2022年高考数学(文科)二轮复习 名师导学案:专题二 第3讲 平面向量 Word版含答案

合集下载

高考理科数学通用版三维二轮专题复习专题检测:(三) 平面向量 Word版含解析

高考理科数学通用版三维二轮专题复习专题检测:(三) 平面向量 Word版含解析

专题检测(三) 平面向量一、选择题1.设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于( ) A .-32B .-53C .53D .32解析:选A 因为c =a +kb =(1+k,2+k ),又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32.2.(2017·贵州适应性考试)已知向量a =(2,4),b =(-1,1),c =(2,3),若a +λb 与c 共线,则实数λ=( )A.25 B .-25C.35D .-35解析:选B 法一:a +λb =(2-λ,4+λ),c =(2,3),因为a +λb 与c 共线,所以必定存在唯一实数μ,使得a +λb =μc ,所以⎩⎪⎨⎪⎧2-λ=2μ,4+λ=3μ,解得⎩⎨⎧μ=65,λ=-25.法二:a +λb =(2-λ,4+λ),c =(2,3),由a +λb 与c 共线可知2-λ2=4+λ3,解得λ=-25. 3.(2018届高三·云南11校跨区调研)已知平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( )A .13+6 2B .2 5C.30D .34解析:选D 依题意得a 2=2,a ·b =2×2×cos 45°=2,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2=18+12+4=34.4.在等腰梯形ABCD 中,AB ―→=-2CD ―→,M 为BC 的中点,则AM ―→=( ) A.12AB ―→+12AD ―→B.34AB ―→+12AD ―→ C.34AB ―→+14AD ―→D.12AB ―→+34AD ―→解析:选B 因为AB ―→=-2CD ―→,所以AB ―→=2DC ―→.又M 是BC 的中点,所以AM ―→=12(AB―→+AC ―→)=12(AB ―→+AD ―→+DC ―→)=12⎝⎛⎭⎫AB ―→+AD ―→+12AB ―→=34AB ―→+12AD ―→. 5.(2017·成都二诊)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6B.5π6 C.π4D.3π4解析:选A 法一:因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |=3,又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b|a +2b ||b |=343×12=32, 所以a +2b 与b 的夹角为π6.法二:(特例法)设a =(1,0),b =⎝⎛⎭⎫12cos π3,12sin π3=⎝⎛⎭⎫14,34,则(a +2b )·b =⎝⎛⎭⎫32,32·⎝⎛⎭⎫14,34=34,|a +2b |=⎝⎛⎭⎫322+⎝⎛⎭⎫322=3,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6. 6.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB ―→在CD ―→方向上的投影为( ) A.322B .3152C .-322D .-3152解析:选A 由题意知AB ―→=(2,1),CD ―→=(5,5),则AB ―→在CD ―→方向上的投影为|AB ―→|·cos 〈AB ―→,CD ―→〉=AB ―→·CD ―→|CD ―→|=322.7.(2017·安徽二校联考)在边长为1的正三角形ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD ―→·AE ―→等于( )A.16B.29 C.1318D.13解析:选C 法一:因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =13,在△ABD 中,AD 2=BD 2+AB 2-2BD ·AB ·cos 60° =⎝⎛⎭⎫132+12-2×13×1×12=79, 即AD =73,同理可得AE =73, 在△ADE 中,由余弦定理得 cos ∠DAE =AD 2+AE 2-DE 22AD ·AE=79+79-⎝⎛⎭⎫1322×73×73=1314,所以AD ―→·AE ―→=|AD ―→|·|AE ―→|cos ∠DAE =73×73×1314=1318. 法二:如图,建立平面直角坐标系,由正三角形的性质易得A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD ―→=⎝⎛⎭⎫-16,-32,AE ―→=⎝⎛⎭⎫16,-32,所以AD ―→·AE ―→=⎝⎛⎭⎫-16,-32·⎝⎛⎭⎫16,-32=-136+34=1318.8.(2017·东北四市模拟)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为( )A.52B.102C.5D.10解析:选C 由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m>0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3),则|OC ―→|=(1+2m )2+(4m -3)2=20m 2-20m +10 =20⎝⎛⎭⎫m -122+5(0<m <1), 所以当m =12时,|OC ―→|min = 5.9.已知向量m ,n 的模分别为2,2,且m ,n 的夹角为45°.在△ABC 中,AB ―→=2m +2n ,AC ―→=2m -6n ,BC ―→=2BD ―→,则|AD ―→|=( )A .2B .2 2C .4D .8解析:选B 因为BC ―→=2BD ―→,所以点D 为边BC 的中点,所以AD ―→=12(AB ―→+AC ―→)=2m -2n ,所以|AD ―→|=2|m -n |=2(m -n )2=22+4-2×2×2×22=2 2. 10.(2018届高三·湘中名校联考)若点P 是△ABC 的外心,且PA ―→+PB ―→+λPC ―→=0,C =120°,则实数λ的值为( )A .12B .-12C .-1D .1解析:选C 设AB 中点为D ,则PA ―→+PB ―→=2PD ―→PD ―→. 因为PA ―→+PB ―→+λPC ―→=0,所以2PD ―→+λPC ―→=0,所以向量PD ―→,PC ―→共线. 又P 是△ABC 的外心,所以PA =PB , 所以PD ⊥AB ,所以CD ⊥AB .因为∠ACB =120°,所以∠APB =120°, 所以四边形APBC 是菱形, 从而PA ―→+PB ―→=2PD ―→=PC ―→,所以2PD ―→+λPC ―→=PC ―→+λPC ―→=0,所以λ=-1.11.已知Rt △AOB 的面积为1,O 为直角顶点,设向量a =OA ―→|OA ―→|,b =OB ―→|OB ―→|,OP ―→=a +2b ,则PA ―→·PB ―→的最大值为( )A .1B .2C .3D .4解析:选A 如图,设A (m,0),B (0,n ),∴mn =2,则a =(1,0),b =(0,1),OP ―→=a +2b =(1,2),PA ―→=(m -1,-2),PB ―→=(-1,n -2),PA ―→·PB ―→=5-(m +2n )≤5-22nm =1,当且仅当m =2n ,即m =2,n =1时,等号成立.12.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF ―→·BC ―→的值为( )A .-58B.18C.14D.118解析:选B 如图所示, AF ―→=AD ―→+DF ―→.又D ,E 分别为AB ,BC 的中点, 且DE =2EF ,所以AD ―→=12AB ―→,DF ―→=12AC ―→+14AC ―→=34AC ―→,所以AF ―→=12AB ―→+34AC ―→.又BC ―→=AC ―→-AB ―→,则AF ―→·BC ―→=⎝⎛⎭⎫12AB ―→+34AC ―→·(AC ―→-AB ―→) =12AB ―→·AC ―→-12AB ―→2+34AC ―→2-34AC ―→·AB ―→=34AC ―→2-12AB ―→2-14AC ―→·AB ―→. 又|AB ―→|=|AC ―→|=1,∠BAC =60°, 故AF ―→·BC ―→=34-12-14×1×1×12=18.二、填空题13.在△ABC 中,点O 在线段BC 的延长线上,且||BO ―→=3||CO ―→,当AO ―→=x AB ―→+y AC ―→时,则x -y =________.解析:∵AO ―→=AB ―→+BO ―→=AB ―→+32BC ―→=AB ―→+32(AC ―→-AB ―→)=-12AB ―→+32AC ―→,∴x -y =-2.答案:-214.已知a ,b 是非零向量,f (x )=(ax +b )·(bx -a )的图象是一条直线,|a +b |=2,|a |=1,则f (x )=________.解析:由f (x )=a ·bx 2-(a 2-b 2)x -a ·b 的图象是一条直线,可得a ·b =0.因为|a +b |=2,所以a 2+b 2=4.因为|a |=1,所以a 2=1,b 2=3,所以f (x )=2x . 答案:2x15.(2017·天津高考)在△ABC 中,∠A =60°,AB =3,AC =2.若BD ―→=2DC ―→,AE ―→=λAC ―→-AB ―→ (λ∈R),且AD ―→·AE ―→=-4,则λ的值为________.解析:法一:AD ―→=AB ―→+BD ―→=AB ―→+23BC ―→=AB ―→+23(AC ―→-AB ―→)=13AB ―→+23AC ―→.又AB ―→·AC ―→=3×2×12=3,所以AD ―→·AE ―→=⎝⎛⎭⎫13AB ―→+23AC ―→·(-AB ―→+λAC ―→) =-13AB ―→2+⎝⎛⎭⎫13λ-23AB ―→·AC ―→+23λAC ―→2 =-3+3⎝⎛⎭⎫13λ-23+23λ×4=113λ-5=-4, 解得λ=311.法二:以点A 为坐标原点,AB ―→的方向为x 轴正方向,建立平面直角坐标系,不妨假设点C 在第一象限,则A (0,0),B (3,0),C (1,3). 由BD ―→=2DC ―→,得D ⎝⎛⎭⎫53,233, 由AE ―→=λAC ―→-AB ―→,得E (λ-3,3λ),则AD ―→·AE ―→=⎝⎛⎭⎫53,233·(λ-3,3λ)=53(λ-3)+233×3λ=113λ-5=-4,解得λ=311.答案:31116.定义平面向量的一种运算a ⊙b =|a +b |·|a -b |·sin 〈a ,b 〉,其中〈a ,b 〉是a 与b 的夹角,给出下列命题:①若〈a ,b 〉=90°,则a ⊙b =a 2+b 2;②若|a |=|b |,则(a +b )⊙(a -b )=4a ·b ;③若|a |=|b |,则a ⊙b ≤2|a |2;④若a =(1,2),b =(-2,2),则(a +b )⊙b =10.其中真命题的序号是________.解析:①中,因为〈a ,b 〉=90°,则a ⊙b =|a +b |·|a -b |=a 2+b 2,所以①成立;②中,因为|a |=|b |,所以〈(a +b ),(a -b )〉=90°,所以(a +b )⊙(a -b )=|2a |·|2b |=4|a ||b |,所以②不成立;③中,因为|a |=|b |,所以a ⊙b =|a +b |·|a -b |·sin 〈a ,b 〉≤|a +b |·|a -b |≤|a +b |2+|a -b |22=2|a |2,所以③成立;④中,因为a =(1,2),b =(-2,2),所以a +b =(-1,4),sin 〈(a +b ),b 〉=33434,所以(a +b )⊙b =35×5×33434=453434,所以④不成立.故①③正确.答案:①③。

高中数学必修二 专题03 平面向量的应用(课时训练)(含答案)

高中数学必修二  专题03 平面向量的应用(课时训练)(含答案)

专题03 平面向量的应用A 组 基础巩固1.(2020·山东高三期中)(多选题)下列命题中正确的是( ) A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同【答案】AD【解析】单位向量的模均为1,故A 正确;向量共线包括同向和反向,故B 不正确;向量是矢量,不能比较大小,故C 不正确;根据相等向量的概念知,D 正确.故选:AD2. (2020·北京高二学业考试)(多选题)给出下面四个命题,其中是真命题的是( ) A .0AB BA B .AB BC AC C .AB AC BC += D .00AB +=【答案】AB 【解析】因为0AB BA AB AB ,正确;AB BC AC ,由向量加法知正确;AB AC BC +=,不满足加法运算法则,错误; 0,AB AB +=,所以00AB +=错误.故选:A B .3.最早发现勾股定理的人应是我国西周时期的数学家商高,根据记载,商高曾经和周公讨论过“勾3股4弦5”的问题,我国的《九章算术》也有记载.所以,商高比毕达哥拉斯早500多年发现勾股定理.现有ABC 满足“勾3股4弦5”,如图所示,其中4AB =,D 为弦BC 上一点(不含端点),且ABD 满足勾股定理,则()CB CA AD -⋅=( )A.14425B.25144C.16925D.25169【答案】A【解析】由题意求出125AD =2212144()()525AD CB CA AD AB AD AB AD AD AB -==⋅===,故选A. 4.(多选题)ABC ∆是边长为2的等边三角形,已知向量,a b 满足2AB a =,2AC a b =+,则下列结论中正确的是( )A .a 为单位向量B .b 为单位向量C .a b ⊥D .(4)a b BC +⊥【答案】AD【解析】∵等边三角形ABC 的边长为2,2AB a =,∴||2||2AB a ==,∴||1a =,故A 正确;∵2AC AB BC a BC =+=+,∴BC b =,∴||2b =,故B 错误;由于2,AB a BC b ==,∴a 与b 的夹角为120°,故C 错误; 又∵21(4)4||412402a b BC a b b ⎛⎫+⋅=⋅+=⨯⨯⨯-+= ⎪⎝⎭, ∴(4)a b BC +⊥,故D 正确.5. (2020·北京高二学业考试)已知平面向量满足 ,且与夹角为60°,那么等于( )A .B .C .D .1【答案】C【解析】因为,故选:C. 6.已知O 为ABC ∆内部一点,且5()2AB OB OC =+,则AOB BOC S S ∆∆=( ) A. 1 B. 54 C. 2 D.52 ,a b 1a b ==a b a b ⋅14131211cos 1122a b a b θ⋅=⋅⋅=⨯⨯=【答案】:D.【解析】由题意,5()2OB OA OB OC -=+,即2350OA OB OC ++=。

高考数学二轮专名师讲义:第9讲-平面向量及其应用(含答案)

高考数学二轮专名师讲义:第9讲-平面向量及其应用(含答案)

