣⎡=3201A ,⎥⎦⎤⎢⎣⎡--=1052B ,⎥⎦⎤⎢⎣⎡--=11353C 解:(1) 首先计算A 和B 的特征值,解0=-A I λ得:121==λλ,解0=-B I μ得:5221==μμ,.观察有无互为相反数的特征值发现,A 和B 没有互为相反数的特征值,所以矩阵方程有唯一解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(. (4.1)设⎥⎦⎤⎢⎣⎡=4321x x x x X ,计算⎥⎦⎤⎢⎣⎡--=4123TB ,将A ,T B ,X ,C 代入(4.1)得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡-108171041231001100101124321x x x x ,计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------108171041102301106101254321x x x x , 根据矩阵的乘法的定义可以求得:21314321-===-=x x x x ,,,. 故矩阵方程AX+XB=C 的唯一解为:⎥⎦⎤⎢⎣⎡--=2131X . (2) 同样先计算A 和B 的特征值,解0=-A I λ得:3121==λλ,, 解0=-B I μ得:1221-==μμ,.通过观察可知:021=+μλ. 一所以矩阵方程的解不唯,即存在通解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(. (4.1)设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡--=1502TB ,将A ,T B ,X ,C 代入(4.1)得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡1135315021001100132014321x x x x , - 计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--113532520050200050034321x x x x ,根据矩阵的乘法的定义可以求得:c x x c x x -=-===3114321,,,. 故矩阵方程AX+XB=C 的通解为:⎥⎦⎤⎢⎣⎡--=c c X 311(c 为任意常数).4.2矩阵的Kronecker 积与一般线性矩阵方程设矩阵n m k C A ⨯∈,矩阵q p C B ⨯∈,矩阵q m C F ⨯=,解一般线性矩阵方程:F XB Ark k k=∑=1(r = 1,2,…).第一步,将矩阵方程两边拉直,由性质3.2.3可以得到:∑=→→=⊗rk T kkF X B A1)][(. (4.2)第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程(4.2)有解的充要条件是:∑⊗)((Tkk B A rank ┊))(()1∑=→⊗=rk Tkk B A rank F . 即∑=⊗rk Tkk B A 1)(的所有特征值均不为0. 例4.2 设A 和C 都是n ⨯n 矩阵,A 的特征值λi (i=0,1,2,…,n )R ∈(实数),求证:矩阵方程C XA A AXA X =++22有唯一解.证明:将两边方程拉直得到:→→=⊗+⊗+⊗C X A A A A I I T T n n ])([(22,化简得到:→→=⊗+⊗+C X A A A A I TTn ])()([22.由定义3.1可知:T A A ⊗的2n 个特征值是=j i j i ,(λλ0,1,2,…,n ). 故:2)()(2T T n A A A A I ⊗+⊗+的2n 个特征值是:22)21(43)()(1j i j i j i λλλλλλ++=++>00(=j i ,,1,2,…,n ). 即2)()(2T T n A A A A I ⊗+⊗+是可逆的,由唯一解的判断方法可知:矩阵方程C XA A AXA X =++22有唯一解.例4.3 在下列条件下解矩阵方程C XB A XB A =+2211.已知:⎥⎦⎤⎢⎣⎡-=20311A ,⎥⎦⎤⎢⎣⎡-=13101B ,⎥⎦⎤⎢⎣⎡-=11022A ,⎥⎦⎤⎢⎣⎡-=01232B ,⎥⎦⎤⎢⎣⎡--=48213C . 解:将矩阵方程两边拉直得到:→→=⊗+⊗C X B A B A T T)(2211. (4.3)*设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡-=11301T B 和 ⎥⎦⎤⎢⎣⎡-=02132TB 代入(4.3)*得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-4821302131102113020314321x x x x .计算化简得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------4821320027313331390564321x x x x . 根据矩阵的乘法的定义可以求得:10214321===-=x x x x ,,,.计算T T B A B A rank 2211(⊗+⊗┊4)()2211=⊗+⊗=TT B A B A rank C , 所以方程有唯一解:⎥⎦⎤⎢⎣⎡-=1021X . 4.3矩阵的Kronecker 积与矩阵微分方程设m m C A ⨯∈矩阵,n n C B ⨯∈矩阵,n m C t X ⨯∈)(,求下列矩阵微分方程初值问题的解:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX (4.3)引理:设m m C A ⨯∈矩阵A ,矩阵n m C B ⨯∈,则n A I A I e e n ⊗=⊗,B m B I e I e m ⊗=⊗. 证明:因为性质1.2.5可得:∑∑∞=∞=⊗⊗=⊗=11)(!1)(!1k k k k kI A I A k I A k enn A k kI e I A k ⊗=⊗=∑∞=1)!1(. 同理可证:B m B I e I e m ⊗=⊗.将矩阵微分方程(4.3)两边拉直,由推论3.2.4可以得到:⎪⎩⎪⎨⎧=⊗+⊗=→0)0()()()(X X t X B I I A dt t X d T m n (4.4)由引理可得:T t B At tB AtB I I A t TT m n e X e X ee X et X )()()(000)(=⊗==→→⊗+⊗,又因为∑∑∞=∞====11!1))(!1()(k Bt k k T k k k T Tt B e t B k t B k eT ,故Bt At e X e t X 0)(= (4.5) 这就是微分方程(4.3)的解.例4.4 求解下列矩阵微分方程的初值问题:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX (4.6)已知:⎥⎦⎤⎢⎣⎡=0011A ,⎥⎦⎤⎢⎣⎡-=0011B ,⎥⎦⎤⎢⎣⎡=10010X . 解:可计算得到:⎥⎦⎤⎢⎣⎡-=101t tAte e e,⎥⎦⎤⎢⎣⎡-=101t t Bte e e .由(4.5)式可以得到: ⎥⎦⎤⎢⎣⎡--==10)1()(220t tBtAt e e eX e t X . 即(4.6)的解为⎥⎦⎤⎢⎣⎡--=10)1()(22t te e t X . 通过本章的学习,我们知道矩阵的Kronecker 积在解矩阵方程领域有很大的作用,利用Kronecker 积的性质,我们可以解决Lyapunov 矩阵方程,一般矩阵方程,矩阵微分方程的初值问题等问题.参考文献[1]矩阵论简明教程(第三版).徐仲等编.北京:科学出版社.2014.1.[2]矩阵论教程(第2版).张绍飞,赵迪编.北京:机械工业出版社.2012.5.[3]矩阵论引论(第2版).陈祖明,周家胜编.北京:北京航空航天大学出版社.2012.10.[4]矩阵论十讲.李乔,张晓东编.合肥:中国科学技术大学出版社.2015.3.[5]矩阵理论及方法.谢冬秀,雷纪刚,陈桂芝编.北京:科学出版社.2012.[6]H-矩阵类的理论及应用.徐仲等编.北京:科学出版社.2013.[7]高等代数教程(上).王萼芳编.北京:清华大学出版社.1997(2008重印).[8]常微分方程(第二版).东北师范大学微分方程教研室.北京:高等教育出版社.2005.4(2012.12重印).[9]矩阵分析与应用(第2版).张贤达编.北京:清华大学出版社.2013(2014.6重印).[10]线性代数及其应用.毛立新,咸美新编.北京:高等教育出版社.2015.8.[11]线性代数(第2版).钟玉泉,周建编.北京:科学出版社.2015.1.[12]矩阵理论与方法(第2版).吴昌悫,魏洪增编.北京:电子工业出版社.2013.8.[13]线性代数学习指导.赵春燕,单净,王麟编.哈尔滨:哈尔滨工程大学出版社.2012.2.[14]矩阵论.张凯院等编.北京:科学出版社.2013.[15]矩阵论导教·导学·导考.张凯院,徐仲编.西安:西北工业大学出版社.2014.8.[16]矩阵函数与矩阵方程.柏兆俊,高卫国,苏仰锋编.北京:高等教育出版社.2015.5.[17]矩阵分析.姜志侠,孟品超,李延忠编.北京:清华大学出版社.2015.[18]矩阵论札论.梁昌洪编.北京:科学出版社.2014.[19]线性代数及其应用.马新顺,王涛,郭燕编.北京:高等教育出版社.2014.7.[20]矩阵论引论.田振际,王永铎,吴德军编.北京:科学出版社.2013.[21]线性代数及其应用(第2版).河北农业大学理学院编.北京:高等教育出版社.2006.11.(2015.2重印).[22]线性代数及其应用.王坤龙编.北京:电子工业出版社.2014.10.[23]线性代数(第2版).许峰,范爱华编.合肥:中国科学技术大学出版社.2013.4.[24]线性代数及其应用.俞方元编.