第 9 讲 平面向量及其应用1. 掌握平面向量的加减运算、平面向量的坐标表示、平面向量数目积等基本观点、运算及其简单应用.复习时应加强向量的数目积运算,向量的平行、垂直及求相关向量的夹角问题要惹起足够重视.2. 在复习中要注意数学思想方法的浸透,如数形联合思想、转变与化归思想等.会用向量解决某些简单的几何问题.→ → → →→ 1. 在 Y ABCD 中,AB = a ,AD = b ,AN = 3NC ,M 为 BC 的中点, 则 MN = ________.(用a 、b 表示 )答案:-11 4a + 4b→3111分析: MN = 4(a + b )- a +2b =- 4a + 4b.2. 设 a 、 b 是两个不共线向量, → → →AB = 2a +p b ,BC = a + b ,CD = a -2b ,若 A 、B 、D 三点共线,则实数 p =________.答案:- 1→ → → = 2a -b ,又 A 、 B 、D 三点共线,∴ →→分析:∵ BD =BC + CD 存在实数 λ,使 AB = λBD . 2=2λ, ∴ p =- 1.即p =- λ,3. 已知 e 1、e 2 是夹角为 2π的两个单位向量, a = e 1- 2e 2,b = k e 1+ e 2,若 a ·b =0,则实数3k = ________.答案: 54 5 5分析:∵ a ·b = 0,∴ (e 1- 2e 2)·(k e 1+ e 2) =0,即 k -+ k = 0,即 k = .2 4→ → →A 、4. 设 OA = (1,- 2), OB = (a ,- 1) ,OC = (- b , 0), a>0, b>0 ,O 为坐标原点,若1+ 2的最小值是 ________.B 、C 三点共线,则 ab答案: 8→ → → →- b - 1,2),∴ 2(a - 1)- (- b - 1)=分析:据已知 AB ∥ AC ,∵ AB =(a -1, 1),AC = ( 0,∴ 2a + b = 1,∴ 1 2 = 2a +b 4a + 2b b + 4a b 4a b 4a 1 1时+ + = 4+ ≥4+2 · = 8,当且仅当 = ,即 a = ,b = a b a ba b a b a b 4 2 取等号,∴1+2的最小值是 8.a b题型一 向量与三角函数的联合例 1已知向量 a = 1 , - 1, b =(2, cos2x).sinx sinxπ,试判断 a 与 b 可否平行?(1) 若 x ∈ 0, 2 π ,求函数 f(x) = a ·b 的最小值.(2) 若 x ∈ 0, 3解: (1) 若 a 与 b 平行,则有1-1π,sinx ≠0,所以得· cos2x = ·2,由于 x ∈ 0, sinx sinx 2cos2x =- 2,这与 |cos2x|≤1 相矛盾,故 a 与 b 不可以平行.2 - cos2x 2- cos2x 1+ 2sin 2x 1π (2) f(x) =a ·b = sinx + sinx = sinx =sinx= 2sinx + sinx .由于 x ∈ 0, 3 ,所以 3 1 11 2 π sinx ∈ 0, 2 . 于是 2sinx + sinx ≥ 22sinx · sinx = 2 2,当 2sinx =sinx ,即 sinx = 2 ,x = 4 时取等号,故函数 f(x) 的最小值等于 22.已知向量 m = (sinx ,- 1),向量(1) 求 f(x) 的最小正周期 T ;(2) 若不等式 f(x) - t = 0 在 x ∈解: (1) f(x) = (m + n )·m2+ 1=sin x + 1+ 3sinxcosx 2n =1,函数 f(x) = (m + n )·m.3cosx ,2π π,上有解,务实数 t 的取值范围.42=1- cos2x + 1+ 3122 sin2x +231= 2 sin2x - 2cos2x + 2π=sin 2x - 6 + 2. ∵ ω = 2,∴ T =2π= π .2π π π π 5π ,(2) ∵ x ∈,, ∴3≤ 2x - ≤ 4266∴ 1≤ sin 2x - π ≤ 1.26∴5≤ f(x) ≤3, 2∵ 方程 f(x) - t =0 在 x ∈ππ上有解,4 , 2 55 ∴ 2≤ t ≤ 3,∴ 实数 t 的取值范围 2,3 .题型二 向量的平行与垂直例 2 已知向量 a = (sinx , cosx), b = ( 3cosx , cosx),且 b ≠0,定义函数 f(x) = 2a ·b - 1.(1) 求函数 f(x) 的单一递加区间; (2) 若 a ∥b ,求 tanx 的值;(3) 若 a ⊥b ,求 x 的最小正当.解: (1) f(x) = 2a ·b - 1= 2( 3sin xcos x + cos 2x)- 1= 3sin 2x + cos 2x =2sin 2x + π.6由 2k π - π≤ 2x + π≤ 2k π +π , k ∈ Z ,得 k π- π ≤ x ≤k π + π, k ∈ Z .2 6 23 6π π∴ f(x) 的单一递加区间为k π - 3 , k π+6 , k ∈Z .∥2(2) 由 a b ,得 sin xcos x- 3cos x = 0,∵ b ≠ 0,∴ cos x ≠ 0.∴ tan x - 3= 0,∴ tan x = 3. ⊥b ,则 a ·b = 0.∴2(3) 若 a3sin xcos x + cos x =0.∵ b ≠ 0,∴ cos x ≠ 0.∴3tan x + 1= 0,即 tan x =-33.∴ x = k π +5π, k ∈Z .∴ 当 k = 0时, x 有最小正当 5π66.在平面直角坐标系中, O 为坐标原点,已知向量 a = (- 1, 2),又点 A(8 , 0), B(n , t) ,C(ksin θ , t) π0≤θ≤ .2(1) → → → →若 AB ⊥a ,且 |AB |= 5|OA |,求向量 OB ;(2) →→ → 若向量 AC 与向量 a 共线,当 k>4 ,且 tsin θ 取最大值 4 时,求 OA ·OC.→ = (n - 8, t),解: (1) 由题设知 AB∵ → AB ⊥ a ,∴ 8- n + 2t = 0.∵ → →5|OA|= |AB |, ∴ 5× 64= (n -8) 2+ t 2= 5t 2,得 t = ±8.当 t = 8 时, n = 24; t =- 8 时, n =- 8,∴ → → OB = (24, 8)或 OB =(- 8,- 8).(2) → = (ksin θ - 8, t),∵ →由题设知 AC AC 与 a 共线, ∴ t =- 2ksin θ + 16,tsin θ = (- 2ksin θ +16)sin θ=- 2k sin θ - 4 232 .k +k∵ k>4 ,∴ 41> >0,k∴ 当 sin θ = 4时, tsin θ 获得最大值 32kk . 由 32 = 4,得 k = 8,此时 π →k θ= , OC = (4, 8).6∴ → → OA · OC = (8,0) ·(4, 8)= 32. 题型三 向量与三角形的联合例 3 在 △ ABC 中,角 A 、 B 、 C 的对边分别是 a 、b 、 c ,且 A 、 B 、 C 成等差数列.(1) → → 3 3,求 a + c 的值;若 BA ·BC = , b =2 (2) 求 2sinA - sinC 的取值范围.解: (1) ∵ A 、 B 、 C 成等差数列,∴B =π3 33 .∵ → →,BA · BC =2 ,∴ accosB =213∴2ac = 2,即 ac = 3.∵ b = 3, b 2= a 2+ c 2- 2accosB , ∴ a 2 +c 2-ac = 3,即 (a + c)2- 3ac = 3. ∴ (a +c)2= 12,∴ a + c = 2 3.(2) 2sinA - sinC = 2sin 2π- C -sinC 33 1 = 2 2 cosC + 2sinC - sinC = 3cosC.∵ 0<C<2π,∴ 3cosC ∈ - 3, 3 . 32高考数学二轮专名师讲义:第9讲-平面向量及其应用(含答案)∴ 2sinA - sinC 的取值范围是 -3, 3.2已知 △ ABC的三个内角A 、B 、C 对应的边长分别为a 、b 、c ,向量m =(sinB ,11- cosB) 与向量n =(2, 0)的夹角 θ的余弦值为 2.(1) 求角 B 的大小;(2) 设 △ABC 外接圆半径为 1,求 a +c 的范围. 解: (1) ∵ m =2sinBcos B ,sin B, n = 2(1, 0),2 2 2B B , |m |= 2sin B,|n |= 2,∴ m ·n = 4sincos 22 2∴ cos θ =m ·n= cos B.|m| |n|· 2B1 Bπ2π 由 cos 2 = 2,0<θ <π得2=3,即 B =3.2ππ (2) ∵ B =3 ,∴ A +C =3.π∴ sinA + sinC = sinA + sin3 - A1 3= s inA + sin 3 cosA - cos 3 sinA = 2sinA + 2 cosA=sin π + A .ππ3 又 0<A< π,∴ π<π + A< 2π ,3333∴ 3<sin π + A ≤1.23 ∴ sinA + sinC ∈3,1 .2又 a + c = 2RsinA + 2RsinC = 2(sinA + sinC) ,∴ a + c ∈ ( 3, 2].题型四向量的综合应用例 4 已知 m 、 x ∈ R ,向量 a = (x ,- m), b = ((m +1)x ,x) .(1) 当 m > 0 时,若 |a|<|b|,求 x 的取值范围;(2) 若 a ·b > 1- m 对随意实数 x 恒成立,求 m 的取值范围.解: (1) | a |2= x 2 + m 2, |b |2= (m + 1)2x 2+ x 2,由于 |a|< |b|,所以 |a |2< |b |2,进而 x 2+ m 2< (m + 1)2x 2+ x 2.由于 m > 0,所以 m22,<x m + 1解得 x <-m 或 x > mm + 1 m + 1.(2) a ·b = (m + 1)x 2- mx ,由题意,得 (m + 1)x 2- mx > 1-m 对随意的实数 x 恒成立,即 (m+ 1)x 2- mx + m - 1> 0 对随意的实数 x 恒成立.当 m + 1= 0,即 m =- 1 时,明显不可立,从 m + 1>0,m> -1,而解得2 3或 m< -2 3,m 2- 4( m + 1)( m - 1) <0,m> 332 3所以 m > 3 .在△ ABC,已知 → · → = , = · , = , 为线段ABAC9sinBcosAsinCS △6P ABCAB上的点,且→→ →|CA ||CB |CP = x ·→ + y ·→,则 xy 的最大值为 ________.|CA | |CB |答案: 3→ →得 bc ·cosA = 9;又 sinB = cosA ·sinC 得 b = c ·cosA ;又 S △ ABC = 6 得分析:由 AB ·AC = 9 13 4 2 2 22bc · sinA = 6,由上述三式可解得 b = 3, c = 5, cosA = 5,sinA =5,由余弦定理得 a =3+ 53 c 为坐标原点, CA 、CB 分别为 x 轴、- 2×3×5× = 16, a = 4,可见 △ ABC 是直角三角形,以5→ →→→→CA CBy 轴成立平面直角坐标系,则CA = (3,0),CB =(0,4), → = (1,0),→ =(0 , 1),则 CP =|CA ||CB|→→x yCACB= x(1 ,0)+ y(0,1)= (x ,y),故 P(x ,y),而 P 在直线 AB= 1,x · +y ·上,又 l AB :+ →→34|CA ||CB|所以 x +y= 1, (x>0 , y>0) ,依据基本不等式x + y≥ 2x y,得 xy ≤3.3 434·3 41. (2013 ·山东卷 )在平面直角坐标系xOy 中,已知 → →OA = (- 1, t), OB = (2, 2),若∠ ABO= 90°,则实数 t = ________.答案: 5→ → → → →分析: AB =OB -OA = (3, 2- t),∠ ABO = 90°,则 AB ·OB = 0,即 6+ 2(2- t)= 0,解得 t = 5.2. (2014 江·西卷 )已知单位向量 e 1 与 e 2 的夹角为 α,且 cos α =1,向量 a =3e 1- 2e 2 与 b =3e 1- e 2 的夹角为 β,则 cos β = ________. 3答案:22311122分析:由于 a =9+ 4- 2×3×2× =9,b = 9+ 1-2×3×1× = 8,a ·b =9+ 2- 9×1×1× =8,333所以 cos β =8 = 2 23×2 23.123. (2013 ·江苏卷 )设 D , E 分别是 △ ABC 的边 AB , BC 上的点, AD = 2AB ,BE =3BC.→ → +λ → 、 λ 为实数 ),则 λ+λ= __________ .若 DE = λ 1 ABAC( λ1 21 21 2 答案: 2→ → → 1 →+2 →=-1 →+2 →1 2 ,λ + λ= 1分析: DE = DB+ BE =2AB 3BC 6AB 3AC , λ =- , λ =2.1 623 1 2 → → → →4. 在 △ OAB 中, OA = (2cos α ,2sin α ),OB = (5cos β,5sin β ) .若 OA ·OB =- 5,则 S△OAB = ________.答案:532- 5→→11× 2×5分析:在 △ OAB 中, OA = 2,OB =5, cos 〈OA ·OB 〉==- ,∴S △OAB =2×52253× sin120°=.215. (2013 陕·西卷 )已知向量 a = cosx ,- 2 ,b = (3sinx ,cos2x),x ∈ R ,设函数 f(x) = a ·b .(1) 求 f(x) 的最小正周期.π(2) 求 f(x) 在 0, 2 上的最大值和最小值.1 cos2x = 3 1 π . 解: (1) f(x) = a ·b =cosx · 3sinx -2 sin2x - cos2x =sin 2x - 62 2 2π最小正周期 T = 2 = π .所以 f(x) = sin 2x - π最小正周期为 π .6π π π5ππ 5π (2) 当 x ∈ 0, 2 时, 2x - 6 ∈ - 6 , 6 ,由标准函数y = sinx 在 - 6 , 6象知, f(x) = sin(2x - π )∈ f - π , f π = -1,1 .6 6 2 2所以, f(x) 在 0, π上的最大值和最小值分别为1,-1.2 26. (2013 江·苏卷 )已知 a = (cos α , sin α ), b = (cos β , sin β ), 0<β <α <π.(1) 若 |a -b |= 2,求证: a ⊥b ;(2) 设 c = (0,1),若 a + b = c ,求 α、 β的值.(1) 证明:∵ |a - b|= 2,∴ |a - b|2= 2,即 (a - b )2= a 2- 2ab +b 2 =2.∵ a 2 =|a |2= cos 2α+ sin 2α =1, b 2= |b |2= cos 2β + sin 2β = 1,∴ 2- 2ab = 2,∴∴ a ⊥b .(2) 解:∵ a + b = (cos α +cos β , sin α + sin β )= (0, 1),cos α + cos β= 0, cos α =- cos β , ∴ 即sin α + sin β = 1, sin α = 1- sin β , 两边分别平方再相加得:1= 2-2sin β ,∴ sin β =1,2151∴ sin α= 2.∵ 0<β<α <π,∴ α =6π , β =6π .上的图ab = 0,(此题模拟高考评分标准,满分 14 分)(2013 泰·州一模 )已知向量 a = (cos λ θ,cos(10- λ ) θ),b = (sin(10- λ ),θsin λ θ) ,λ 、θ∈ R .(1) 求 |a |2+ |b |2 的值;(2) 若 a ⊥b ,求 θ;π(3) 若 θ= 20,求证: a ∥ b .(1) 解:∵ |a |= cos 2 λ θ+ cos 2( 10-λ) θ, |b |= sin 2 (10- λ)θ+ sin 2λ θ , (2 分 ) ∴ |a|2+ |b|2= 2.(4 分 )(2) 解:∵ a ⊥b ,∴ cos λ θ · sin(10- λ)+θcos(10- λ)θ· sin λθ = 0, ∴ sin[(10 - λ)+θλθ]=0,∴ sin10θ = 0, (7 分 )∴ 10θ = k π , k ∈ Z ,∴ θ = k π, k ∈ Z .(9 分 )10π ,∴ λπ λπ -(3) 证明:∵ θ=20 cos λ θ ·sin λθ - cos(10- λ) θ·sin[(10 - λ) θ]=cos · sin 20 20π λπ π λπ λπ λπ λπ λπ = 0,cos - · sin - 20 = cos · sin -sin · cos2 20 2 20 20 20 20∴ a ∥ b .(14 分 )1. 已知 △ ABC 外接圆的圆心为→ → → → → →O , BC>CA>AB ,则 OA · OB 、 OA ·OC 、 OB · OC 的大小关系为 ________.→→→→→ →答案: OA ·OB > OA · OC > OB · OC分析: ∵ 0<∠ AOB <∠ AOC <∠ BOC < π, y = cosx 在(0, π )上单一递减,∴ cos ∠AOB > cos ∠ AOC > cos ∠ BOC,→→→→→ → ∴ OA · OB >OA · OC > OB · OC.tanA 2c2. 在 △ ABC 中,∠ A 、∠ B 、∠ C 所对边分别为 a 、 b 、 c ,且1+tanB = b .(1) 求∠A ;(2)若 m = (0,- 1), n = cosB , 2cos2C,试求 |m + n|的最小值.2tanA 2c sinAcosB 2sinC 解: (1) 1+ tanB = b1+sinBcosA = sinB , sinBcosA + sinAcosB 2sinC即 sinBcosA = sinB ,∴sin (A + B ) = 2sinC ,∴ cosA = 1.sinBcosAsinB 2∵ 0< A < π , ∴ ∠ A =π . 3(2) ∵ m + n = (cosB , 2cos2C- 1)= (cosB ,cosC),2∴ |m + n|2= cos 2B + cos 2C = cos 2B + cos 2 2π- B =1- 1sin 2B -π .326π2π . ∵ ∠ A = ,∴ ∠B +∠ C =2π,∴ B ∈ 0,3 3 3 进而- π π 7π ,< 2B - <6 6 6∴ 当 sin 2B - π π时, |m +n|2获得最小值 1,所以 |m + n|min = 6 =1,即 B =3 2 3. 已知向量 m =(sinA , cosA) , n = (1,- 2),且 m ·n = 0.(1) 求 tanA 的值;(2) 求函数 f(x) = cos2x + tanAsinx(x ∈ R )的值域.22 . 解: (1) m ·n = sinA - 2cosA = 0 tanA = 2.1 2 3(2) f(x) = cos2x + 2sinx =- 2 sinx -2 + 2.∵ x ∈ R, ∴ sinx ∈ [- 1,1] ,当 sinx = 1时, f(x) 取最大值 3;当 sinx =- 1 时, f(x) 取最小值- 3,所以函数 f(x) 的值域为2 23-3,2 .评论: 平面向量与三角函数联合是高考取的一个热门,此题主要考察平面向量数目积的坐标运算.4. 已知向量 a = (sin θ, cos θ - 2sin θ ), b = (1, 2). (1) 若 a ∥b ,求 tan θ 的值;(2) 若 |a|=|b|, 0< θ< π ,求 θ的值.解: (1) 由于 a ∥b ,所以 2sin θ =cos θ - 2sin θ ,1 于是 4sin θ = cos θ ,故 tan θ = 4.(2) 由 |a|=|b|知 sin 2 θ+ (cos θ - 2sin θ )2= 5,所以 1- 2sin2θ + 4sin 2θ =5,进而- 2sin2θ + 2(1-cos2θ )= 4,即 sin2θ+ cos2θ =- 1,于是 sin 2θ+π=-2. 42又由 0<θ<π知,π< 2θ+π<9π,444所以 2θ+π=5π或 2θ+π=7π,4444所以θ=π3π或2 4.。