上海:同济大学出版社.2014.8.[25]线性代数学习指导.谢政,陈挚编.北京:清华大学出版社.2012.10.[26]高等线性代数学.黎景辉,白正简,周国晖编.北京:高等教育出版社.2014.9.[27]线性代数讲义.江惠坤,邵荣,范红军编.北京:科学出版社.2013.[28]线性代数.贾屹峰编.上海:上海交通大学出版社.2012.[29]线性代数.侯亚君,艾玲,沙萍,林洪娟编.北京:机械工业出版社.2012.1(2012.7重印).[30]线性代数.郝秀敏,姜庆华编.北京:经济科学出版社.2013.7.[31]线性代数.韩旸,王静宇,周莉编.北京:化学工业出版社.2013.8.[32]线性代数重点难点考点辅导与精析.高淑萍,张剑湖编.西安:西北工业大学出版社.2014.5.[33]线性代数.傅媛编.武汉:武汉大学出版社.2013.2(2013.11重印).[34]跟我学线性代数:导学与习题精解.董晓波编.北京:机械工业出版社.2014.1.[35]线性代数同步学习辅导.陈绍林,唐道远编.北京:科学出版社,2014.7.[36]线性代数及应用.刘三明编.南京:南京大学出版社.2012.8.[37]线性代数.谭福锦,黎进香编.北京.人民邮电出版社.2012.8.[38]工程数学.线性代数(第6版).同济大学数学系编.北京:高等教育出版社.2014.6.[39]矩阵分析与计算.李继根,张新发编.武汉:武汉大学出版社.2013.10.[40]矩阵计算的理论与方法.徐树方编.北京:北京大学出版社.1995.8.[41]矩阵分析及其应用.曾祥金,吴华安编.武汉:武汉大学出版社.2007.8.[42]矩阵理论与应用.张跃辉编.北京:科学出版社.2011.8.致谢通过一个月来不断的努力,终于完成了这篇毕业论文。
kronecker积和张量积
kronecker积和张量积Kronecker积和张量积是线性代数中重要的概念,它们在矩阵和向量运算中起着关键的作用。
本文将介绍Kronecker积和张量积的定义、性质以及它们在实际问题中的应用。
一、Kronecker积的定义和性质Kronecker积是两个矩阵的一种运算,它的定义如下:设A是m×n 的矩阵,B是p×q的矩阵,则A和B的Kronecker积记作A⊗B,它是一个mp×nq的矩阵,其中的每个元素都是由A和B对应位置的元素相乘得到的。
Kronecker积具有以下性质:1. 结合律:(A⊗B)⊗C = A⊗(B⊗C),对于任意的矩阵A、B和C成立。
2. 分配律:(A+B)⊗C = A⊗C + B⊗C,对于任意的矩阵A、B和C 成立。
3. 乘法结合律:(kA)⊗B = A⊗(kB) = k(A⊗B),其中k是一个标量。
4. 转置性质:(A⊗B)ᵀ = Aᵀ⊗Bᵀ,其中A和B分别是矩阵A和B的转置。
Kronecker积在矩阵运算中有广泛的应用,例如在图像处理中,可以利用Kronecker积对图像进行缩放、旋转等操作。
此外,在量子力学中,Kronecker积也被用来描述多粒子系统的态空间。
二、张量积的定义和性质张量积是向量空间中的一种运算,它的定义如下:设V和W分别是两个向量空间,v是V中的向量,w是W中的向量,则v和w的张量积记作v⊗w,它是一个新的向量,它的维度是V和W的维度的乘积。
张量积具有以下性质:1. 结合律:(v⊗w)⊗u = v⊗(w⊗u),对于任意的向量v、w和u成立。
2. 分配律:(v+w)⊗u = v⊗u + w⊗u,对于任意的向量v、w和u成立。
3. 乘法结合律:(kv)⊗w = v⊗(kw) = k(v⊗w),其中k是一个标量。
4. 转置性质:(v⊗w)ᵀ = vᵀ⊗wᵀ,其中v和w分别是向量v和w的转置。
张量积在量子力学中有重要的应用,它被用来描述多粒子系统的态空间。
矩阵理论 -Kronecker积
返回
(8) 当m n, p q时,
tr( A B) trA• trB
(9) rank(A B) rankA• rankB
(10) 当m n, p q时,
det( A B) (det A) p g(det B)m
证:
1
A
P 1
2
O
P
P 1J1 P
a22 L LL
am1 am2 L
a1n
a2n L
amn
记A的列为 Ac1, Ac2 ,K , Acn A ( Ac1, Ac2 ,K , Acn )
Ac1
向量化算符:Vec
A
Ac2 M
Acn
返回
性质1: Vec (kA lB) kVec A lVec B
定理5:设 A Cmn , X Cnr , B Crs , 则 Vec ( AXB) (BT A)Vec X
0
m
返回
1
பைடு நூலகம்
B
Q1
0
2
O
Q
Q 1 J 2Q
p
A B (P1J1P) (Q1J2Q) (P Q)1(J1 J2 )(P Q)
det( A B) det(J1 J2 )
p
p
p
m
p
( 1 j )( 2 j )L ( m j ) ( i ) p ( j )m
(2)当U,V均为酉矩阵时,U V也是酉矩阵;
(3) ( AB)[k] A[k]B[k].