2021-2022年高考高考数学二轮复习专题1.3三角函数与平面向量教学案文

2021-2022年高考高考数学二轮复习专题1.3三角函数与平面向量教学案文

2021年高考高考数学二轮复习专题1.3三角函数与平面向量教学案文一.考场传真1. 【xx课标1,文11】△ABC的内角A、B、C的对边分别为a、b、c.已知sin sin(sin cos)0B AC C+-=,a=2,c=,则C=A.B.C.D.【答案】B2.【xx课标3,文6】函数1ππ()sin()cos()536f x x x=++-的最大值为()A.B. 1 C.D.【答案】A【解析】由诱导公式可得:cos cos sin6233x x xππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,则:()16sin sin sin53353f x x x xπππ⎛⎫⎛⎫⎛⎫=+++=+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,函数的最大值为 .所以选A.3.【xx课标II,文3】函数的最小正周期为A. B. C. D.【答案】C【解析】由题意,故选C.4.【xx 课标3,文4】已知,则=( ) A .B .C .D .【答案】A【解析】()2sin cos 17sin 22sin cos 19ααααα--===-- .所以选A.5.【xx 课标3,文15】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =,c =3,则A =_________. 【答案】75°6.【xx 课标II ,文4】设非零向量,满足则 A.⊥ B. C. ∥ D. 【答案】A【解析】由平方得2222()2()()2()a ab b a ab b ++=-+,即,则,故选A. 7.【xx 课标3,文13】已知向量,且,则m = . 【答案】2【解析】由题意可得:.8.【xx 课标II ,文16】的内角的对边分别为,若2cos cos cos bc B a C c A =+,则 【答案】【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒= 9.【xx 课标II ,文13】函数的最大值为 . 【答案】【解析】10.【xx课标1,文13】已知向量a=(–1,2),b=(m,1).若向量a+b与a垂直,则m=________.【答案】7【解析】由题得,因为,所以,解得11.【xx课标1,文15】已知,tan α=2,则=__________.【答案】二.高考研究【考纲解读】1.考纲要求考纲要求:三角函数:①了解任意角、弧度制的概念,理解任意角三角函数的定义;②理解同角三角函数的基本关系式,能用诱导公式进行化简求值证明;③掌握三角函数的图像与性质,了解函数的图像,了解参数对函数图像变化的影响;④掌握和差角、二倍角公式,能运用公式进行简单的恒等变换;⑤掌握正弦定理、余弦定理和面积公式,并能解决一些简单的三角形度量问题.平面向量:掌握向量的加法和减法,掌握实数与向量的积,解两个向量共线的充要条件,解平面向量基本定,解平面向量的坐标概念,掌握平面向量的坐标运算,掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处有关长度、角度和垂直问题,掌握向量垂直的条件.【命题规律】(1)高考对三角函数图象的考查主要包括三个方面:一是用五点法作图,二是图象变换,三是已知图象求解析式或求解析式中的参数的值,常以选择题或填空题的形式考查.(2)高考对三角函数性质的考查是重点,以解答题为主,考查y=Asin(ωx+φ)的周期性、单调性、对称性以及最值等,常与平面向量、三角形结合进行综合考查,试题难度属中低档.(3)三角恒等变换包括三角函数的概念,诱导公式,同角三角函数间的关系,和、差角公式和二倍角公式,要抓住这些公式间的内在联系,做到熟练应用.(4)解三角形既是对三角函数的延伸又是三角函数的主要应用,因此,在一套高考试卷中,既有选择题、填空题,还有解答题.(5)平面向量的命题以客观题为主,主要考查平面向量的基本概念、向量的线性运算、向量的平行与垂直、向量的数量积,考查数形结合的数学思想,在解答题中常与三角函数相结合,或作为解题工具应用到解析几何问题中.3.学法导航1. 已知函数y=A sin(ωx+φ)(A>0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.2. 在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x而言的,如果x的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.3. 函数y=A sin(ωx+φ)的性质及应用的求解思路:第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y=A sin(ωx+φ)+B的形式;第二步:把“ωx+φ”视为一个整体,借助复合函数性质求y=A sin(ωx+φ)+B的单调性及奇偶性、最值、对称性等问题.4. (1)三角变换的关键在于对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系,公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现“张冠李戴”的情况.(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解.5.关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.6.(1)对于平面向量的线性运算,要先选择一组基底,同时注意平面向量基本定理的灵活运用.(2)运算过程中重视数形结合,结合图形分析向量间的关系.7.数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义.可以利用数量积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算.8.在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题,在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.一.基础知识整合 基础知识: 一.基础知识整合1.三角函数的图象及常用性质(表中k ∈Z )y =sin x y =cos x y =tan x图象增区间⎣⎢⎡ -π2+2k π,⎦⎥⎤π2+2k π [ -π+2k π, ]2k π⎝⎛-π2+k π,⎭⎪⎫π2+k π 减区间⎣⎢⎡π2+2k π,⎦⎥⎤3π2+2k π []2k π,π+2k π无对称轴 x =k π+π2x =k π 无对称 中心(k π,0)⎝ ⎛⎭⎪⎫π2+k π,0 ⎝ ⎛⎭⎪⎫k π2,02.(1)y =sin x ――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin (ωx +φ)――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).y =sin ωx ――→向左(φ>0)或向右(φ<0)平移⎪⎪⎪⎪⎪⎪φω个单位y =sin(ωx +φ)――→纵坐标变为原来的A 倍横坐标不变y =A sin (ωx +φ)(A >0,ω>0).3.正弦型函数y =A sin (ωx +φ)的对称中心是函数图象与x 轴的交点,对称轴是过函数图象的最高点或者最低点且与x 轴垂直的直线;正切型函数y =A tan(ωx +φ)的图象是中心对称图形,不是轴对称图形. 4.三角形面积公式:(1)S =12ah a (h a 为BC 边上的高);(2)S =12ab sin C =12bc sin A =12ac sin B ;(3)S =abc4R (R为△ABC 外接圆的半径);(4)S =2R 2sin A sin B sin C (R 为△ABC 外接圆的半径);(5)S =p (p -a )(p -b )(p -c )⎝⎛⎭⎪⎫p =12(a +b +c );(6)S =12(a +b +c )r =pr (p =12(a +b +c ),r 为△ABC 内切圆的半径).5.四边形面积公式:S =12l 1l 2sin θ(l 1,l 2为对角线长,θ为对角线夹角).6.正弦定理及其变形:a sin A =b sin B =c sin C =a +b +csin A +sin B +sin C=2R (2R 为△ABC 外接圆的半径).7.余弦定理:a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ;c 2=a 2+b 2-2ab cos C .8.常用边角互化方法:sin A =a 2R ;sin B =b 2R ;sin C =c 2R ;cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab.9.平面向量中的四个基本概念(1)零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0. (2)长度等于1个单位长度的向量叫单位向量,与a 同向的单位向量为a|a |.(3)方向相同或相反的向量叫共线向量(平行向量).(4)向量的投影:|b |cos 〈a ,b 〉叫做向量b 在向量a 方向上的投影.10.平面向量的两个重要定理:(1)向量共线定理:向量a (a ≠0)与b 共线当且仅当存在唯一一个实数λ,使b =λa .(2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底. 11.两非零向量平行、垂直的充要条件:设a =(x 1,y 1),b =(x 2,y 2),则: (1)若a ∥b ⇔a =λb (b ≠0);a ∥b ⇔x 1y 2-x 2y 1=0; (2)若a ⊥b ⇔a ·b =0;a ⊥b ⇔x 1x 2+y 1y 2=0.12.平面向量的三个性质:(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则||=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.13.平面向量的三个锦囊:(1)向量共线的充要条件:O 为平面上一点,则A ,B ,P 三点共线的充要条件是=λ1+λ2 (其中λ1+λ2=1).(2)三角形中线向量公式:若P 为△OAB 的边AB 的中点,则向量与向量,的关系是=12(+).(3)三角形重心坐标的求法:G 为△ABC 的重心⇔⇔G ⎝ ⎛⎭⎪⎫x A +x B +x C 3,y A +y B +y C 3.二.高频考点突破考点1 三角函数的定义、同角三角函数基本关系式、诱导公式的应用【例1】已知角的顶点与原点重合,始边与轴的非负半轴重合,是角终边上的一点,则的值为( ) A. B. C. D. 【答案】C【例2】已知,则 . 【答案】 【解析】sin 2cos tan 21sin cos tan 1αααααα--==-⇒++.【规律方法】1、利用三角函数定义将角的终边上点的坐标和三角函数值建立了联系,但是注意角的顶点在坐标原点,始边在x 轴的非负半轴. 2. 正、余弦三兄妹“、”的应用与通过平方关系联系到一起,即2(sin cos )12sin cos x x x x ±=±,2(sin cos )1sin cos ,2x x x x +-=21(sin cos )sin cos .2x x x x --=因此在解题中若发现题设条件有三者之一,就可以利用上述关系求出或转化为另外两个.的求值技巧:当已知,时,利用和、差角的三角函数公式展开后都含有或,这两个公式中的其中一个平方后即可求出,根据同角三角函数的平方关系,即可求出另外一个,这两个联立即可求出的值.或者把、与联立,通过解方程组的方法也可以求出的值. 3.如何利用“切弦互化”技巧(1)弦化切:把正弦、余弦化成切得结构形式,这样减少了变量,统一为“切”得表达式,进行求值. 常见的结构有:① 的二次齐次式(如22sinsin cos cos a b c αααα++)的问题常采用“”代换法求解;②的齐次分式(如)的问题常采用分式的基本性质进行变形.(2)切化弦:利用公式,把式子中的切化成弦.一般单独出现正切、余切的时候,采用此技巧.4.温馨提示:(1)求同角三角函数有知一求三规律,可以利用公式求解,最好的方法是利用画直角三角形速解.(2)利用平方关系求三角函数值时,注意开方时要结合角的范围正确取舍“”号.5. 利用诱导公式求值:i.给角求值的原则和步骤:(1)原则:负化正、大化小、化到锐角为终了.(2)步骤:利用诱导公式可以把任意角的三角函数转化为之间角的三角函数,然后求值,其步骤为:ii.给值求值的原则:寻求所求角与已知角之间的联系,通过相加或相减建立联系,若出现的倍数,则通过诱导公式建立两者之间的联系,然后求解.常见的互余与互补关系(1)常见的互余关系有:与;与;与等.(2)常见的互补关系有:与;与等.遇到此类问题,不妨考虑两个角的和,要善于利用角的变换的思想方法解决问题.6. 利用诱导公式化简、证明i.利用诱导公式化简三角函数的原则和要求(1)原则:遵循诱导公式先行的原则,即先用诱导公式化简变形,达到角的统一,再进行三角函数名称转化,以保证三角函数名称最少.(2)要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.ii.证明三角恒等式的主要思路(1)由繁到简法:由较繁的一边向简单一边化简.(2)左右归一法:使两端化异为同,把左右式都化为第三个式子. (3)转化化归法:先将要证明的结论恒等变形,再证明.7.提醒:由终边相同的角的关系可知,在计算含有的整数倍的三角函数式中可直接将的整数倍去掉后再进行运算,如()()cos 5cos cos παπαα-=-=-. 【举一反三】已知为锐角,且,则( ). A . B . C . D . 【答案】A考点2 三角函数的图像与性质【例3】【四川省内江市xx 届第一次模拟】已知函数()2sin 3sin cos f x x x x =,则 A. 的最小正周期为 B. 的最大值为2 C. 在上单调递减 D. 的图象关于直线对称 【答案】C【解析】∵函数()21cos231sin 3sin cos sin 2262x f x x x x x x π-⎛⎫=+==-+ ⎪⎝⎭,∴的最小正周期为,故错误,的最大值为,故错误,当时, 1sin 216662f πππ⎛⎫⎛⎫=⨯-+= ⎪ ⎪⎝⎭⎝⎭,故的图象不关于直线对称,故错误,由3222,262k x k k Z πππππ+≤-≤+∈,得,令,可得的一个单调减区间为,故C 正确,故选C 【例4】【广西玉林市xx 届期中】已知的三个内角所对的边长分别是,且,若将函数的图像向右平移个单位长度,得到函数的图像,则的解析式为( ) A. B. C. D.【分析】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 【答案】D向右平移个单位长度单位,得到()522222cos2662g x sin x sin x x πππ⎛⎫⎛⎫⎛⎫=-+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选D. 【规律方法】(1)求三角函数的周期、单调区间、最值及判断三角函数的奇偶性,往往是在其定义域内,先化简三角函数式,尽量化为y =Asin(ωx+φ)+B 的形式,然后再求解.(2)对于形式y =asin ωx+bcos ωx 型的三角函数,要通过引入辅助角化为y = a 2+b 2sin(ωx+φ)(cos φ=a a 2+b2,sin φ=b a 2+b2)的形式来求.(3)对于y =Asin(ωx+φ)函数求单调区间时,一般将ω化为大于0的值.【举一反三】【内蒙古包钢xx 届月考】函数的部分图象如图所示,则的单调递减区间为A. B. 132π,2π,44k k k ⎛⎫-+∈ ⎪⎝⎭Z C. D. 【答案】D考点3 三角恒等变换 【例5】若13tan ,,tan 242ππααα⎛⎫-=∈ ⎪⎝⎭,则的值为( ) A . B . C . D .【答案】D【规律方法】1.三角函数的化简、计算、证明的恒等变形的基本思路与基本的技巧基本思路是:一角二名三结构.即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心.第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点.基本的技巧有:(1)巧变角:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,,,,()()222αββααβ+=---等.(2)三角函数名互化:切割化弦,弦的齐次结构化成切.(3)公式变形使用:如()()cos cos sin sin cos αββαββα+++=,()()tan 1tan tan tan tan αβαβαβ+-=+()()tan tan tan tan tan tan αβαβαβαβ+=+--,()()tan tan tan tan tan tan αβαβαβαβ+++=+,sin cos 24πααα⎛⎫±=± ⎪⎝⎭,21sin 212sin cos (sin cos )x x x x x ±=±=±等 (4)三角函数次数的降升:降幂公式与升幂公式:;,.(5)式子结构的转化.(6)常值变换主要指“1”的变换:22sec tan tan cot x x x x =-=⋅等.(7)辅助角公式:()22sin cos a x b x a b x θ+=++(其中角所在的象限由的符号确定,的值由确定.在求最值、化简时起着重要作用,这里只要掌握辅助角为特殊角的情况即可. 如sin cos 2),sin 32sin(),3cos 2sin()436x x x x x x x x x πππ±=±±=±±=±等. 2.题型与方法:题型一,利用两角和与差的三角函数公式可解决求值求角问题,常见有以下三种类型:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-,()()()=--+=+--+=βαββαβαβαβαβ2222,,,()()()ααβββαβαβαβα=-+=+-=--+,,等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角,给值求角的本质还是给值求值,即欲求某角,也要先求该角的某一三角函数值.由于三角函数的多值性,故要对角的范围进行讨论,确定并求出限定范围内的角.要仔细观察分析所求角与已知条件的关系,灵活使用角的变换,如α=(α+β)-β,α=α+β2+α-β2等题型二,三角函数式的化简与证明:三角函数式的化简:常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等.(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明.题型三. 辅助角公式:函数(为常数),可以化为()()22sin f a b ααϕ=++或()()22cos f a b ααϕ=+-,其中可由的值唯一确定.【举一反三】【四川省内江市xx 届第一次模拟】0000sin20cos40cos20sin140+=A. B. C. D.【答案】B故选B考点4解三角形【例6】【安徽省淮南市xx 届高三第四次联考】在中,角的对边分别为,且, ,则角等于( )A. B. 或 C. D.【答案】A【规律方法】 1.在解三角形时,三角形内角的正弦值一定为正,但该角不一定是锐角,也可能为钝角(或直角),这往往造成有两解,应注意分类讨论,但三角形内角的余弦值为正,该角一定为锐角,且有唯一解,因此,在解三角形中,若有求角问题,应尽量求余弦值.2.关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.【举一反三】【四川省成都市xx 届一诊】已知中,角的对边分别为(),,,2cos cos cos 0.a b c C a C c A b ++=,(1)求角的大小;(2)若,求的面积.【解析】(1) ()2cos cos cos 0C a C c A b ++=,由正弦定理可得()20cosC sinAcosC sinBcosA sinB ∴++=,()20,20cosCsin A C cosCsinB sinB ∴+=∴+=即,又10180,sin 0,cos ,120.2B BC C <<∴≠∴=-=即 (2)由余弦定理可得()222223222cos12024a a a a =+-⨯=++,又10,2,sin 3,2ABC a a S ab C ∆>=∴== 的面积为 考点5 解三角形在实际生活中应用【例7】 “郑一”号宇宙飞船返回舱顺利到达地球后,为了及时将航天员求出,地面指挥中心的在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为).当返回舱距地面1万米的点的时(假定以后垂直下落,并在点着陆),救援中心测得飞船位于其南偏东60°方向,仰角为60°,救援中心测得飞船位于其南偏西30°方向,仰角为30°,救援中心测得着陆点位于其正东方向.(1)求两救援中心间的距离;(2)救援中心与着陆点间的距离.分析: (1)在中,.在中,, 22303BC AC BC =+=万米;(2)sin sin ,cos 1010ACD ACB ACD ∠=∠=∠=- ()0331sin sin 30210ADC ACD -∠=+∠=sin 93sin 13AC ACD AD ADC ∠+==∠万米.【规律方法】三角形应用题的解题要点:解斜三角形的问题,通常都要根据题意,从实际问题中寻找出一个或几个三角形,然后通过解这些三角形得出所要求的量,从而得到实际问题的解.有些时候也必须注意到三角形的特殊性,如直角三角形、等腰三角形、锐角三角形等.正确理解和掌握方位角、俯角、仰角对于解决三角形应用题也是必不可少的.把握解三角形应用题的四步:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系;(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型;(3)根据题意选择正弦定理或余弦定理求解;(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.求距离问题的注意事项:(1)选定或确定要求解的三角形,即所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.求解高度问题应注意:(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用. 解决测量角度问题的注意事项:(1)明确方位角的含义;(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步;(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.【举一反三】如图,某城市有一条公路从正西方通过市中心后转向东偏北角方向的.位于该市的某大学与市中心的距离,且.现要修筑一条铁路,在上设一站,在上设一站,铁路在部分为直线段,且经过大学.其中,,. (Ⅰ)求大学与站的距离;(Ⅱ)求铁路段的长.(II )∵,且为锐角,∴,在中,由正弦定理得,623132sin 13MAO =∠,∴,∴,∴,∵,∴,,∴sin sin()410ABO πα∠=-=sin sin()5AOB πα∠=-=,在中,,由正弦定理得,,即1521510AB =,∴,即铁路段的长为. 考点6 平面向量的线性运算【例8】【xx 辽宁庄河两校联考】已知直线分别于半径为的圆相切于点,若点在圆的内部(不包括边界),则实数的取值范围是( )A. B. C. D.分析:一般动点在圆内可转化为与圆心距离小于半径,因此写出向量,再根据向量的平方运算,求出,令其小于半径即可求出.【答案】B【规律方法】用平面向量基本定理解决此类问题的关键是先选择一组基底,并运用平面向量的基本定理将条件和结论表示成基底的线性组合,再通过对比已知等式即可得λ1,λ2的值.向量的几何表示是高考的热点问题,特别是用三角形的各种心的向量表示经常是命题的素材,常见的结论如下:①为的重心,特别地为的重心;是BC 边上的中线AD 上的任意向量,过重心;等于已知AD 是中BC 边的中线.②PA PB PB PC PC PA P ⋅=⋅=⋅⇔为的垂心;()||cos ||cos AB AC AB B AC Cλ+是△ABC 的边BC 的高AD 上的任意向量,过垂心.③||||||0AB PC BC PA CA PB P ++=⇔ 的内心;向量所在直线过的内心(是的角平分线所在直线). ④()()()0OA OB AB OB OC BC OC OA CA +⋅=+⋅=+⋅=, 222OA OB OC OA OB OC ⇔==⇔==⇔为的外心.向量与平行四边形相关的结论向量的加法的几何意义是通过平行四边形法则得到,其应用非常广泛.在平行四边形中,设,则有以下的结论:①通过这个公式可以把共同起点的两个向量进行合并;若,可判断四边形为平行四边形;②若对角线相等或邻边垂直,则平行四边形为矩形;()()0a b a b a b +⋅-=⇔=对角线垂直.则平行四边形为菱形; ③222222a b a b a b ++-=+说明平行四边形的四边的平方和等于对角线的平方和;④||||||||||||a b a b a b -≤±≤+,特别地,当同向或有;当反向或有;当不共线(这些和实数比较类似).【举一反三】【内蒙古呼和浩特市xx 届质调】已知是平面上不共线的三点, 是的重心,动点满足: 1112322OP OA OB OC ⎛⎫=++ ⎪⎝⎭,则一定为的 A. 重心 B. 边中线的三等分点(非重心)C. 边中线的中点 D. 边的中点【答案】B考点7 平面向量的数量积【例9】如图,在中,,3,1AD AB BC BD AD ⊥==,则的值为( )A .1B .2C .3D .4分析:本题考查向量的数量积的定义和性质,同时考查诱导公式和正弦定理的运用,是关于向量数量积的常考题型,属于中档题;运用向量的数量积的定义,结合条件可得CAD AC ∠=⋅,再由诱导公式可得BAC AC AC AD ∠=⋅sin ,结合三角形中的正弦定理和直角三角形的锐角三角函数的定义,计算即可得到所求值. 【答案】C【规律方法】1.在解决与平面几何有关的数量积问题时,充分利用向量的线性运算,将所求向量用共同的基底表示出来,在利用平面向量的数量积数量积运算法则求解.2.计算向量在向量方向上的投影有两种思路:思路1,用||计算;思路2,利用计算.3.注意向量的数量积不满足消去率和结合律.4.在计算向量数量积时,若一个向量在另一个向量上的投影已计算,可以利用向量数量积的几何意义计算.【举一反三】【内蒙古呼和浩特市xx 届质调】在中, , , 是所在平面上的一点,若,则A. B. C. D.【答案】A【解析】如图, ()2222,3333DB CB AB AC AD AB BD AB AB AC ==-=+=--. ∴2222122413333999DB AD AB AC AB AC AB AC AB AC ⎛⎫⎛⎫⋅=-⋅+=-+⋅ ⎪ ⎪⎝⎭⎝⎭ 2429933cos601999=⨯-⨯+⨯⨯⨯︒=-.选A.考点8 平面向量和三角函数的综合问题【例10】【xx 河北衡水武邑中点二调】已知锐角的外接圆的半径为1, ,则的取值范围为__________. 分析:解题时先由正弦定理把△ABC 的边a ,c 用含有A 的代数式表示,再由三角形为锐角三角形求出角A 的范围,把向量的数量积利用三角变换转化为关于A 的三角函数,最后利用三角函数的取值范围求解.【答案】【规律方法】在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题.在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.【举一反三】【】浙江省台州中学xx届第三次统练】已知向量, ,记.(1) 若,求的值;(2) 在锐角中,角的对边分别是且满足,求的取值范围.。