返回
例1:以1或-1为元素的m阶矩阵H,如果有 HH T mEm
则称H 为m阶Hadamard矩阵.设Hm , Hn分别为m, n阶Hadamard矩阵,则 Hm Hn为mn阶Hadamard
矩阵的乘法
矩阵的乘法裴博 11123689 理科基础班2班摘要:本文首先给出了一般矩阵乘积Hadamard 乘积,Kronecker 乘积的定义。
然后讨论了并证明了这些乘积的运算性质。
继而举出了具体的例子、阐述其来源以及应用和推广。
关键词:矩阵 乘法 Hadamard Kronecker 正文:引言:矩阵常用的乘法有三种,分别是一般乘法,Hadamard 乘法和Kronecker 乘法。
下文将从这几个乘法中展开讨论。
一般乘积:定义:对任意的正整数,,m n p,任意的数域F ,任意的矩阵()m nij m n A a F⨯⨯=∈和()n pij n p B b F⨯⨯=∈可以相乘,得到的乘积AB 是一个m p ⨯矩阵()ij m pAB c ⨯=它的第(,)i j 元11221ni j i k k j i j iji nn jk c a b a b a b a b ===+++∑例子:1200A λλ⎛⎫=⎪⎝⎭,1122a b B a b ⎛⎫= ⎪⎝⎭,求AB 和BA 。
解:11112222a b AB a b λλλλ⎛⎫=⎪⎝⎭ , 11122122a b BA a b λλλλ⎛⎫= ⎪⎝⎭。
运算性质:结合律: ()()C B A C B A= 对任意,,m np nq pA FB FC F⨯⨯⨯∈∈∈成立。
证明: 设(),(),()ij m n ij p m ij q p A a B b C c ⨯⨯⨯===则()ij p nBA D d ⨯==,其中1mi j i k k jk d b a==∑从而()()ij q nC BA CD G g ⨯===1111,1()ppm ij issj isskkj is sk kjs s k s p k mg cd c ba cb a ===≤≤≤≤===∑∑∑∑(1)另一方面,()ij q mCB U u ⨯==,其中1pi j i s s js u c b==∑从而()()ij q nCB A UA H h ⨯===,其中1111,1()pmmij ikkj issk kj is sk kjk k s s p k mh ua cb ac b a ===≤≤≤≤===∑∑∑∑(2)比较(1)和(2)可知G H =,即()()C B A C B A= 则矩阵乘法结合律成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵Kronecker乘积的性质与应用摘要按照矩阵乘法的定义,我们知道要计算矩阵的乘积AB,就要求矩阵A的列数和矩阵B的行数相等,否则乘积AB是没有意义的。
那是不是两个矩阵不满足这个条件就不能计算它们的乘积呢?本文将介绍矩阵的一种特殊乘积BA ,它对矩阵的行数和列数的并没有具体的要求,它叫做矩阵的Kronecker积(也叫直积或张量积)。
本文将从矩阵的Kronecker积的定义出发,对矩阵的Kronecker 积进行介绍和必要的说明。
之后,对Kronecker积的运算规律,可逆性,秩,特征值,特征向量等性质进行了具体的探究,得出结论并加以证明。
此外,还对矩阵的拉直以及矩阵的拉直的性质进行了说明和必要的证明。
矩阵的Kronecker积是一种非常重要的矩阵乘积,它应用很广,理论方面在诸如矩阵方程的求解,矩阵微分方程的求解等矩阵理论的研究中有着广泛的应用,实际应用方面在诸如图像处理,信息处理等方面也起到重要的作用。
本文讨论矩阵的Kronecker积的性质之后还会具体介绍它在矩阵方程中的一些应用。
关键词:矩阵;Kronecker积;矩阵的拉直;矩阵方程;矩阵微分方程Properties and Applications of matrix KroneckerproductAbstractAccording to the definition of matrix multiplication, we know that to calculate the matrix product AB, requires the number of columns of the matrix A and matrix B is equal to the number of rows, otherwise the product AB makes no is not two matrices not satisfy this condition will not be able to calculate their product do?This article will describe a special matrix product BA , the number of rows and columns of a matrix and its no specific requirements, it is called the matrix Kronecker product (also called direct product or tensor product).This paper will define the matrix Kronecker product of view, the Kronecker product matrix are introduced and the necessary instructions. Thereafter, the operation rules Kronecker product, the nature of reversibility, rank, eigenvalues, eigenvectors, etc. specific inquiry, draw conclusions and to prove it. In addition, the properties of the stretch of matrix and its nature have been described and the necessary proof.Kronecker product matrix is a very important matrix product, its use is very broad, theoretical research, and other matrix solving differential equations, such as solving the matrix equation matrix theory has been widely applied in practical applications such as image processing aspects of information processing, also play an important role. After the article discusses the nature of the matrix Kronecker product it will introduce a number of specific applications in the matrix equation. Keywords:Matrix; Kronecker product; Stretch of matrix; Matrix equation; Matrix Differential Equations目录摘要 .................................................................................................................................................... Abstract ............................................................................................................................................. I 第一章 矩阵的Kronecker 积 0矩阵的Kronecker 积的定义 ................................................................................................... 