【步步高】高考数学(文,江苏专用)大二轮总复习练习:专题三第3讲平面向量(含答案解析)

【步步高】高考数学(文,江苏专用)大二轮总复习练习:专题三第3讲平面向量(含答案解析)

第 3讲平面向量1. (2016 课·标全国丙改编→1,3→31,则∠ ABC= ________. )已知向量 BA=22, BC=,22答案30°分析→→∵ |BA|= 1, |BC|= 1,→ →3BA·BC=,∴∠ ABC = 30°.cos∠ ABC=→→2|BA|·|BC|12. (2016 ·东改编山 )已知非零向量m,n 知足 4|m|= 3|n|,cos〈 m, n〉=3.若 n⊥ (tm+ n),则实数 t 的值为 ______.答案- 4分析∵ n⊥ (tm+ n),∴ n·(tm+n)=0,即 t·m·n+ n2= 0,∴ t|m||n|cos〈 m, n〉+ |n|2=0,由3212已知得 t×|n| ×+ |n| = 0,解得 t=- 4.433. (2016 天·津改编 )已知△ABC 是边长为 1 的等边三角形,点 D, E 分别是边 AB, BC 的中点,连接 DE 并延伸到点F,使得 DE=→ →2EF ,则 AF ·BC的值为 ________.答案1 8分析→→→如下图, AF =AD +DF .又 D, E 分别为 AB, BC 的中点,→1→且 DE= 2EF,因此 AD=2AB,→=→+→=→+1→DF DE EF DE2DE3→ 3→=2DE =4AC,→1→ 3 →→→ →因此 AF=2AB+4AC.又 BC= AC-AB,→ →1→3→→ →则 AF·BC=AB+AC ·(AC- AB)241→ →1→ 2 3 →2 3 → →=AB·AC-AB+AC - AC·AB 2244→ 2 1→21→→= 4AC - 2AB -4AC ·AB.3→ →又 |AB|= |AC|= 1,∠ BAC = 60°,→ → 3 1 1 1 1故AF ·BC = - - ×1×1× = .4 2 4 2 84. (2016 ·江浙 )已知向量a ,b , |a|= 1,|b|= 2.若对随意单位向量 e ,均有 |a ·e|+ |b ·e| ≤6,则a ·b 的最大值是 ________.答案12分析 由已知可得:6≥|a ·e|+ |b ·e| ≥|a ·e + b ·e|= |(a + b) ·e|,因为上式对随意单位向量e 都成立.∴ 6≥|a + b|成立.∴ 6≥(a + b) 2= a 2+ b 2+ 2a ·b = 12+ 22+ 2a ·b.1即 6≥5+ 2a ·b ,∴ a ·b ≤2.1.考察平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考察, 多为填空题,难度中低档 .2.考察平面向量的数目积,以填空题为主,难度低;向量作为工具,还常与三角函数、解三角形、不等式、分析几何联合,以解答题形式出现.热门一平面向量的线性运算1.在平面向量的化简或运算中,要依据平面向量基本定理选好基底,变形要有方向不可以盲目转变.2.在用三角形加法法例时,要保证 “首尾相接 ”,结果向量是第一个向量的起点指向最后一个向量终点所得的向量;在用三角形减法法例时,要保证 “同起点 ”,结果向量的方向是指向被减向量.例 1π(1) 设 0<θ< ,向量 a = (sin 2θ, cos θ), b = (cos θ, 1),若 a ∥ b ,则 tan θ= ______.2→ → → →(2) 如图,在 △ ABC 中,已知 BD = 2DC ,以向量 AB ,向量 AC 作为基底,→则向量 AD 可表示为 ____________.答案 (1)1 (2)1 →+ 2 →2 3AB 3AC 分析(1)因为 a ∥ b ,因此 sin 2θ= cos 2θ,即 2sin θcos θ=cos 2θ.π 因为 0<θ< ,因此 cos θ>0,21得 2sin θ= cos θ,tan θ= 2.(2) 依据平面向量的运算法例及已知图形可知→2 →AB +3AC .→→→→ 2 → → 2 → → 1AD =AB + BD = AB + BC =AB + (BA + AC)=333思想升华(1) 关于平面向量的线性运算,要先选择一组基底;同时注意共线向量定理的灵活运用. (2)运算过程中重视数形联合,联合图形剖析向量间的关系. 追踪操练 1(1)如图,正方形 ABCD 中,点 E 是 DC 的中点,点 F 是 BC的一个三平分点,那么以向量 → → →AB 和向量 AD 为基底,向量 EF 可表示为__________ .→→ →(2) 如图,在正方形 ABCD 中, E 为 DC 的中点,若 AE = λAB + μAC ,则 λ + μ的值为 ________. 答案(1)1→ - 2 →(2)12AB 3AD2分析→ → → (1)在 △ CEF 中,有 EF = EC +CF .→ 1 →因为点 E 为 DC 的中点,因此 EC = DC .2因为点 F 为 BC 的一个三平分点,因此→ 2 →CF =CB.3→ 1→ 2→ 1→ 2→ 1→2→因此 EF = 2DC +3CB =2AB +3DA = 2AB - 3AD.(2)→ → → 1 →1 → → 1 → →→ 1 → 因为 E 为 DC 的中点,因此 AC = AB + AD = AB +AB + AD =AB + AE ,即 AE =-AB +2222→ AC ,1 1因此 λ=- , μ=1,因此 λ+ μ= .22热门二平面向量的数目积1.数目积的定义: a ·b = |a||b|cos θ.2.三个结论(1) 若 a = (x , y),则 |a|= a ·a = x 2+ y 2.(2) 若 A(x 1,y 1), B( x 2, y 2),则→ 2 2 .|AB|= (x 2- x 1 ) + (y 2- y 1 )(3)若 a= (x1,y1), b= ( x2,y2 ),θ为 a 与 b 的夹角,则 cos θ=a·b=x1x2+ y1y2|a||b|x12+ y12x22+ y22.例 2(1)如图,在矩形ABCD 中, AB=2, BC= 2,点 E 为 BC 的中点,点 F在边→ →=→ →CD 上,若 AB·AF2,则 AE ·BF的值是 ________.(2) 若 b=cos π, cos5π,|a|= 2|b|,且 (3a+b) ·b=- 2,则向量 a,b 的夹角1212为 ________.答案(1) 2 (2)5π6分析(1)以 A 为原点,成立如下图的坐标系,可得 A(0,0),B(2, 0), E(2, 1), F(x,2),→→∴ AB= ( 2,0) ,AF= (x,2),→ →2x=2,∴ AB·AF=解得 x= 1,∴ F(1,2).→→∴ AE= ( 2,1),BF= (1- 2, 2),→ →∴ AE·BF= 2×(1- 2)+ 1×2= 2.22π25π 2 π 2 π(2) b= cos+cos12=cos+ sin= 1,121212因此 |b|= 1,|a|= 2.由 (3a+b) ·b=- 2,可得3a·b+ b2=- 2,故 a·b=-3,故 cos〈 a, b〉=a·b=- 33=-|a||b|2×1 2.5π又〈 a, b〉∈ [0,π],因此〈 a, b〉=6 .思想升华(1) 数目积的计算往常有三种方法:数目积的定义,坐标运算,数目积的几何意义;(2) 能够利用数目积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算.追踪操练 2 (1)已知点 A,B,C,D 在边长为 1 的方格点图的地点如下图,→ →则向量 AD在AB方向上的投影为 ________.(2) 如图,在△ ABC 中,AB= AC= 3,cos∠ BAC=1→→→ →3,DC= 2BD,则 AD·BC的值为 ________.答案(1)-5(2)- 2 5分析(1)不如以点 A 为坐标原点,成立如下图的平面直角坐标系,易得→→AD = (- 2,3),AB→ →→ →- 25 AD ·AB= (4,2) ,因此向量 AD 在 AB方向上的投影为→=2 5=- 5.|AB |→→→→→→2→ →(2) AD·BC= (AC+ CD ) ·BC= (AC+CB) ·BC3→2→→→2→1→→→=[AC+3(AB -AC)] BC·= ( 3AB +3AC) ·(AC- AB)2 →2 1 → → 1 →2=-3|AB|+3AB·AC+3|AC|=-6+ 1+3=- 2.热门三平面向量与三角函数平面向量作为解决问题的工具,拥有代数形式和几何形式的“两重型”,高考常在平面向量与三角函数的交汇处命题,经过向量运算作为题目条件.例 3已知函数 f(x)= 2cos2x+ 23sin xcos x(x∈ R).π(1)当 x∈[0,2)时,求函数 f( x)的单一递加区间;(2)设△ABC 的内角 A,B, C 的对边分别为 a, b,c,且 c=3, f( C)= 2,若向量 m= (1, sin A)与向量 n= (2, sin B)共线,求 a, b 的值.解π (1)f(x)= 2cos 2x + 3sin 2x = cos 2x + 3sin 2x + 1=2sin(2 x + ) +1,6π π π 令- + 2k π≤2x +≤ + 2k π, k ∈ Z ,26 2π π解得 k π-≤x ≤k π+ , k ∈ Z ,36π因为 x ∈ [0, 2) ,π因此 f( x)的单一递加区间为 [0,6] .π(2) 由 f(C)= 2sin(2C +6)+ 1= 2,π 1得 sin(2C + 6)= 2,π π 13 π而 C ∈(0 ,π),因此 2C + 6∈( 6, 6 ), π 5 π因此 2C + =6π,解得 C = 3.6因为向量 m = (1,sin A)与向量 n =(2 ,sin B)共线,因此sin A 1sin B= .2由正弦定理得 a = 1,①b 2由余弦定理得π c 2= a 2+ b 2- 2abcos,3即 a 2+ b 2- ab =9.②联立①②,解得 a = 3,b = 2 3.思想升华 在平面向量与三角函数的综合问题中, 一方面用平面向量的语言表述三角函数中的问题, 如利用向量平行、 垂直的条件表述三角函数式之间的关系, 利用向量模表述三角函数之间的关系等; 另一方面能够利用三角函数的知识解决平面向量问题,在解决此类问题的 过程中, 只需依据题目的详细要求, 在向量和三角函数之间成立起联系, 就能够依据向量或者三角函数的知识解决问题.追踪操练 3已知 △ABC 是锐角三角形,向量m = cos A + π,3π, n = cos B , sin B ,且 m ⊥ n.sin A +3 ( )(1) 求 A -B 的值;3(2) 若 cos B = 5,AC =8,求 BC 的长.解(1)因为 m ⊥ n ,π π因此 m ·n = coscos B +sin A + 3 sin BA + 3 π= cos A +3- B =0,π又 A ,B ∈ 0,2 ,因此ππ 5πA + -B ∈ - , ,3 6 6 因此 π ππA + -B = ,即 A - B = .3 263π4(2) 因为 cos B =5, B ∈ 0,2 ,因此 sin B = 5,因此 sin A = sin π ππ = sin Bcos + cos Bsin 6B +664 3 3 1 4 3+ 3= · + ·= ,52 5 2104 3+3由正弦定理,得BC = sin A10 ×8= 4 3+ 3.4sin B·AC =5→ 1 →1.如图,在 △ ABC 中, AD = 3AB , DE ∥ BC 交AC 于E , BC边上的中线AM交DE于,设 → = , → = ,用ABaACb N, 表示向量ab→ →AN ,则 AN= ____________.押题依照平面向量基本定理是向量表示的基本依照,而向量表示 (用基底或坐标 )是向量应用的基础.1答案6(a + b)分析因为 DE ∥ BC ,因此 DN ∥ BM ,则 △ AND ∽△ AMB ,因此 AM AN = ADAB .→1 →→1 →因为 AD = 3AB ,因此 AN = 3AM . 因为 M 为 BC 的中点,→ 1 → → 1 因此 AM = (AB +AC)=(a + b),22→ 1 →1因此 AN =AM = (a + b).362.如图,BC 、DE 是半径为 →→ → →1 的圆 O 的两条直径, BF = 2FO ,则 FD ·FE= ________.押题依照数目积是平面向量最重要的观点,平面向量数目积的运算是高考的必考内容,和平面几何知识的联合是向量考察的常有形式.答案-89分析→→→1,∵BF =2FO ,圆 O 的半径为 1,∴ |FO |=3→→→→→→→2→→→→→1 2 8 ∴ FD ·FE = (FO + OD) ·(FO + OE)= FO + FO ·(OE + OD)+ OD ·OE = ( ) + 0- 1=- .39→ →120°sin 208 )°,则 △ABC3.在 △ABC 中,AB =(cos 32 °,cos 58 °),BC = (sin 60 sin ° 118 ,°sin 的面积为 ________.押题依照平面向量作为数学解题工具, 经过向量的运算给出条件解决三角函数问题已成为近几年高考的热门.答案38分析→ 2 2°|AB|= cos 32 °+ cos 58= cos 232°+ sin 232°=1,→33,BC =2 cos 28 ,°- 2 sin 28°→323 23 因此 |BC|=+ -2 sin 28 =2.2 cos 28 °°→ →33 °则 AB ·BC = cos 32 °×2cos 28-°sin 32 ×° sin 2823=2 (cos 32 cos ° 28 -°sin 32 sin ° 28 ) °=333,2 cos(32 +°28°)= 2cos 60 =° 4→ →3 → →4 1AB ·BC = . 故 cos 〈 AB , BC 〉= →→ = 3 2 |AB| ×|BC| 1×2→ → °, 180°],因此〈 → →又〈 AB , BC 〉∈ [0 AB , BC 〉= 60°,→ →故 B = 180°-〈 AB , BC 〉= 180°- 60°= 120°.故 △ ABC 的面积为1 →S = 2×|AB|→×|BC|sin B1 3 = ×1××sin221203 =° .84.如图,在半径为1 的扇形 AOB中,∠ AOB =60°,C为弧上的动点, AB 与OC交于点P ,→ →则 OP ·BP 的最小值是 _______________________________________ .押题依照 此题将向量与平面几何、 最值问题等有机联合,表现了高考在知识交汇点命题的方向,此题解法灵巧,难度适中.答案-116分析→ → →→→→→→→→→2 = 60 °,因为 OP = OB + BP ,因此 OP ·BP = (OB + BP) ·BP =OB ·BP + BP .又因为∠ AOB OA = OB ,因此∠ OBA = 60°, OB = → → →1 → →→1→→21.因此 OB ·BP = |BP |cos 120=°-|BP|,因此 OP ·BP =- |BP|+ |BP|22→1 2 11→1 → →1= (|BP|- )-≥-,当且仅当 |BP|= 时, OP ·BP 获得最小值-.4 16 16416A 组 专题通关1.在 △ ABC 中,已知 D 是 AB 边上一点,若→ →→ 1 →→AD = 2DB, CD = CA + λCB ,则 λ= ________.3答案23分析 在 △ABC 中,已知 D 是 AB 边上一点,→→ →1→→→→→→ 2 → → 2 → → 1 → 2 → ∵ AD = 2DB ,CD = CA + λCB ,∴ CD = CA + AD = CA + AB = CA +3 (CB - CA)= CA + CB ,3333∴ λ= 2.32. △ ABC 是边长为 2 的等边三角形,已知向量→ →a ,b 知足 AB = 2a , AC = 2a + b ,则以下结论正确的选项是 ________.① |b|= 1; ② a ⊥ b ;→③ a ·b = 1; ④ (4a + b)⊥BC.答案 ④分析→ → →在 △ABC 中,由 BC = AC - AB = 2a + b - 2a = b ,得 |b|= 2.又 |a|= 1,因此 a ·b = |a||b|cos 120 =°- 1,→ 2因此 (4a + b) ·BC = (4a + b) ·b = 4a ·b + |b|= 4×(- 1)+ 4= 0,→因此 (4a + b)⊥ BC.→ → → → → →3.在等腰 △ ABC 中,∠ BAC =90°,AB = AC = 2,BC = 2BD ,AC = 3AE ,则 AD ·BE = ________.答案-43分析由已知获得→ → 1→→→1 →1 →2 1 → → 1 → → 1 → 2,AD ·BE =(AB + AC) ·(BA + AC) =-2AB + AB ·AC +2 AC ·BA + AC2366→ → 1212△ ABC 是等腰直角三角形,∠ BAC = 90 °, AB = AC =2,因此 AD ·BE =- 2×2 + 0+0+ 6×24=- 3.4. (2016 ·津蓟县期中天 )已知向量 a , b 知足 (a + 2b) ·(a - b)=- 6,且 |a|= 1, |b|= 2,则 a与 b 的夹角为 ________.答案π 3分析 设 a 与 b 的夹角为θ,∵ (a + 2b) ·(a - b)=- 6,且 |a|= 1,|b|= 2,∴ 1+a ·b - 8=- 6,∴ a ·b = 1=|a||b |cos θ,∴ cos θ= 1,2π又∵ θ∈ [0,π],∴ θ=3.5. (2016 安·徽江淮十校第二次联考 )已知平面向量 a 、b(a ≠0, a ≠b)知足 |a|= 3,且 b 与 b - a 的夹角为 30°,则 |b|的最大值为 ________.答案 6分析→ → → → →令OA = a , OB = b ,则 b - a = OB -OA =AB ,如图,∵ b 与 b - a 的夹角为 30°,∴∠ OBA =30°,→→→→,∴由正弦定 理|OA| = |OB|得 , ∵ |a| = |OA |= 3 sin ∠ OBA sin ∠ OAB |b|= | OB | =6·sin ∠ OAB ≤ 6.6.已知向量 a = (2,1),b = (- 1, 2),若 a , b 在向量 c 方向上的投影相等,且 (c - a) ·(c - b) =- 5,则向量 c 的坐标为 ________.21 3答案 (2,2)分析设 c = (x , y),依据题意有x 2+ y 2- x - 3y =- 5,22x + y =- x + 2y ,1,x = 2解得3y = 2.→→ → 7.设向量 OA = (5+ cos θ,4+ sin θ), OB = (2,0) ,则 |AB|的取值范围是 ________. 答案[4,6]分析→ → →= (- 3- cos θ,- 4- sin θ),∵AB =OB -OA → 2 2 2 ∴ |AB| = (- 3-cos θ) +( -4- sin θ)= 6cos θ+ 8sin θ+26= 10sin(θ+ φ)+ 26,此中 tan φ= 3,4→ 2 →∴ 16≤|AB | ≤ 36,∴ 4≤|AB| ≤ 6.8.设向量 a = (a 1, a 2), b = (b 1, b 2),定义一种向量积 a?b = (a 1b 1, a 2b 2),已知向量 m =(2 , 1 π →2),n = (,0),点 P(x ,y)在 y = sin x 的图象上运动, Q 是函数 y = f(x)图象上的点, 且知足 OQ3→为坐标原点 ),则函数 y = f( x)的值域是 ________.= m?OP + n(此中 O1 1 答案 [- 2, 2]分析令 Q(c ,d),由新的运算可得→ →1 π π 1sin x), OQ = m?OP + n =(2x ,sin x)+ ( , 0)= (2x + ,233 2π, 11∴c =2x + 3π1消去 x 得 d =sin( c - ),22 6d = 2sin x ,1 1π1 1] .∴ y = f( x)= sin(x -),易知 y = f(x)的值域是 [- ,2262 2π9.设向量 a = ( 3sin x , sin x), b =(cos x ,sin x), x ∈ [0, 2].(1) 若 |a|= |b|,求 x 的值;(2) 设函数 f(x)= a ·b ,求 f(x)的最大值.解(1)由 |a|2= ( 3sin x)2+ (sin x)2= 4sin 2x ,222= 1,|b| =(cos x) + (sin x) 及 |a|= |b|,得 4sin 2x = 1.π1π又 x ∈ [0, ],进而 sin x = ,因此 x = .22 62(2) f(x)= a ·b = 3sin x ·cos x + sin x=3 1 1π 1,2sin 2x - cos 2x += sin(2x - )+ 2262π π π1,当 x = ∈ [0, ] 时, sin(2 x -)取最大值326因此 f( x)的最大值为32.10.已知向量 a = (cos α, sin α),b = (cos x , sin x), c = (sin x + 2sin α, cos x + 2cos α),此中 0<α<x<π.π(1) 若 α=4,求函数 f(x)= b ·c 的最小值及相应 x 的值;π (2) 若 a 与 b 的夹角为,且 a ⊥ c ,求 tan 2α的值.3解 (1)∵ b = (cos x , sin x),πc = (sin x + 2sin α, cos x + 2cos α), α= 4,∴ f(x)= b ·c= cos xsin x + 2cos xsin α+sin xcos x +2sin xcos α= 2sin xcos x + 2(sin x + cos x).π令 t = sin x +cos x 4<x<π ,则 2sin xcos x = t 2 -1,且- 1<t< 2.则 y = t 2+ 2t - 1= t +2 2-3,- 1<t< 2,2 2∴ t =- 2时, y min =-3,此时 sin x + cos x =- 2, 2 2 2 即 2sin x + π=- 2,42π π π 5π,∵ <x<π,∴ <x + <424 4 π 7 11π∴ x + = π,∴ x =12 .46∴函数 f(x)的最小值为- 3,相应 x 的值为 11π2 12.π(2) ∵ a 与 b 的夹角为 ,3π a ·b∴ cos= = cos αcos x + sin αsin x3 |a| ·|b|= cos(x - α).π∵ 0< α<x<π,∴ 0<x - α<π,∴ x - α=3.∵ a ⊥ c ,∴ cos α(sin x + 2sin α)+ sin α(cos x + 2cos α)= 0,π∴ sin(x + α)+ 2sin 2α= 0,即 sin 2α+3 + 2sin 2α= 0.5 sin 2α+ 3 3. ∴ 2cos 2α=0,∴ tan 2α=-52B 组 能力提升11.已知非零单位向量a 与非零向量b 知足 |a +b|= |a - b|,则向量 b - a 在向量 a 上的投影为 ________.答案 -1分析 因为 |a + b|= |a - b|,因此 (a + b)2= (a - b)2,2解得 a ·b = 0,因此向量 b - a 在向量 a 上的投影为 |b - a|cos 〈 a , b - a 〉=a ·(b -a)=0-|a||a||a|=- |a|=- 1.→ → →AB AC12.已知点 P 为 △ ABC 所在平面内一点, 且知足 AP = λ( → + →)(λ∈ R),则直线 |AB|cos B |AC|cos CAP 必经过 △ ABC 的 ________心. 答案垂→ → →AB AC分析 ∵BC ·( → + → )|AB|cos B |AC|cos C→ →=- |BC|+ |BC|= 0,→ → →AB AC∴ BC 与 λ( → + →)垂直,|AB|cos B |AC|cos C→ →AP 经过 △ABC 的垂心.∴ AP ⊥ BC ,∴点 P 在 BC 的高线上,即直线13.若 a = (2+ λ,1),b = (3,λ),若〈 a ,b 〉为钝角, 则实数 λ的取值范围是 ______________.答案3 (- ∞,- 3)∪( -3,- )2分析3 ∵ a = (2+ λ,1),b = (3,λ),∴ a ·b = 3(2+ λ)+ λ<0,得 λ<- .若 a ,b 共线,则 λ(2+ λ)2- 3= 0,解得λ=- 3 或λ=1.即当λ=- 3 时, a, b 方向相反,3又〈 a, b〉为钝角,则λ<-且λ≠- 3.14.在直角坐标系xOy 中,已知点A(1,1), B(2,3), C(3,2) ,点 P(x, y)在△ABC 三边围成的地区 (含界限 )上.→→→→(1) 若 PA+PB + PC= 0,求 |OP|;→→→(2) 设 OP=mAB+ nAC(m, n∈ R),用 x, y 表示 m-n,并求 m-n 的最大值.解 (1)方法一→ →→∵ PA+ PB+ PC= 0,→→→又 PA+ PB+ PC= (1- x,1- y)+ (2-x,3- y)+ (3- x,2- y)=(6 -3x,6- 3y),6- 3x= 0,x=2,∴解得6- 3y= 0,y=2,→→即 OP= (2,2),故 |OP|= 2 2.方法二→→→∵PA+ PB+ PC= 0,→→→→→→则 (OA- OP)+(OB -OP) +(OC-OP) =0,→1→→→→2.∴ OP=3(OA+ OB+ OC)=(2,2),∴ |OP|= 2→→→(2) ∵ OP=mAB+ nAC,x= m+2n,∴ (x, y)= (m+ 2n, 2m+ n),∴y= 2m+ n,两式相减得, m- n= y- x.令 y-x= t,由图知,当直线y= x+t 过点B(2,3) 时, t 获得最大值 1,故 m- n 的最大值为1.。