0 矩阵的Kronecker 积的性质 ................................................................................................... 0 第二章 Kronecker 积的有关定理及推论 ...................................................................................... 5 第三章 矩阵的拉直 . (8)矩阵的拉直的定义 ................................................................................................................... 8 矩阵的拉直的性质 ................................................................................................................... 8 第四章 矩阵的Kronecker 积与矩阵方程 .. (10)矩阵的Kronecker 积与Lyapunov 矩阵方程 ....................................................................... 10 矩阵的Kronecker 积与一般线性矩阵方程 ......................................................................... 12 矩阵的Kronecker 积与矩阵微分方程 ................................................................................. 13 参考文献......................................................................................................................................... 15 致谢 (16)符号说明W a W a 属于集合元素nm ij a A ⨯=)( 矩阵的记法列元素的行为以n m j i a ij⨯ij A )( 列的元素行的矩阵j i AT A 的转置矩阵A H A 的共轭转置矩阵A1-A 的逆矩阵矩阵A→A 按行拉直得到的列向量矩阵AA det 的行列式方阵AtrA 的主对角元素之和的迹,方阵A A)(A rank 的秩矩阵A)(A λ 的特征值方阵An I 阶单位矩阵nR 实数域 C 复数域n C 维复向量的全体nn m C ⨯ 复矩阵全体n m ⨯O 零矩阵B A ⊗ 的和矩阵B A Kronecker 积第一章 矩阵的Kronecker 积矩阵的Kronecker 积的定义定义设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,定义A 和B 的Kronecker 积(或直积,张量积)B A ⊗为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B a B a B a B a B a B a B a B a B a B A mn m m n n 212222111211 可以看出,其结果是一个)()(nq mp ⨯矩阵,同时也是一个以B a ij 为子块的分块矩阵.例 设⎥⎦⎤⎢⎣⎡-=1201A ,[]31-=B ,则 ⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-=⊗316200312B B O BB A []⎥⎦⎤⎢⎣⎡---=-=⊗361203013A A A B 由此可见,B A ⊗与A B ⊗具有相同的阶数,但是它们并不相等,也就是说,Kronecker 积不满足交换律.矩阵的Kronecker 积的性质虽然Kronecker 积不满足交换律,但是具有以下一些性质: 性质 设矩阵n m C A ⨯∈,矩阵q p C O ⨯∈,则O O A A O =⊗=⊗(这个O 为)()(nq mp ⨯矩阵).证明:略.性质 设k 为任一常数,矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B A k kB A B kA ⊗=⊗=⊗.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n ka ka ka ka ka ka ka ka ka kA 212222111211, 根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B kA mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka kB a kB a kB a kB a kB a kB a kB a kB a kB a kB A mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, 即)(B A k B kA ⊗=⊗,)()(B A k kB A ⊗=⊗. 所以)()()(B A k kB A B kA ⊗=⊗=⊗.性质 设A ,B 为同阶矩阵(同阶是为了可以做加法),则C B C A C B A ⊗+⊗=⊗+)(,B C A C B A C ⊗+⊗=+⊗)(.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n b b b b b b b b b B 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=+mn mn m m m m n n n n b a b a b a b a b a ba b a b a b a B A221122222221211112121111,根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗+C b a C b a C b a C b a Cb aC b a C b a C b a C b a C B A mn mn m m m m n n n n )()()()()()()()()()(221122222221211112121111*,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C a C a C a C a C a C a C a C a C a C A mn m m n n 212222111211 *, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C b C b C b C b C b C b C b C b C b C B mn m m n n 212222111211 *,由*,*得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C A mn mn m m m m n n n n 221122222221211112121111 *, 由*,*可得:C B C A C B A ⊗+⊗=⊗+)(.同理设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n c c c c c cc c c C 212222111211可证:B C A C B A C ⊗+⊗=+⊗)(.