高三数学二轮专题复习(平面向量)导学案(无答案) 学案

高三数学二轮专题复习(平面向量)导学案(无答案) 学案

2012江苏省南京市东山外语国际学校高三数学二轮专题复习《平面向量》导学案(无答案)【高考趋势】向量的概念是高考中重点考查内容之一.平面向量的三角形法则和平行四边形法则是考查向量几何意义的主要内容,平面向量的坐标运算主要考查平行和垂直的条件,平面向量的数量积是高考考查的C 级要求,是高考考查的重要内容。

向量与三角的整合题是近几年小题或解答题第一题的热点. 【考点展示】1.已知向量)4,3(=a,)cos ,(sin αα=b ,若b a //,则αtan =_____________.2.若b a ,是平面内两个相互垂直的单位向量,若c 满足0)).((=--c b c a,则c 的最大值为___. 3.若向量b a ,满足1,2==b a ,1).(=+b a a ,则向量b a,的夹角为___________.4.设P 为ABC ∆所在平面内的一点,且AC AB AP 5152+=,则ABP ∆的面积与ABC ∆的面积之比为____________.5.已知o Θ的半径为1,PB PA ,为该圆的两条切线,且B A ,为两切点,那么PB PA ..的最小值为 【样题剖析】例1.已知b a,是两个给定的向量,它们的夹角为θ,向量b t a c +=)(R t ∈,求c 的最小值,并求此时向量b 与c的夹角.例2 .如图ABC ∆中,AC AB =,D 是BC 中点,AC DE ⊥,E 是垂足,F 是DE 中点.求证:BE AF ⊥. AFB D C例3.在ABC ∆中,满足:AC AB ⊥, M 是BC 的中点.(1AC AB 2+与向量AC AB +2的夹角的余弦值; (2)若O 是线段AM2,求OA OC OB OA ..+的最小值;(3)若点P 是边上BC一点,且2.2.=AB AP AC AP .AC ++.【课后训练】1. 已知a是平面内的单位向量,若向量b 满足:0).(=-b a b ,则b 的取值范围为_____________.2. 在平面直角坐标系中,已知)0,2(-A ,)3,1(B ,)1,1(-N ,O 为坐标原点,若点M 在直线AB 上,则ON OM .的值为____________. 3. 在ABC ∆中,3=AB ,2=BC,2π=∠A -.则实数t 的取值范围为___________.4. 把一颗骰子投掷两次,并记第一次出现的点数为a ,第二次出现的点数为b ,向量),(b a m = ,)2,1(=n,则向量m 与向量n不共线的概率为___________________.5. ABC ∆的三边c b a ,,,以A 为圆心作半径r 为的圆,为PQ 直径,试判断PQ 在什么位置时,CQ BP .有最大值.。