性质 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s r C F ⨯∈,则)()(F B A F B A ⊗⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⊗⊗⊗⊗⊗⊗⊗⊗⊗=⊗⊗)()()()()()()()()()(212222111211F B a F B a F B a F B a F B a F B a F B a F B a F B a F B A mn m m n n)(212222111211F B A F B a B a B a B a B a B a B a B a B a mn m m n n ⊗⊗=⊗⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 得证.性质设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s n C F ⨯∈,矩阵t q C D ⨯∈,则)()())((BD AF D F B A ⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ns n n s s f f f f f f f f f F212222111211, 则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗⊗D f D f Df D f D f Df D f D f D f B a B a B a B a B a B a B a B a B a D F B A ns n n s s mn m m n n212222111211212222111211))(()()()()()()()()()()()(112111112211211121111BD AF BD f a BD f a BD f a BD c a BD f a BD f a BD f a BD f a BD f a nk ks mk n k k mk n k k mk nk ks k n k k k n k k k n k ks k n k k k n k k k ⊗=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑∑∑∑=========得证.性质 设矩阵m m C A ⨯∈可逆, 且矩阵n n C B ⨯∈可逆,则B A ⊗可逆,且111)(---⊗=⊗B A B A .证明:mn n m I I I BB AA B A B A =⊗=⊗=⊗⊗----)()())((1111(这里I n 与数的乘法中的1起到相同的作用), 故111)(---⊗=⊗B A B A .性质 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则T T T B A B A ⊗=⊗)(H H H B A B A ⊗=⊗)(证明: ij T T T ji ij T B A B a B A ][])[(⊗==⊗ 得证.同理可证:H H H B A B A ⊗=⊗)(.性质 两个正交(酉)矩阵的Kronecker 积还是正交(酉)矩阵. 证明:设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈.因为A ,B 都是正交(酉)矩阵,所以有m T T I A A AA ==,n T T I B B BB ==. 由性质和性质可得:mn n m T T T T T I I I BB AA B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(())((. mn m n T T T T T I I I B B A A B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(()()(.故mn T T I B A B A B A B A =⊗⊗=⊗⊗)()())((. 得证.第二章 Kronecker 积的有关定理及推论定理 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B rank A rank B A rank =⊗.证明:设rank A =r ,rank B=s ,A ,B 的标准形分别为:1111--⎥⎦⎤⎢⎣⎡=Q O O O I P A r ,1212--⎥⎦⎤⎢⎣⎡=Q O O O I P B s其中i P ,i Q =i (1,2)均为非奇异矩阵,则由性质和可以得:`1211211211121112121111)()()()(----------⊗⎥⎦⎤⎢⎣⎡⊗=⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⊗=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡=⊗Q Q O O O I P P Q Q O O O I O O O I P P Q O O O I P Q O O O I P B A rss r s r 所以)()()(B rank A rank s r B A rank =•=⊗ 得证.定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B A ⊗对应特征值λμ的一个特征向量.证明:因为x ,y 都是非零向量,所以x ⊗y 也是非零向量,由性质和性质可得:)()()()()())((y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗λμμλ.所以,y x ⊗是B A ⊗对应特征值λμ的一个特征向量.推论 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若A 的特征值是1λ,2λ,…,m λ;B 的特征值是1μ,2μ,…,n μ,则B A ⊗的特征值为t s μλ,m s ≤≤1,n t ≤≤1(k 重根算k 个).定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.证明:由性质,性质可以得到:)()()()())((y x y x y I Ax y x I A n n ⊗=⊗=⊗=⊗⊗λλ, )()()()())((y x y x By x I y x B I m m ⊗=⊗=⊗=⊗⊗μμ,故))(())(())(())((y x y x B I y x I A y x B I I A m n m n ⊗+=⊗⊗+⊗⊗=⊗⊗+⊗μλ.所以,y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.推论 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m s C x ∈和n t C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y ,2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,则B I I A m n ⊗+⊗的n m •个特征值为{t s μλ+}.(s=1,2,…,m ;t=1,2,…,n ).例 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m i C x ∈和n j C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y , 2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,证明:矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量为j i y x ⊗.(i=1,2,…,m ;j=1,2,…,n ).证明:由性质和性质可得:))(()()()()())((j i j i j j i i j i j i y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗μλμλ,故有:))(1())(()())(()())(())(())](()[(j i j i j i j i j i j i j i j i mn j i j i n m j i n m y x y x y x y x y x I y x B A y x I I y x B A I I ⊗-=⊗-⊗=⊗-⊗=⊗⊗-⊗⊗=⊗⊗-⊗μλμλμλ所以,矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量j i y x ⊗. 定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则trB trA B A tr •=⊗)(证明:由Kronecker 积和迹的定义可得:trBtrA trB a trB a trB a B a tr B a tr B a tr B A tr nn nn •=+++=+++=⊗ 22112211)()()()(得证.定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则m n B A B A )(det )(det )det(=⊗证明:设A 的特征值为1λ,2λ,…,m λ,B 的特征值为1μ,2μ,…,n μ, 由推论可得:m n m n n m n m m n n nj j m nj j mn ji nj j j i B A B A )(det )(det )()()())(())(()()()()()det(21211212111112,11=====⊗∏∏∏∏===μμμλλλμλμλμλμλμλμλμλμλμλμλ得证.第三章 矩阵的拉直矩阵的拉直的定义定义 设n m ij a A ⨯=)(,定义矩阵A 的按行拉直为:T mn m n n a a a a a a A A vec )()(1221111,,,,,,,,, ==→即矩阵A 的拉直是一个mn 元的列向量,它是由矩阵A 所有元素按行顺序依次排成一列得到的.例如:⎥⎦⎤⎢⎣⎡=d c b a A ,则矩阵A 的拉直为T d c b a A )(,,,=→.矩阵的拉直的性质矩阵的拉直具有以下性质: 性质 设矩阵nm C A ⨯∈,矩阵nm CB ⨯∈,k 和l 是常数,则(lB kA +=→→+B l A k .证明:略.性质 设n m ij t a t A ⨯=))(()(,则dtt dA (=dt d)(t A . 证明:左边==))((dtt dA vet ij a vet ((′)))(n m t ⨯ = [(a 11′(t ),…,a n 1′(t ),a 21′(t ),…,a n 2′(t ),…,a 1m ′(t ),…,a mn ′(t ) ]T =[(a 11(t ),…,a n 1(t ),a 21(t ),…,a n 2(t ),…,a 1m (t ),…,a mn (t ) )T ]′ = ))](([t A vet ′=))](([t A vec dtd=右边,得证. 性质设矩阵nm C A ⨯∈,矩阵pn CX ⨯∈,矩阵qp CB ⨯∈,则→⊗=X B A T)(.证明:设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,T n x x X )(1,, =→,其中,T i x 是X 的第i 行=i (1,2,…,)n ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=B x a x a B x a x a AXB T n mn T m Tn n T )()(111111 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=→n x x X 1 所以T Tn mn T m T n n T B x a x a B x a x a ])()[(111111++++= ,, →⊗=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=X B A x x B a B a B a B a x a x a B x a x a B n T mn T m T n T n mn m T n n T )()()()()(11111111111 得证. 推论 设矩阵m m C A ⨯∈,矩阵n m C X ⨯∈,矩阵n n C B ⨯∈,则有1.AX →⊗=X I A n )( 2.→⊗=X B I Tm )(.3(+)→⊗+⊗=X B I I A Tm n )(.第四章 矩阵的Kronecker 积与矩阵方程矩阵的Kronecker 积与Lyapunov 矩阵方程设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,矩阵n m C F ⨯∈,解Lyapunov 矩阵方程: AX+XB=F .第一步:将方程两边拉直,由推论可得:→→=⊗+⊗C X B I I A Tm n )(.第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程有解的充要条件是:Tm n B I I A rank ⊗+⊗(┊)()T m n B I I A rank C ⊗+⊗=→,:有唯一解的充要条件是det(A ⊗I n + I m ⊗B T )≠0,即A 和(-B )没有公共的特征值或者说A 和B 无互为相反数的特征值.例 分别在下2列条件下解矩阵方程AX+XB=C.(1) ⎥⎦⎤⎢⎣⎡-=0112A ,⎥⎦⎤⎢⎣⎡=42-1-3B ,⎥⎦⎤⎢⎣⎡--=1081710C (2) ⎥⎦⎤⎢⎣⎡=3201A ,⎥⎦⎤⎢⎣⎡--=1052B ,⎥⎦⎤⎢⎣⎡--=11353C 解:(1) 首先计算A 和B 的特征值,解0=-A I λ得:121==λλ,解0=-B I μ得:5221==μμ,.观察有无互为相反数的特征值发现,A 和B 没有互为相反数的特征值,所以矩阵方程有唯一解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(.设⎥⎦⎤⎢⎣⎡=4321x x x x X ,计算⎥⎦⎤⎢⎣⎡--=4123TB ,将A ,T B ,X ,C 代入得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡-108171041231001100101124321x x x x ,计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------108171041102301106101254321x x x x , 根据矩阵的乘法的定义可以求得:21314321-===-=x x x x ,,,. 故矩阵方程AX+XB=C 的唯一解为:⎥⎦⎤⎢⎣⎡--=2131X . (2) 同样先计算A 和B 的特征值,解0=-A I λ得:3121==λλ,, 解0=-B I μ得:1221-==μμ,.通过观察可知:021=+μλ. 一所以矩阵方程的解不唯,即存在通解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(.设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡--=1502TB ,将A ,T B ,X ,C 代入得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡1135315021001100132014321x x x x , - 计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--113532520050200050034321x x x x ,根据矩阵的乘法的定义可以求得:c x x c x x -=-===3114321,,,. 故矩阵方程AX+XB=C 的通解为:⎥⎦⎤⎢⎣⎡--=c c X 311(c 为任意常数).矩阵的Kronecker 积与一般线性矩阵方程设矩阵n m k C A ⨯∈,矩阵q p C B ⨯∈,矩阵q m C F ⨯=,解一般线性矩阵方程:F XB Ark k k=∑=1(r = 1,2,…).第一步,将矩阵方程两边拉直,由性质可以得到:∑=→→=⊗rk T kkF X B A1)][(.