高三数学平面向量试题答案及解析

高三数学平面向量试题答案及解析1.已知点为的外接圆的圆心,且,则的内角等于( ) A.B.C.D.【答案】A【解析】由得,所以四边形为菱形,因此,即.【考点】1.向量运算;2.三角形外心.2.已知是单位向量,.若向量满足()A.B.C.D.【答案】A;【解析】因为,,做出图形可知,当且仅当与方向相反且时,取到最大值;最大值为;当且仅当与方向相同且时,取到最小值;最小值为.3.已知向量,,则向量在上的正射影的数量为()A.B.C.D.【答案】D【解析】向量在上的正射影的数量为选D.【考点】向量正投影4.设向量,,则向量在向量上的投影为.【答案】-1【解析】由已知向量,,向量在向量上的投影为.【考点】向量的投影.5.已知向量,,若与垂直,则()A.B.C.2D.4【答案】C【解析】因为两向量垂直,所以,即,代入坐标运算:,解得:,所以.【考点】向量数量积的坐标运算6.已知向量满足,,.若对每一确定的,的最大值和最小值分别是,则对任意,的最小值是.【答案】【解析】设,则,设OA中点为D,则,因此四点A,D,B,C共圆,圆心为AB中点M,直径为AB,从而的最大值和最小值分别是因此【考点】向量几何意义7.已知向量满足,则在方向上的投影为.【答案】【解析】根据,求得,根据投影公式可得在方向上的投影为.【考点】向量在另一个向量方向上的投影.8.若O是△ABC所在平面内一点,且满足|-|=|+-2|,则△ABC一定是A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】B【解析】根据题意有,即,从而得到,所以三角形为直角三角形,故选B.【考点】向量的加减运算,向量垂直的条件,三角形形状的判断.9.已知、是不共线的向量,,那么三点共线的充要条件为()A.B.C.D.【答案】B【解析】因为三点共线,所以,所以,故选B.【考点】向量共线的充要条件.10.已知是内的一点,且,,若,和的面积分别为、、,则的最小值是()A.B.C.D.【答案】B【解析】利用向量的数量积的运算求得bc的值,利用三角形的面积公式求得x+y的值,进而把转化为利用基本不等式求得的最小值即可.因为,,所以故选B.【考点】平面向量;均值不等式11.设向量a=(-1,2),b=(m,1),如果向量a+2b与2a-b平行,则a 与b的数量积等于()A.-B.-C.D.【答案】D【解析】由已知可得,因为与平行,所以可得,解得.即..故D正确.【考点】1向量共线;2数量积公式.12.在中,已知,,分别是边上的三等分点,则的值是()A.B.C.D.【答案】C【解析】因为、分别是边上的三等分点所以,所以又所以得所以故答案选【考点】1.向量的线性关系;2.向量的数量积.13.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F.设,记,则函数的值域是;当面积最大时,.【答案】,【解析】如图,作,交延长线于,则,易证得,所以设,则所以所以由题知,所以故的值域是因为,所以当面积最大时,,即则在中,所以【考点】1.向量的数量积;2.二次函数的最值.14.边长为2的正三角形内(包括三边)有点,,求的取值范围.【答案】.【解析】如下图所示,建立平面直角坐标系,∴,,,,,∴,即点P的轨迹为圆夹在三角形ABC内及其边界的一段圆弧,在中,有,又∵,即的取值范围是.【考点】平面向量数量积.【思路点睛】平面向量的综合题常与角度与长度结合在一起考查,在解题时运用向量的运算,数量积的几何意义,同时,需注意挖掘题目中尤其是几何图形中的隐含条件,常利用数形结合思想将问题等价转化为利用几何图形中的不等关系将问题简化,一般会与函数,不等式等几个知识点交汇,或利用平面向量的数量积解决其他数学问题是今后考试命题的趋势.15.在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E,F分别为AB,BC的中点,点P在以A为圆心,AD为半径的圆弧上变动(如图所示).若,其中的取值范围是.【答案】【解析】建立如下图所示直角坐标系,则,,,,,所以,,又因为点在以为圆心、为半径的圆上,且在第一象限,所以点的坐标为,,所以,所以.,,由三角函数的性质可知,函数的值域为,所以的取值范围为.【考点】1.向量的坐标运算;2.圆的参数方程;3.三角函数的性质.【方法点睛】本题主要考查向量的坐标运算、圆的参数方程的应用、三角函数的性质、数形结合思想,属难题.平面向量的坐标运算主要是利用向量加、减、数乘运算的法则进行求解的,若已知有向线段两端点的坐标,应先求出向量的坐标,解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)求解进行,并注意方程思想与转化思想的应用.16.已知向量,,若与平行,则的值是 _.【答案】【解析】由题意与平行,则可得到【考点】共线向量17.在中,,D是边BC上一点,(1)求的值;(2)求的值【答案】(1)(2)【解析】(1)在中,已知三边求一角,故应用余弦定理:,解得,(2)因为,而,因此只需求边AB,这可由正弦定理解得:试题解析:在中,由余弦定理得:.把,,代入上式得.因为,所以.在中,由正弦定理得:.故.所以.【考点】正余弦定理【名师】1.正弦定理可以处理①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角.余弦定理可以处理①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角.其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.18.已知向量,其中,则向量的夹角是()A.B.C.D.【答案】D【解析】由于,则,即,则,则有,所以向量的夹角是.【考点】平面向量的数量积的运算.19.(2015秋•上海月考)已知||=2,||=1,的夹角为,则= .【答案】1【解析】代入向量数量级定义式计算.解:=||•||cos=2×1×=1.故答案为:1.【考点】平面向量数量积的运算.20.(2015•河南模拟)已知向量=(2,1),=(0,﹣1).若(+λ)⊥,则实数λ=.【答案】5【解析】本题先将向量坐标化,利用两向量垂直得到它们的数量积为零,求出λ的值,得到本题答案.解:∵向量=(2,1),=(0,﹣1),∴.∵(+λ)⊥,∴2×2+1×(1﹣λ)=0,λ=5.故答案为:5.【考点】平面向量数量积的运算.21.已知两定点,,点P在椭圆上,且满足=2,则为()A.-12B.12C.一9D.9【答案】D【解析】由,可得点的轨迹是以两定点,为焦点的双曲线的上支,且∴的轨迹方程为:,由和联立可解得:,则.故选D.【考点】椭圆的简单性质.22.在边长为1的正三角形ABC中,设,则__________.【答案】.【解析】如图:由知点D是BC边的中点,点E是CA边上靠近点C的一个三等分点,.故答案应填:.【考点】向量的数量积.23.在中,则∠C的大小为()A.B.C.D.【答案】B【解析】,解得,所以,故选B.【考点】平面向量数量积的应用.24.已知点P是内一点,且,则()A.B.C.D.【答案】C【解析】设点M是中点,则点P是一个三等分点,,选C.【考点】向量表示25.知△ABC和点M满足+=-,若存在实数m使得m+m=成立,则m等于()A.B.2C.D.3【答案】C【解析】由,得,知点是的重心,由,由于是的重心,所以,,故选C.【考点】平面向量.26.已知向量,设.(1)求函数的解析式及单调增区间;(2)在中,分别为内角的对边,且,求的面积.【答案】(1),;(2)【解析】(Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得,由,可解得函数的单调增区间.(Ⅱ)由,可得,结合范围,可得,从而求得,由余弦定理可解得的值,利用三角形面积公式即可得解.试题解析:解:(Ⅰ)由可得所以函数的单调递增区间为,(Ⅱ)由可得【考点】1.余弦定理;2.三角函数中的恒等变换应用.27.在中,,点是线段上的动点,则的最大值为_______.【答案】.【解析】,所以当M,N重合时,,最大,为,又设所以,显然当时,最大为,故的最大值为3.【考点】数量积的应用.28.已知向量若则()A.B.C.2D.4【答案】C【解析】由已知,因为,所以,,所以.故选C.【考点】向量垂直的坐标运算,向量的模.29.已知||=,||=2,若(+)⊥,则与的夹角是.【答案】150°.【解析】根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.【考点】平面向量数量积的运算.30.已知点为内一点,且则________.【答案】【解析】如图,即,又,所以有,则.【考点】向量的运算.【思路点睛】因为有相同的底边,所以只要分别求得顶点的距离或者其比值便可求得面积之比,显然求比值较容易,由三角形相似的性质可知顶点的距离之比等于的比值,所以要结合利用向量的运算求得的比值.31.若非零向量满足,且,则与的夹角为()A.B.C.D.【答案】D【解析】,因为,所以有,其中为与的夹角,将代入前式中,可求得,故本题的正确选项为D.【考点】向量的运算.32.已知△ABC和点M满足.若存在实数m使得成立,则m=()A.2B.3C.4D.5【答案】B【解析】解题时应注意到,则M为△ABC的重心.解:由知,点M为△ABC的重心,设点D为底边BC的中点,则==,所以有,故m=3,故选:B.【考点】向量的加法及其几何意义.33.等腰直角三角形中,是斜边上一点,且,则.【答案】4【解析】因为,而,.所以答案应填:4.【考点】平面向量数量积的运算.【方法点睛】欲求的值的关键是选为一组基底,用表述出,代入数量积进行运算.另一种方法:以为原点,分别以为轴,建立直角坐标系,则,所以,由知,所以.本题考查平面向量的数量积的运算,属于基础题.34.在中,是上的点,若,则实数的值为___________.【答案】【解析】因为,所以,即,所以,又因为三点共线,所以.【考点】1.向量的线性运算;2.向量共线定理.35.如图,在中,为的中点,为上任一点,且,则的最小值为.【答案】9【解析】因为是中点,所以,又在线段上,所以,且,所以,当且仅当,即时等号成立,所以的最小值为9.【考点】平面向量的基本定理,基本不等式.【名师】设点是直线外任一点,,则是三点共线的充要条件.36.在平面直角坐标系中有不共线三点,,.实数满足,则以为起点的向量的终点连线一定过点()A.B.C.D.【答案】C【解析】由题意得,,所以.设点在向量的中点连线上,则,所以一点过点,故选C.【考点】向量的坐标运算.【方法点晴】本题主要考查了平面向量的坐标运算及平面向量的共线定理的应用,属于中档试题,着重考查了学生的推理、运算能力和转化与化归的思想方法,本题的解答中,根据,设点在向量的中点连线上,利用平面向量的共线定理和平面向量的坐标运算,得到向量的表示,即可到结论.37.四边形中,且,则的最小值为【答案】【解析】通过建立坐标系,设C(a,0),D(0,b),利用数量积的坐标运算得出数量积关于a,b的函数,求出函数的最小值.设AC与BD交点为O,以O为原点,AC,BD为坐标轴建立平面直角坐标系,设C(a,0),D(0,b),则A(a-2,0),B(0,b-3),当时,取得最小值.【考点】平面向量的坐标运算【方法点睛】平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.38.已知是两个互相垂直的单位向量,且,则对任意实数,的最小值为____________.【答案】【解析】,建立如图所示的直角坐标系, 取,设.,当且仅当时取等号. 故答案为.【考点】1、向量的几何性质、平面向量的数量积公式;2、利用基本不等式求最值.【易错点晴】本题主要考查向量的几何性质、平面向量的数量积公式以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用“或”时等号能否同时成立).39.已知曲线上的任意点到点的距离比它到直线的距离小1,(1)求曲线的方程;(2)点的坐标为,若为曲线上的动点,求的最小值(3)设点为轴上异于原点的任意一点,过点作曲线的切线,直线分别与直线及轴交于,以为直径作圆,过点作圆的切线,切点为,试探究:当点在轴上运动(点与原点不重合)时,线段的长度是否发生变化?请证明你的结论【答案】(1);(2)的最小值为2;(3)线段的长度为定值【解析】(1)根据抛物线的定义得出轨迹方程;(2)设,将表示为(或)的函数,根据函数性质求出最小值;(3)设坐标和直线的斜率,根据相切得出的关系,求出坐标得出圆的圆心和半径,利用切线的性质得出的长.试题解析:(1)设为曲线上的任意一点,依题意,点到点的距离与它到直线的距离相等,所以曲线是以为焦点,直线为准线的抛物线,所以曲线的方程为(2)设,则因为,所以当时,有最小值2(3)当点在轴上运动(与原点不重合)时,线段的长度不变,证明如下:依题意,直线的斜率存在且不为0,设,代入得,由得将代入直线的方程得,又,故圆心所以圆的半径为当点在轴上运动(点与原点不重合)时,线段的长度不变,为定值【考点】抛物线的定义及其标准方程,向量的数量积运算,直线与圆锥曲线的关系40.平面向量与的夹角为60°,,则等于()A.B.4C.12D.16【解析】,因此,选A.【考点】向量的模41.已知向量,则a与b夹角的大小为_________.【答案】【解析】两向量夹角为,又两个向量夹角范围是,所以夹角为.【考点】向量数量积与夹角公式【名师】由向量数量积的定义(为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近几年高考中出现的频率很高,应熟练掌握其解法.42.已知向量,且,则m=A.−8B.−6C.6D.8【答案】D【解析】,由得,解得,故选D.【考点】平面向量的坐标运算、数量积【名师】已知非零向量a=(x1,y1),b=(x2,y2):|a|=|a|=cos θ=cos θ=a·b=0x x+y y=043.在中,点M是边BC的中点.若,则的最小值是____.【答案】【解析】设,由,即有,得,点是的中点,则,.当且仅当取得最小值,且为.则的最小值为,故答案为:.【考点】平面向量数量积的运算.44.已知向量,,则()A.2B.-2C.-3D.4【解析】因,故,应选A。

高考数学平面向量专题练习、参考答案

高考数学平面向量专题练习考试要求:1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2、掌握向量的加法和减法。

3、掌握实数与向量的积,理解两个向量共线的充要条件。

4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直问题,掌握向量垂直的条件。

6、掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用,掌握平移公式。

1、已知向量b a 与不共线,且0||||≠=b a ,则下列结论中正确的是 A .向量b a b a -+与垂直 B .向量b a -与a 垂直C .向量b a +与a 垂直D .向量b a b a -+与共线2.已知在△ABC 中,OA OC OC OB OB OA ⋅=⋅=⋅,则O 为△ABC 的A .内心B .外心C .重心D .垂心3.在△ABC 中设a AB =,b AC =,点D 在线段BC 上,且3BD DC =,则AD 用b a ,表示为 。

4、已知21,e e 是两个不共线的向量,而→→→→→→+=-+=2121232)251(e e b e k e k a 与是两个共线向量,则实数k = .5、设→i 、→j 是平面直角坐标系内分别与x 轴、y 轴方向相同的两个单位向量,且→→+=j i OA 24,→→+=j i OB 43,则△OAB 的面积等于 :A .15B .10C .7.5D .56、已知向量OB OA OC OB OA +==--=),3,2(),1,3(,则向量OC 的坐标是 ,将向量OC 按逆时针方向旋转90°得到向量OD ,则向量OD 的坐标是 . 7、已知)3,2(),1,(==AC k AB ,则下列k 值中能使△ABC 是直角三角形的值是A .23B .21-C .-5D .31-8、在锐角三角形ABC 中,已知ABC AC AB ∆==,1||,4||的面积为3,则=∠BAC ,AC AB ⋅的值为 .9、已知四点A ( – 2,1)、B (1,2)、C ( – 1,0)、D (2,1),则向量AB 与CD 的位置关系是 A. 平行B. 垂直C. 相交但不垂直D. 无法判断10、已知向量OB OA CA OC OB 与则),sin 2,cos 2(),2,2(),0,2(αα===夹角的范围是:A .]4,0[π B .]125,4[ππ C .]125,12[ππ D .]2,125[ππ 11、若,4,,2||,3||π夹角为且b a b a ==则||b a +等于:A .5B .52C .21D .1712、已知→a =(6,2),→b =)21,4(-,直线l 过点A )1,3(-,且与向量→→+b a 2垂直,则直线l 的一般方程是 . 13、设]2,[,),()()(ππ--∈-+=R x x f x f x F 是函数)(x F 的单调递增区间,将)(x F 的图象按)0,(π=a 平移得到一个新的函数)(x G 的图象,则)(x G 的单调递减区间必是:A .]0,2[π-B .],2[ππC .]23,[ππ D .]2,23[ππ14、把函数3)2(log 2+-=x y 的图象按向量a 平移,得到函数1)1(log 2-+=x y 的图象,则a 为( )A .(3,-4)B .(3,4)C .(-3,4)D .(-3,-4)15、如果把圆)1,(02:22-==-+m a y y x C 沿向量平移后得到圆C ′,且C ′与直线043=-y x 相切,则m 的值为 .16、已知P 是抛物线122-=x y 上的动点,定点A (0,-1),若点M 分PA 所成的比为2,则点M 的轨迹方程是_____,它的焦点坐标是_________.17、若D 点在三角形的BC 边上,且4CD DB r AB sAC ==+,则3r s +的值为:A. 165B. 125C. 85D. 4518、若向量),sin ,(cos ),sin ,(cos ββb a ==αα则b a与一定满足:A.b a 与的夹角等于βα-B.)()(b a b a -⊥+C. b a //D.b a ⊥19、已知A (3,0),B (0,3),C (cos α,sin α).(1)若BC AC ⋅=-1,求sin2α的值; (2)若13||=+OC OA ,且α∈(0,π),求OB 与OC 的夹角.20、已知O 为坐标原点,a R a R x a x OB x OA ,,)(2sin 3,1(),1,cos 2(2∈∈+==是常数),若.OB OA y ⋅=(Ⅰ)求y 关于x 的函数解析式);(x f (Ⅱ)若]2,0[π∈x 时,)(x f 的最大值为2,求a 的值并指出)(x f 的单调区间.21、已知A (-2,0)、B (2,0),点C 、点D 满足).(21,2||AC AB AD AC +== (1)求点D 的轨迹方程;(2)过点A 作直线l 交以A 、B 为焦点的椭圆于M 、N 两点,线段MN 的中点到y 轴的距离为54,且直线l 与点D 的轨迹相切,求该椭圆的方程. 22、如图,已知△OFQ 的面积为S ,且 1=⋅FQ OF . (1)若21<S <2,求向量OF 与FQ 的夹角θ的取值范围; (2)设|OF | = c (c ≥2),S =c 43,若以O 为中心,F 为焦点的椭圆经过点Q ,当|OQ |取得最小值时,求此椭圆的方程.参考答案1、A ;2、D ;3、→→+b a 4341;4、231或;5、D ;6、)2,1(-,)1,2(--;7、D ;8、3π, 2;9、A ;10、C ;11、D ;12、0932=--y x ;13、D ;14、D ;15、35±;16、)0(162≠-=x x y ,)21,0(;17、C ;18、B19(1)解:(cos 3,sin )AC αα=-,(cos ,sin 3)BC αα=-∴BC AC ⋅=-1⇒cos (cos 3)sin (sin 3)1αααα-+-=- ∴2cos sin 3αα+=,∴224cos sin 2sin cos 9αααα++= ∴5sin 29α=- (2)∵(3cos ,sin )OA OC αα+=+=化简得1cos 2α=, ∵(0,)απ∈,∴sin 2α=∴3sin cos ,sin 3||||OB OC OB OC OB OC αα⋅<>====2 ∴OB 与OC 的夹角为6π20.(1),2sin 3cos 22a x x OB OA y ++=⋅=).](32,6[:).](6,3[:)(.1,23,3)(,]6,0[6,262.1)62sin(2)()2(.12sin 32cos )(Z k k kx Z k k kx x f a a a x f x x a x x f a x x x f ∈+-∈+--==++∈==+∴+++=+++=∴πππππππππππ单调减区间是的单调增区间是可解得函数解得由取最大值时解得 21.解:(I )设C 、D 点的坐标分别为C (),00y x ,D ),(y x ,则00,2(y x AC +=),)0,4(=AB则),6(00y x AC AB +=+,故)2,32()(2100y x AC AB AD +=+=又解得故⎪⎪⎩⎪⎪⎨⎧=+=++=.2,232),,2(00y y x x y x AD ⎩⎨⎧=-=.2,2200y y x x 代入2)2(||2020=++=y x AC 得122=+y x ,即为所求点D 的轨迹方程.(II )易知直线l 与x 轴不垂直,设直线l 的方程为)2(+=x k y ①.又设椭圆方程为)4(1422222>=-+a a y a x ②. 因为直线l 与圆122=+y x 相切.故11|2|2=+k k ,解得.312=k将①代入②整理得,0444)4(2422222222=+-++-+a a k a x k a x a k a , 而313=k ,即0443)3(24222=+-+-a a x a x a ,设M (),11y x ,N (),22y x ,则32221--=+a a x x ,由题意有)3(5423222>⨯=-a a a ,求得82=a .经检验,此时.0>∆ 故所求的椭圆方程为.14822=+y x 22.解:(1)由已知,得.2tan 1cos ||||)sin(||||21S FQ OF SFQ OF =⇒⎪⎩⎪⎨⎧==-⋅θθθπ ∵21<S <2,∴2<tan θ<4,则4π<θ<arctan4. (2)以O 为原点,OF 所在直线为x 轴建立直角坐标系,设椭圆方程为12222=+by a x (a >0,b >0),Q 的坐标为(x 1,y 1),则FQ =(x 1-c ,y 1),∵△OFQ 的面积为,43||211c y OF =⋅∴y 1 =23又由OF ·FQ =(c ,0)·⎪⎭⎫ ⎝⎛-23 ,1c x =(x 1-c )c = 1,得x 1 =491|| ,122121+⎪⎭⎫ ⎝⎛+=+=+c c y x OQ c c (c ≥2).当且仅当c = 2时|OQ |最小,此时Q 的坐标为⎪⎭⎫⎝⎛23 ,25,由此可得⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=-=+6104149425222222b a b a b a , 故椭圆方程为161022=+y x .。