第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程有解的充要条件是:∑⊗)((Tkk B A rank ┊))(()1∑=→⊗=rk Tkk B A rank F . 即∑=⊗rk Tkk B A 1)(的所有特征值均不为0. 例 设A 和C 都是n ⨯n 矩阵,A 的特征值λi (i=0,1,2,…,n )R ∈(实数),求证:矩阵方程C XA A AXA X =++22有唯一解.证明:将两边方程拉直得到:→→=⊗+⊗+⊗C X A A A A I I T T n n ])([(22,化简得到:→→=⊗+⊗+C X A A A A I TTn ])()([22.由定义可知:T A A ⊗的2n 个特征值是=j i j i ,(λλ0,1,2,…,n ). 故:2)()(2T T n A A A A I ⊗+⊗+的2n 个特征值是:22)21(43)()(1j i j i j i λλλλλλ++=++>00(=j i ,,1,2,…,n ). 即2)()(2T T n A A A A I ⊗+⊗+是可逆的,由唯一解的判断方法可知:矩阵方程C XA A AXA X =++22有唯一解.例 在下列条件下解矩阵方程C XB A XB A =+2211.已知:⎥⎦⎤⎢⎣⎡-=20311A ,⎥⎦⎤⎢⎣⎡-=13101B ,⎥⎦⎤⎢⎣⎡-=11022A ,⎥⎦⎤⎢⎣⎡-=01232B ,⎥⎦⎤⎢⎣⎡--=48213C . 解:将矩阵方程两边拉直得到:→→=⊗+⊗C X B A B A T T)(2211. *设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡-=11301T B 和 ⎥⎦⎤⎢⎣⎡-=02132TB 代入*得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-4821302131102113020314321x x x x .计算化简得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------4821320027313331390564321x x x x . 根据矩阵的乘法的定义可以求得:10214321===-=x x x x ,,,.计算T T B A B A rank 2211(⊗+⊗┊4)()2211=⊗+⊗=TT B A B A rank C , 所以方程有唯一解:⎥⎦⎤⎢⎣⎡-=1021X . 矩阵的Kronecker 积与矩阵微分方程设m m C A ⨯∈矩阵,n n C B ⨯∈矩阵,n m C t X ⨯∈)(,求下列矩阵微分方程初值问题的解:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX 引理:设m m C A ⨯∈矩阵A ,矩阵n m C B ⨯∈,则n A I A I e e n ⊗=⊗,B m B I e I e m ⊗=⊗. 证明:因为性质可得:∑∑∞=∞=⊗⊗=⊗=11)(!1)(!1k k k k kI A I A k I A k enn A k kI e I A k ⊗=⊗=∑∞=1)!1(. 同理可证:B m B I e I e m ⊗=⊗.将矩阵微分方程两边拉直,由推论可以得到:⎪⎩⎪⎨⎧=⊗+⊗=→00(()()(X X t X B I I A dt t X d T m n 由引理可得:T t B At tB AtB I I A t TT m n e X e X ee X et X )()()(000)(=⊗==→→⊗+⊗,又因为∑∑∞=∞====11!1))(!1()(k Bt k k T k k k T Tt B e t B k t B k eT ,故Bt At e X e t X 0)(= 这就是微分方程的解.例 求解下列矩阵微分方程的初值问题:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX已知:⎥⎦⎤⎢⎣⎡=0011A ,⎥⎦⎤⎢⎣⎡-=0011B ,⎥⎦⎤⎢⎣⎡=10010X . 解:可计算得到:⎥⎦⎤⎢⎣⎡-=101t tAte e e,⎥⎦⎤⎢⎣⎡-=101t t Bte e e .由式可以得到: ⎥⎦⎤⎢⎣⎡--==10)1()(220t tBtAt e e eX e t X . 即的解为⎥⎦⎤⎢⎣⎡--=10)1()(22t te e t X . 通过本章的学习,我们知道矩阵的Kronecker 积在解矩阵方程领域有很大的作用,利用Kronecker 积的性质,我们可以解决Lyapunov 矩阵方程,一般矩阵方程,矩阵微分方程的初值问题等问题.参考文献[1]矩阵论简明教程(第三版).徐仲等编.北京:科学出版社..[2]矩阵论教程(第2版).张绍飞,赵迪编.北京:机械工业出版社..[3]矩阵论引论(第2版).陈祖明,周家胜编.北京:北京航空航天大学出版社..[4]矩阵论十讲.李乔,张晓东编.合肥:中国科学技术大学出版社..[5]矩阵理论及方法.谢冬秀,雷纪刚,陈桂芝编.北京:科学出版社.2012.[6]H-矩阵类的理论及应用.徐仲等编.北京:科学出版社.2013.[7]高等代数教程(上).王萼芳编.北京:清华大学出版社.1997(2008重印).[8]常微分方程(第二版).东北师范大学微分方程教研室.北京:高等教育出版社.(重印).[9]矩阵分析与应用(第2版).张贤达编.北京:清华大学出版社.2013(重印).[10]线性代数及其应用.毛立新,咸美新编.北京:高等教育出版社..[11]线性代数(第2版).钟玉泉,周建编.北京:科学出版社..[12]矩阵理论与方法(第2版).吴昌悫,魏洪增编.北京:电子工业出版社..[13]线性代数学习指导.赵春燕,单净,王麟编.哈尔滨:哈尔滨工程大学出版社..[14]矩阵论.张凯院等编.北京:科学出版社.2013.[15]矩阵论导教·导学·导考.张凯院,徐仲编.西安:西北工业大学出版社..[16]矩阵函数与矩阵方程.柏兆俊,高卫国,苏仰锋编.北京:高等教育出版社..[17]矩阵分析.姜志侠,孟品超,李延忠编.北京:清华大学出版社.2015.[18]矩阵论札论.梁昌洪编.北京:科学出版社.2014.[19]线性代数及其应用.马新顺,王涛,郭燕编.北京:高等教育出版社..[20]矩阵论引论.田振际,王永铎,吴德军编.北京:科学出版社.2013.[21]线性代数及其应用(第2版).河北农业大学理学院编.北京:高等教育出版社..(重印).[22]线性代数及其应用.王坤龙编.北京:电子工业出版社..[23]线性代数(第2版).许峰,范爱华编.合肥:中国科学技术大学出版社..[24]线性代数及其应用.俞方元编.上海:同济大学出版社..[25]线性代数学习指导.谢政,陈挚编.北京:清华大学出版社..[26]高等线性代数学.黎景辉,白正简,周国晖编.北京:高等教育出版社..[27]线性代数讲义.江惠坤,邵荣,范红军编.北京:科学出版社.2013.[28]线性代数.贾屹峰编.上海:上海交通大学出版社.2012.[29]线性代数.侯亚君,艾玲,沙萍,林洪娟编.北京:机械工业出版社.(重印).[30]线性代数.郝秀敏,姜庆华编.北京:经济科学出版社..[31]线性代数.韩旸,王静宇,周莉编.北京:化学工业出版社..[32]线性代数重点难点考点辅导与精析.高淑萍,张剑湖编.西安:西北工业大学出版社..[33]线性代数.傅媛编.武汉:武汉大学出版社.(重印).[34]跟我学线性代数:导学与习题精解.董晓波编.北京:机械工业出版社..[35]线性代数同步学习辅导.陈绍林,唐道远编.北京:科学出版社,.[36]线性代数及应用.刘三明编.南京:南京大学出版社..[37]线性代数.谭福锦,黎进香编.北京.人民邮电出版社..[38]工程数学.线性代数(第6版).同济大学数学系编.北京:高等教育出版社..[39]矩阵分析与计算.李继根,张新发编.武汉:武汉大学出版社..[40]矩阵计算的理论与方法.徐树方编.北京:北京大学出版社..[41]矩阵分析及其应用.曾祥金,吴华安编.武汉:武汉大学出版社..[42]矩阵理论与应用.张跃辉编.北京:科学出版社..致谢通过一个月来不断的努力,终于完成了这篇毕业论文。