2021-2022年高考数学二轮专题复习 专题三 3.3 平面向量及其综合应用能力训练 新人教A版

2021年高考数学二轮专题复习专题三 3.3 平面向量及其综合应用能力训练新人教A版一、选择题(本大题共7小题,每小题5分,共35分)1.(xx四川,文2)设向量a=(2,4)与向量b=(x,6)共线,则实数x=()A.2B.3C.4D.62.(xx浙江宁波鄞州5月模拟,文2)已知点A(-1,1),B(1,2),C(-3,2),则向量方向上的投影为()A.-B.C.-D.3.(xx浙江温州三适,文6)已知向量|a|=|b|=|a-b|=1,则|2b-a|=()A.2B.C.3D.24.(xx浙江宁波期末考试,文8)已知a,b满足|a|=5,|b|≤1,且|a-4b|≤,则a·b的最小值为()A. B.-5C. D.-5.已知P是△ABC所在平面内一点,若,则△PBC与△ABC的面积的比为()A. B. C. D.6.已知a,b,c满足|a|=|b|=,a·b=,|c-a-b|=1,则|c|的最大值为()A.4B.+1C.3+D.27.(xx浙江湖州第三次教学质量调测,文8)已知向量a⊥b,|a-b|=2,定义:cλ=λa+(1-λ)b,其中0≤λ≤1.若cλ·,则|cλ|的最大值为()A. B. C.1 D.二、填空题(本大题共4小题,每小题5分,共20分)8.(xx浙江嘉兴教学测试(二),文10)若向量a与b满足|a|=,|b|=2,(a-b)⊥a,则向量a与b的夹角等于;|a+b|=.9.(xx安徽,文15)△ABC是边长为2的等边三角形,已知向量a,b满足=2a,=2a+b,则下列结论中正确的是.(写出所有正确结论的编号)①a为单位向量;②b为单位向量;③a⊥b;④b∥;⑤(4a+b)⊥.10.(xx浙江宁波鄞州5月模拟,文15)在△ABC中,AC=3,∠A=,点D满足=2,且AD=,则BC的长为.11.(xx浙江第一次五校联考,文15)设a1,a2,…,a n,…是按先后顺序排列的一列向量,若a1=(-2 014,13),且a n-a n-1=(1,1),则其中模最小的一个向量的序号n=.三、解答题(本大题共3小题,共45分.解答应写出必要的文字说明、证明过程或演算步骤)12.(本小题满分14分)如图,已知在△OCB中,点C是以A为中点的点B的对称点,D是将分成2∶1的一个内分点,DC和OA交于点E,设=a,=b.(1)用a和b表示向量;(2)若=λ,求实数λ的值.13.(本小题满分15分)已知向量m=(1,3cos α),n=(1,4tan α),α∈,且m·n=5.(1)求|m+n|;(2)设向量m与n的夹角为β,求tan(α+β)的值.14.(本小题满分16分)(xx陕西,文17)△ABC的内角A,B,C所对的边分别为a,b,c.向量m=(a,b)与n=(cos A,sin B)平行.(1)求A;(2)若a=,b=2,求△ABC的面积.参考答案专题能力训练8平面向量及其综合应用1.B解析:由a=(2,4),b=(x,6)共线,可得4x=12,即x=3.2.C解析:由题意可知=(2,1),=(-2,1),所以向量方向上的投影为=-.故选C.3.B解析:因为|a|=|b|=|a-b|=1,所以|a-b|2=|a|2-2a·b+|b|2=1.所以a·b=.所以|2b-a|2=4|b|2-4a·b+|a|2=4-4×+1=3.所以|2b-a|=.故选B.4.A解析:因为|a-4b|≤,所以|a|-4|b|≤,即|b|≥.所以|b|2≥.因为|a-4b|2=(a-4b)2=a2-8a·b+16b2=|a|2-8a·b+16|b|2=25-8a·b+16|b|2≤21,所以a·b≥+2|b|2≥.所以a·b的最小值是.故选A.5.A解析:如图,以B为原点,BC所在直线为x轴,建立平面直角坐标系,设A(x A,y A),P(x P,y P),C(x C,0),则,即(x P-x A,y P-y A)=(x C,0)-(x A,y A),所以x P-x A=x C-x A,y P-y A=0-y A,y P=y A.故.6.A解析:∵|a|=|b|=,a·b=,∴a与b的夹角为60°.设=a,=b,=c,建立如图所示的坐标系,则a=(,0),b=.设c=(x,y),则c-a-b=.又|c-a-b|=1,∴=1,即点C的轨迹是以为圆心,1为半径的圆.∵|c|=表示点(x,y)到原点(0,0)的距离,∴|c|max=+1=4.故选A.7.C解析:由题意可设a=(a,0),b=(0,b),则由|a-b|=2可得a2+b2=4,由cλ·可得a2+b2=⇒λa2+(1-λ)b2=1.又|cλ|2=λ2a2+(1-λ)2b2,且λa2+(1-λ)b2-λ2a2-(1-λ)2b2=λ(1-λ)·(a2+b2)≥0,所以|cλ|2=λ2a2+(1-λ)2b2≤1.故选C.8. 解析:∵(a-b)⊥a,∴(a-b)·a=0.∴a2=a·b=2.∴cos<a,b>=.∴<a,b>=,|a+b|=.9.①④⑤解析:在正三角形ABC中,=2a,||=2,所以|a|=1,①正确;由=2a+b,得=b,因此④正确,②不正确;由的夹角为120°,知a与b的夹角为120°,所以③不正确;因为=b,所以(4a+b)·=4a·b+b2=4×1×2×+22=0,所以(4a+b)⊥.故⑤正确.10.3解析:因为)=,所以|2+|·||cos 45°+|2,即13=|2+|·3··32,解得AB=3.又由余弦定理得BC2=AB2+AC2-2AB·AC·cos 45°=9,所以BC=3.11.1 001或1 002解析:设a n=(x n,y n),∵a1=(-2 014,13),且a n-a n-1=(1,1),∴数列{x n}是首项为-2 014,公差为1的等差数列,数列{y n}是首项为13,公差为1的等差数列.∴x n=n-2 015,y n=n+12.∴|a n|2=(n-2 015)2+(n+12)2=2n2-4 006n+2 0152+122.∴可知当n=1 001或1 002时,|a n|取到最小值.12.解:(1)由题意知,A是BC的中点,且,由平行四边形法则,得=2.故=2=2a-b,=(2a-b)-b=2a-b.(2)如题图,.又∵=(2a-b)-λa=(2-λ)a-b,=2a-b,∴,解得λ=.13.解:(1)由题意知m·n=1+12cos αtan α=1+12sin α=5,即sin α=.因为α∈,所以cos α=,tan α=.所以m=(1,2),n=(1,),m+n=(2,3).所以|m+n|=.(2)由(1)知m=(1,2),n=(1,),则cos β=,sin β=,所以tan β=.所以tan(α+β)=.14.解:(1)因为m∥n,所以a sin B-b cos A=0.由正弦定理,得sin A sin B-sin B cos A=0.又sin B≠0,从而tan A=.由于0<A<π,所以A=.(2)解法一:由余弦定理,得a2=b2+c2-2bc cos A,而a=,b=2,A=,得7=4+c2-2c,即c2-2c-3=0.因为c>0,所以c=3.故△ABC的面积为bc sin A=.解法二:由正弦定理,得,从而sin B=.又由a>b,知A>B,所以cos B=.故sin C=sin(A+B)=sin=sin B cos+cos B sin.所以△ABC的面积为ab sin C=.。

2022高考数学(文)二轮复习高考大题标准练(二) Word版含答案

温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。

关闭Word 文档返回原板块。

高考大题标准练(二)满分75分,实战模拟,60分钟拿下高考主观题高分!1.(12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c ,已知3cosBcosC+2=3sinBsinC+2cos 2A. (1)求角A 的大小.(2)若b=5,sinBsinC=57,求△ABC 的面积S.【解析】(1)由3cosBcosC+2=3sinBsinC+2cos 2A ,得2cos 2A+3cosA-2=0, 即(2cosA-1)(cosA+2)=0. 解得cosA=12或cosA=-2(舍去).由于0<A<π,所以A=π3.(2)由正弦定理,得sinBsinC=basinA ·casinA=bc a2·sin 2A=57.由余弦定理,得a 2=b 2+c 2-2bccosA , 又b=5,所以c=4或c=254.S=12bcsinA=12bc ·√32=√34bc=5√3或S=125√316.2.(12分)设数列{a n }(n=1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式.(2)设数列{1a n}的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.【解析】(1)当n ≥2时,有a n =S n -S n-1=2a n -a 1-(2a n-1-a 1) 则a n =2a n-1(n ≥2),a n a n−1=2(n ≥2),则{a n }是以a 1为首项,2为公比的等比数列. 又由题意得2a 2+2=a 1+a 3⇒2·2a 1+2=a 1+4a 1 ⇒a 1=2,则a n =2n (n ∈N *)(2)由题意得1a n=12n (n ∈N *),由等比数列求和公式得T n =12[1−(12)n ]1−12=1-(12)n,|T n −1|=|−(12)n |=(12)n,n=10时,210=1024,n=9时,29=512, 所以|T n -1|<11 000成立的n 的最小值为10.3.(12分)某校从参与某次学问竞赛的同学中,选取60名同学将其成果(百分制,均为整数)分成[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]六组后,得到部分频率分布直方图(如图),观看图形中的信息,回答下列问题. (1)求分数在[70,80)内的频率,并补全这个频率分布直方图. (2)从频率分布直方图中,估量本次考试成果的中位数.(3)若从第1组和第6组两组同学中,随机抽取2人,求所抽取2人成果之差的确定值大于10的概率.【解析】(1)设分数在[70,80)内的频率为x,依据频率分布直方图,则有(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图为:(2)以中位数为准,做一条垂直于横轴的直线,这条直线把频率分布直方图分成面积相等的两个部分,由频率分布直方图知中位数是70+10×13=7313.(3)第1组同学数:60×0.1=6人(设为1,2,3,4,5,6),第6组同学数:60×0.05=3人(设为A,B,C),从第1组和第6组两组同学中,随机抽取2人,共有36个基本大事,所抽取2人成果之差的确定值大于10,即2人一个来自第1组,一个来自第6组,所以包括的基本大事有18个,所以概率为12.4.(12分)三棱柱ABC-A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1= 60°,AB⊥B1C. (1)求证:平面AA1B1B⊥平面BB1C1C.(2)若AB=2,求三棱柱ABC-A1B1C1的体积.【解析】(1)由侧面AA1B1B为正方形,知AB⊥BB1.又AB⊥B1C,BB1∩B1C=B1,所以AB⊥平面BB1C1C,又AB 平面AA1B1B,所以平面AA1B1B⊥平面BB1C1C.(2)由题意,CB=CB1=BB1,设O是BB1的中点,连接CO,则CO⊥BB1.由(1)知,CO⊥平面AA1B1B,且CO=√32BC=√32AB=√3.连接AB1,则VC−ABB1=13S△ABB1·CO=16AB2·CO=2√33.由于V B1−ABC=V C−ABB1=13V ABC−A1B1C1=2√33,故三棱柱ABC-A1B1C1的体积V ABC−A1B1C1=2√3.5.(13分)已知函数f(x)是定义在(0,+∞)上的可导函数,且f(x)>0,f(x)+f′(x)<0.(1)争辩函数F(x)=e x f(x)的单调性,并推断e e-2f(e)<f(2)是否成立?(2)设0<x<1,比较xf(x)与1x f(1x)的大小.【解析】(1)F′(x)=e x(f(x)+f′(x))<0,F(x)在(0,+∞)上单调递减,e>2,则F(e)<F(2),即e e f(e)<e2f(2),则e e-2f(e)<f(2)成立.(2)0<x<1,x<1x,由(1)知F(x)>F(1x )⇒e x f(x)>e1x f(1x),即f(x)>e1x−x f(1x).下面证明:e1x−x>1x2,即证明1x-x+2lnx>0,令g(x)=1x-x+2lnx,则g′(x)=-1x2-1+2x=-(x−1)2x2<0,所以g(x)在(0,1)上是减函数,则g(x)>g(1)=0,即e1x−x>1x2⇒f(x)>1x2f(1x)⇒xf(x)>1xf(1x).6.(14分)已知点P是圆F1:(x+1)2+y2=16上任意一点(F1是圆心),点F2与点F1关于原点对称.线段PF2的中垂线m分别与PF1,PF2交于M,N两点.(1)求点M的轨迹C的方程.(2)直线l经过F2,与抛物线y2=4x交于A1,A2两点,与C交于B1,B2两点.当以B1B2为直径的圆经过F1时,求|A1A2|.【解析】(1)由题意得,F1(-1,0),F2(1,0),圆F1的半径为4,且|MF2|=|MP|,从而|MF1|+|MF2|=|MF1|+|MP|=|PF1|=4>|F1F2|,所以点M的轨迹是以F1,F2为焦点的椭圆,其中长轴长2a=4,得到a=2,焦距2c=2,则短半轴长b=√3,椭圆方程为x24+y23=1.(2)当直线l与x轴垂直时,B1(1,32),B2(1,−32),又F1(-1,0),此时B1F1→·B2F1→≠0,所以以B1B2为直径的圆不经过F1.不满足条件.当直线l不与x轴垂直时,设l:y=k(x-1),由{y=k(x−1),x24+y23=1,得(3+4k2)x2-8k2x+4k2-12=0.由于焦点在椭圆内部,所以恒有两个交点.设B1(x1,y1),B2(x2,y2),则x1+x2=8k23+4k2,x1x2=4k2−123+4k2.由于以B1B2为直径的圆经过F1,所以B1F1→·B2F1→=0,又F1(-1,0),所以(-1-x1)(-1-x2)+y1y2=0,即(1+k2)x1x2+(1-k2)(x1+x2)+1+k2=0,解得k2=97,由{y2=4x,y=k(x−1)得k2x2-(2k2+4)x+k2=0.由于直线l与抛物线有两个交点,所以k≠0,设A1(x3,y3),A2(x4,y4),则x3+x4=2k2+4k2=2+4k2,x3x4=1,所以|A1A2|=x3+x4+2=2+4k2+2=649.关闭Word文档返回原板块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 平面对量高考定位 1.以选择题、填空题的形式考查向量的线性运算,多以熟知的平面图形为背景,难度中低档;2.以选择题、填空题的形式考查平面对量的数量积,多考查角、模等问题,难度中低档;3.向量作为工具常与三角函数、解三角形、不等式、解析几何等结合,以解答题形式消灭.真 题 感 悟1.(2021·全国Ⅱ卷)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A.a ⊥b B.|a |=|b | C.a ∥bD.|a |>|b |解析 由|a +b |=|a -b |两边平方,得a 2+2a·b +b 2=a 2-2a·b +b 2,即a·b =0,故a ⊥b . 答案 A2.(2021·全国Ⅰ卷)已知向量a =(-1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________. 解析 由题意得a +b =(m -1,3),由于a +b 与a 垂直,所以(a +b )·a =0,所以-(m -1)+2×3=0,解得m =7. 答案 73.(2021·天津卷)在△ABC 中,∠A =60°,AB =3,AC =2,若BD → =2DC → ,AE → =λAC → -AB → (λ∈R ),且AD → ·AE →=-4,则λ的值为________.解析 AB → ·AC → =3×2×cos 60°=3,AD → =13AB → +23AC → ,则AD → ·AE → =⎝ ⎛⎭⎪⎫13AB → +23AC → ·(λAC → -AB → )=λ-23AB → ·AC → -13AB → 2+2λ3AC → 2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311. 答案3114.(2021·江苏卷)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解 (1)∵a ∥b ,∴3sin x =-3cos x ,∴3sin x +3cos x =0,即sin ⎝⎛⎭⎪⎫x +π6=0.∵0≤x ≤π,∴π6≤x +π6≤76π,∴x +π6=π,∴x =5π6.(2)f (x )=a·b =3cos x -3sin x =-23sin ⎝⎛⎭⎪⎫x -π3.∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,∴-32≤sin ⎝⎛⎭⎪⎫x -π3≤1,∴-23≤f (x )≤3,当x -π3=-π3,即x =0时,f (x )取得最大值3;当x -π3=π2,即x =5π6时,f (x )取得最小值-2 3.考 点 整 合1.平面对量的两个重要定理(1)向量共线定理:向量a (a ≠0)与b 共线当且仅当存在唯一一个实数λ,使b =λa .(2)平面对量基本定理:假如e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底. 2.平面对量的两个充要条件若两个非零向量a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. 3.平面对量的三共性质(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则|A B → |=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.4.平面对量的三个锦囊(1)向量共线的充要条件:O 为平面上一点,则A ,B ,P 三点共线的充要条件是OP → =λ1OA → +λ2OB →(其中λ1+λ2=1).(2)三角形中线向量公式:若P 为△OAB 的边AB 的中点,则向量OP → 与向量OA → ,OB → 的关系是OP → =12(OA → +OB →).(3)三角形重心坐标的求法:G 为△ABC 的重心⇔GA → +GB → +GC → =0⇔G ⎝ ⎛⎭⎪⎫x A +x B +x C 3,y A +y B +y C 3.热点一 平面对量的有关运算【例1】 (1)(2022·全国Ⅰ卷)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. (2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB , BE =23BC .若DE → =λ1AB → +λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解析 (1)由|a +b |2=|a |2+|b |2,得a ⊥b , 所以a ·b =m ×1+1×2=0,得m =-2. (2)DE → =DB → +BE → =12AB → +23BC → =12AB → +23(AC → -AB → )=-16AB → +23AC → , ∵DE → =λ 1AB → +λ2AC → , ∴λ1=-16,λ2=23,因此λ1+λ2=12.答案 (1)-2 (2)12探究提高 对于平面对量的线性运算,首先要选择一组基底,同时留意共线向量定理的机敏运用.其次运算过程中重视数形结合,结合图形分析向量间的关系.【训练1】 (2021·衡阳二模)如图,正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC → =λAM → +μBN →,则λ+μ=( )A.2B.83C.65D.85解析 法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1,AM → =⎝ ⎛⎭⎪⎫1,12,BN → =⎝ ⎛⎭⎪⎫-12,1,AC →=(1,1).∵AC → =λAM → +μBN → =λ⎝ ⎛⎭⎪⎫1,12+μ⎝ ⎛⎭⎪⎫-12,1=⎝ ⎛⎭⎪⎫λ-μ2,λ2+μ, ∴⎩⎪⎨⎪⎧λ-12μ=1,λ2+μ=1,解之得⎩⎪⎨⎪⎧λ=65,μ=25,故λ+μ=85.法二 以AB → ,AD →作为基底,∵M ,N 分别为BC ,CD 的中点, ∴AM → =AB → +BM → =AB → +12AD → , BN → =BC → +CN → =AD → -12AB →, 因此AC → =λAM → +μBN → =⎝ ⎛⎭⎪⎫λ-μ2AB → +⎝ ⎛⎭⎪⎫λ2+μAD →,又AC → =AB → +AD →, 因此⎩⎪⎨⎪⎧λ-μ2=1,λ2+μ=1,解得λ=65且μ=25.所以λ+μ=85.答案 D热点二 平面对量的数量积 命题角度1 平面对量数量积的运算【例2-1】 (1)(2021·浙江卷)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记I 1=OA → ·OB → ,I 2=OB → ·OC → ,I 3=OC → ·OD →,则( )A.I 1<I 2<I 3B.I 1<I 3<I 2C.I 3<I 1<I 2D.I 2<I 1<I 3(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE → ·CB → 的值为________;DE → ·DC →的最大值为________.解析 (1)如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,∴∠AOB 与∠COD 为钝角,∠AOD 与∠BOC 为锐角,依据题意,I 1-I 2=OA → ·OB → -OB → ·OC → =OB → ·(OA → -OC → )=OB → ·CA →=|OB → ||CA →|·cos∠AOB <0,∴I 1<I 2,同理I 2>I 3,作AG ⊥BD 于G , 又AB =AD ,∴OB <BG =GD <OD ,而OA <AF =FC <OC , ∴|OA → ||OB → |<|OC → ||OD →|, 而cos∠AOB =cos∠COD <0,∴OA → ·OB → >OC → ·OD →,即I 1>I 3.∴I 3<I 1<I 2.(2)法一 如图,以AB ,AD 为坐标轴建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1), 设E (t ,0),t ∈[0,1], 则DE → =(t ,-1),CB →=(0,-1), 所以DE → ·CB →=(t ,-1)·(0,-1)=1.由于DC → =(1,0),所以DE → ·DC →=(t ,-1)·(1,0)=t ≤1,故DE → ·DC →的最大值为1. 法二 如图,无论E 点在哪个位置,DE → 在CB → 方向上的投影都是CB =1,所以DE → ·CB → =|CB →|·1=1,当E 运动到B 点时,DE → 在DC →方向上的投影最大,即为DC =1,所以(DE → ·DC → )max =|DC →|·1=1.答案 (1)C (2)1 1探究提高 1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.进行向量的数量积的运算,首先要有“基底”意识,关键用基向量表示题目中所求相关向量.其次留意向量夹角的大小,以及夹角θ=0°,90°,180°三种特殊情形. 命题角度2 平面对量数量积的性质【例2-2】 (1)(2022·山东卷)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( ) A.4 B.-4 C.94D.-94(2)(2021·哈尔滨模拟)平面对量a ,b 满足|a |=4,|b |=2,a +b 在a 上的投影为5,则|a -2b |的模为( ) A.2 B.4 C.8D.16解析 (1)∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t ·m ·n +n 2=0, ∴t |m ||n |cos 〈m ,n 〉+|n |2=0,由已知得t ×34|n |2×13+|n |2=0,解得t =-4.(2)|a +b |cos 〈a +b ,a 〉=|a +b |·(a +b )·a |a +b ||a |=a 2+a ·b |a |=16+a ·b4=5;∴a ·b =4.又(a -2b )2=a 2-4a ·b +4b 2=16-16+16=16. ∴|a -2b |=4. 答案 (1)B (2)B探究提高 1.求两向量的夹角:cos θ=a ·b|a |·|b |,要留意θ∈[0,π].2.两向量垂直的应用:两非零向量垂直的充要条件是:a ⊥b ⇔a ·b =0⇔|a -b |= |a +b |.3.求向量的模:利用数量积求解长度问题的处理方法有: (1)a 2=a ·a =|a |2或|a |=a ·a . (2)|a ±b |=(a ±b )2=a 2±2a ·b +b 2. (3)若a =(x ,y ),则|a |=x 2+y 2.【训练2】 (1)(2021·福建卷)已知AB → ⊥AC → ,|AB → |=1t ,|AC → |=t ,若点P 是△ABC 所在平面内的一点,且AP → =AB→|AB →|+4AC → |AC →|,则PB → ·PC → 的最大值等于( )A.13B.15C.19D.21(2)(2021·郴州二模)已知a ,b 均为单位向量,且(2a +b )·(a -2b )=-332,则向量a ,b 的夹角为________.解析 (1)建立如图所示坐标系,则B ⎝ ⎛⎭⎪⎫1t ,0,C (0,t ),AB → =⎝ ⎛⎭⎪⎫1t ,0,AC → =(0,t ),则AP → =AB→ |AB → |+4AC→|AC →| =t ⎝ ⎛⎭⎪⎫1t,0+4t(0,t )=(1,4). ∴点P (1,4),则PB → ·PC → =⎝ ⎛⎭⎪⎫1t -1,-4·(-1,t -4) =17-⎝ ⎛⎭⎪⎫1t+4t ≤17-21t·4t =13,当且仅当4t =1t ,即t =12时取等号,故PB → ·PC →的最大值为13. (2)设单位向量a ,b 的夹角为θ, 则|a |=|b |=1,a ·b =cos θ. ∵(2a +b )·(a -2b )=-332,∴2|a |2-2|b |2-3a ·b =-3cos θ=-332,∴cos θ=32,∵0≤θ≤π,∴θ=π6.答案 (1)A (2)π6热点三 平面对量与三角的交汇综合【例3】 (2021·郑州质检)已知向量m =(2sin ωx ,cos 2ωx -sin 2ωx ),n =(3cos ωx ,1),其中ω>0,x ∈R .若函数f (x )=m ·n 的最小正周期为π.(1)求ω的值;(2)在△ABC 中,若f (B )=-2,BC =3,sin B =3sin A ,求BA → ·BC →的值.解 (1)f (x )=m ·n =23sin ωx cos ωx +cos 2ωx -sin 2ωx =3sin 2ωx +cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx +π6.∵f (x )的最小正周期为π,∴T =2π2|ω|=π.∵ω>0,∴ω=1.(2)设△ABC 中角A ,B ,C 所对的边分别是a ,b ,c . ∵f (B )=-2,∴2sin ⎝⎛⎭⎪⎫2B +π6=-2, 即sin ⎝ ⎛⎭⎪⎫2B +π6=-1,解得B =2π3(B ∈(0,π)).∵BC =3,∴a =3,∵sin B =3sin A ,∴b =3a ,∴b =3. 由正弦定理,有3sin A =3sin2π3,解得sin A =12. ∵0<A <π3,∴A =π6.∴C =π6,∴c =a = 3.∴BA → ·BC → =ca cos B =3×3×cos 2π3=-32. 探究提高 1.破解平面对量与“三角”相交汇题的常用方法是“化简转化法”,即先活用诱导公式、同角三角函数的基本关系式、倍角公式、帮助角公式等对三角函数进行巧“化简”;然后把以向量共线、向量垂直形式消灭的条件转化为“对应坐标乘积之间的关系”;再活用正、余弦定理,对三角形的边、角进行互化. 2.这种问题求解的关键是利用向量的学问将条件“脱去向量外衣”,转化为三角函数的相关学问进行求解. 【训练3】 (2021·山东卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,AB → ·AC →=-6,S △ABC=3,求A 和a .解 由于AB → ·AC →=-6,所以bc cos A =-6,又由于S △ABC =3,所以bc sin A =6, 因此tan A =-1,又0<A <π,所以A =3π4.又由于b =3,所以c =2 2. 由余弦定理a 2=b 2+c 2-2bc cos A , 得a 2=9+8-2×3×22×⎝ ⎛⎭⎪⎫-22=29, 所以a =29.1.平面对量的数量积的运算有两种形式:(1)依据模和夹角计算,要留意确定这两个向量的夹角,如夹角不易求或者不行求,可通过选择易求夹角和模的基底进行转化;(2)利用坐标来计算,向量的平行和垂直都可以转化为坐标满足的等式,从而应用方程思想解决问题,化形为数,使向量问题数量化.2.依据平行四边形法则,对于非零向量a ,b ,当|a +b |=|a -b |时,平行四边形的两条对角线长度相等,此时平行四边形是矩形,条件|a +b |=|a -b |等价于向量a ,b 相互垂直.3.两个向量夹角的范围是[0,π],在使用平面对量解决问题时要特殊留意两个向量夹角可能是0或π的状况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线.一、选择题1.(2022·全国Ⅲ卷)已知向量BA → =⎝ ⎛⎭⎪⎫12,32,BC → =⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A.30°B.45°C.60°D.120°解析 |BA → |=1,|BC → |=1,cos∠ABC =BA → ·BC→|BA → |·|BC → |=32.∵0°≤∠ABC ≤180°,∴∠ABC =30°.答案 A2.(2021·北京卷)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件解析 存在负数λ,使得m =λn ,则m ·n =λn ·n =λ|n |2<0,因而是充分条件,反之m ·n <0,不能推出m ,n 方向相反,则不是必要条件.答案 A3.(2021·汉中模拟)已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( ) A.9 B.3 C.109D.310解析 向量a =(2,-4),b =(-3,x ),c =(1,-1),∴2a +b =(1,x -8),由(2a +b )⊥c ,可得1+8-x =0,解得x =9. 则|b |=(-3)2+92=310. 答案 D4.如图,BC ,DE 是半径为1的圆O 的两条直径,BF → =2FO → ,则FD → ·FE →等于( )A.-34B.-89C.-14D.-49解析 ∵BF → =2FO → ,圆O 的半径为1,∴|FO → |=13,∴FD → ·FE → =(FO → +OD → )· (FO → +OE → )=FO → 2+FO → ·(OE → +OD → )+OD → ·OE → =⎝ ⎛⎭⎪⎫132+0-1=-89. 答案 B5.(2021·安徽江淮十校联考)已知平面对量a ,b (a ≠0,a ≠b )满足|a |=3,且b 与b -a 的夹角为30°,则|b |的最大值为( ) A.2 B.4 C.6D.8解析 令OA → =a ,OB → =b ,则b -a =AB → -OA → =AB →,如图.∵b 与b -a 的夹角为30°, ∴∠OBA =30°. ∵|a |=|OA →|=3,∴由正弦定理得|OA → |sin∠OBA =|OB → |sin ∠OAB ,|b |=|OB →|=6·sin∠OAB ≤6.答案 C 二、填空题6.(2021·全国Ⅲ卷)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. 解析 由题意,得-2×3+3m =0,∴m =2. 答案 27.(2021·德州模拟)已知平面对量a 和b 的夹角为60°,a =(2,0),|b |=1,则 |a +2b |=________.解析 ∵〈a ,b 〉=60°,a =(2,0),|b |=1, ∴a ·b =|a ||b |·cos 60°=2×1×12=1,又|a +2b |2=a 2+4b 2+4a ·b =12, 所以|a +2b |=12=2 3. 答案 2 38.若点M 是△ABC 所在平面内的一点,且满足5 AM → =AB → +3AC →,则△ABM 与△ABC 的面积比值为________.解析 设AB 的中点为D ,由5AM → =AB → +3AC → ,得3AM → -3AC → =2AD → -2AM → ,即3CM → =2MD →.如图所示,故C ,M ,D 三点共线, 且MD → =35CD →, 也就是△ABM 与△ABC 对于边AB 的两高之比为3∶5, 则△ABM 与△ABC 的面积比值为35.答案 35三、解答题9.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x , |b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1.又x ∈⎣⎢⎡⎦⎥⎤0,π2,从而sin x =12,所以x =π6.(2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎪⎫2x -π6+12,当x =π3∈⎣⎢⎡⎦⎥⎤0,π2时,sin ⎝ ⎛⎭⎪⎫2x -π6取最大值1.所以f (x )的最大值为32.10.(2021·贵阳调研)已知向量a =⎝ ⎛cos ⎝ ⎛⎭⎪⎫π2+x ,⎭⎪⎫sin ⎝⎛⎭⎪⎫π2+x ,b =(-sin x, 3sin x ),f (x )=a ·b .(1)求函数f (x )的最小正周期及f (x )的最大值;(2)在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=1,a =23,求三角形ABC 面积的最大值.解 (1)∵a =(-sin x ,cos x ),b =(-sin x ,3sin x ), 则f (x )=a ·b =sin 2x +3sin x cos x=12(1-cos 2x )+32sin 2x =sin ⎝ ⎛⎭⎪⎫2x -π6+12, ∴f (x )的最小正周期T =2π2=π,当2x -π6=π2+2k π,k ∈Z 时,即x =π3+k π(k ∈Z ),f (x )取最大值是32.(2)∵f ⎝ ⎛⎭⎪⎫A 2=sin ⎝⎛⎭⎪⎫A -π6+12=1,∴sin ⎝⎛⎭⎪⎫A -π6=12,∴A =π3.∵a 2=b 2+c 2-2bc cos A ,∴12=b 2+c 2-bc ,∴b 2+c 2=12+bc ≥2bc ,∴bc ≤12(当且仅当b =c =23时等号成立).∴S =12bc sin A =34bc ≤3 3.∴当三角形ABC 为等边三角形时面积取最大值是3 3. 11.已知函数f (x )=2cos 2x +23sin x cos x (x ∈R ).(1)当x ∈⎣⎢⎡⎭⎪⎫0,π2时,求函数f (x )的单调递增区间;(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c =3,f (C )=2,若向量m =(1,sin A )与向量n =(2,sin B )共线,求a ,b 的值.解 (1)f (x )=2cos 2x +3sin 2x =cos 2x +3sin 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π6+1,令-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,解得k π-π3≤x ≤k π+π6,k ∈Z ,由于x ∈⎣⎢⎡⎭⎪⎫0,π2, 所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤0,π6.(2)由f (C )=2sin ⎝ ⎛⎭⎪⎫2C +π6+1=2,得sin ⎝⎛⎭⎪⎫2C +π6=12,而C ∈(0,π),所以2C +π6∈⎝ ⎛⎭⎪⎫π6,13π6,所以2C +π6=56π,解得C =π3.由于向量m =(1,sin A )与向量n =(2,sin B )共线, 所以sin A sin B =12.由正弦定理得a b =12,①由余弦定理得c 2=a 2+b 2-2ab cos π3,即a 2+b 2-ab =9.②联立①②,解得a =3,b =2 3.。

相关文档
最新文档