2022高考数学二轮复习 函数压轴小题(原卷版)
2022版《新坐标》高考数学(文山东版)二轮复习压轴大题突破练1 Word版含答案

压轴大题突破练(一)(建议用时:45分钟)1.已知f(x)=x3+ax2-a2x+2.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若a≠0,求函数f(x)的单调区间;(3)若不等式2x ln x≤f′(x)+a2+1恒成立,求实数a的取值范围.2.(2021·天津模拟)已知函数f(x)=12x2-a ln x(a>0).(1)若a=2,求f(x)在(1,f(1))处的切线方程;(2)求f(x)在区间[1,e]上的最小值;(3)若f(x)在区间(1,e)上恰有两个零点,求a的取值范围.3.(2021·烟台模拟)已知函数f(x)=x ln x,g(x)=(-x2+ax-3)·e x(其中a为实数,e是自然对数的底数).(1)当a=5时,求函数y=g(x)在点(1,e)处的切线方程;(2)求f(x)在区间[t,t+2](t>0)上的最小值;(3)若存在x1、x2∈[e-1,e](x1≠x2),使方程g(x)=2e x f(x)成立,求实数a的取值范围.4.(2021·柳州模拟)已知函数f(x)=12x2+a ln x.(1)若a=-1,求函数f(x)的极值,并指出极大值还是微小值;(2)若a=1,求函数f(x)在[1,e]上的最值;(3)若a=1,求证:在区间[1,+∞)上,函数f(x)的图象在g(x)=23x3的图象下方.5.已知函数f(x)=x cos x-sin x,x∈⎣⎢⎡⎦⎥⎤0,π2.(1)求证:f(x)≤0;(2)若a<sin xx<b对x∈⎝⎛⎭⎪⎫0,π2恒成立,求a的最大值与b的最小值.6.(2021·昆明模拟)已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.【详解答案】1.【解】 (1)∵a =1,∴f (x )=x 3+x 2-x +2, ∴f ′(x )=3x 2+2x -1,∴k =f ′(1)=4. 又f (1)=3,∴切点坐标为(1,3),∴所求切线方程为y -3=4(x -1),即4x -y -1=0. (2)f ′(x )=3x 2+2ax -a 2=(x +a )(3x -a ). 由f ′(x )=0得x =-a 或x =a3.①当a >0时,由f ′(x )<0,得-a <x <a3, 由f ′(x )>0,得x <-a 或x >a3.此时f (x )的单调递减区间为⎝ ⎛⎭⎪⎫-a ,a 3,单调递增区间为(-∞,-a )和⎝ ⎛⎭⎪⎫a 3,+∞.②当a <0时,由f ′(x )<0,得a3<x <-a , 由f ′(x )>0,得x <a3或x >-a .此时f (x )的单调递减区间为⎝ ⎛⎭⎪⎫a 3,-a ,单调递增区间为⎝ ⎛⎭⎪⎫-∞,a 3和(-a ,+∞).综上:当a >0时,f (x )的单调递减区间为⎝ ⎛⎭⎪⎫-a ,a 3,单调递增区间为(-∞,-a )和⎝ ⎛⎭⎪⎫a 3,+∞; 当a <0时,f (x )的单调递减区间为⎝ ⎛⎭⎪⎫a 3,-a ,单调递增区间为⎝ ⎛⎭⎪⎫-∞,a 3和(-a ,+∞).(3)依题意x ∈(0,+∞),不等式2x ln x ≤f ′(x )+a 2+1恒成立,等价于 2x ln x ≤3x 2+2ax +1在(0,+∞)上恒成立,可得a ≥ln x -32x -12x 在(0,+∞)上恒成立. 设h (x )=ln x -32x -12x ,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2.令h ′(x )=0,得x =1,x =-13(舍). 当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0. 当x 变化时,h ′(x ),h (x )的变化状况如下表:∴当x =1时,h (x )取得最大值,h (x )max =-2. ∴a ≥-2,即a 的取值范围是[-2,+∞). 2.解:(1)由于a =2,所以f (x )=12x 2-2ln x , f ′(x )=x -2x ,f ′(1)=-1,f (1)=12,f (x )在(1,f (1))处的切线方程为y -12=-(x -1), 即2x +2y -3=0.(2)由题意知f ′(x )=x -a x =x 2-ax .由a >0及定义域为(0,+∞),令f ′(x )=0,得x =a .①若a ≤1,即0<a ≤1,在(1,e)上,f ′(x )>0,f (x )在[1,e]上单调递增, 因此,f (x )在区间[1,e]的最小值为f (1)=12.②若1<a <e ,即1<a <e 2,在(1,a )上,f ′(x )<0,f (x )单调递减;在(a ,e)上,f ′(x )>0,f (x )单调递增,因此f (x )在区间[1,e]上的最小值为f (a )=12a (1-ln a ).③若a ≥e ,即a ≥e 2,在(1,e)上,f ′(x )<0,f (x )在[1,e]上单调递减,因此,f (x )在区间[1,e]上的最小值为f (e)=12e 2-a .综上,f (x )min=⎩⎪⎨⎪⎧12,0<a ≤1,12a (1-ln a ),1<a <e 2,12e 2-a ,a ≥e 2.(3)由(2)可知当0<a ≤1或a ≥e 2时,f (x )在(1,e)上是单调递增或递减函数,不行能存在两个零点.当1<a <e 2时,要使f (x )在区间(1,e)上恰有两个零点,则∴⎩⎪⎨⎪⎧12a (1-ln a )<0,f (1)=12>0,f (e )=12e 2-a >0,即⎩⎪⎨⎪⎧a >e ,a <12e 2,此时,e<a <12e 2.所以,a 的取值范围为⎝ ⎛⎭⎪⎫e ,12e 2.3.解:(1)当a =5时,g (x )=(-x 2+5x -3)·e x , g ′(x )=(-x 2+3x +2)·e x,故切线的斜率为g ′(1)=4e ,所以切线方程为:y -e =4e(x -1),即4e x -y -3e =0. (2)由于f ′(x )=ln x +1,令f ′(x )=0,得x =1e .①当t ≥1e 时,在区间(t ,t +2)上f ′(x )>0,f (x )为增函数, 所以f (x )min =f (t )=t ln t ;②当0<t <1e 时,在区间⎝ ⎛⎭⎪⎫t ,1e 上f ′(x )<0,f (x )为减函数,在区间⎝ ⎛⎭⎪⎫1e ,t +2上f ′(x )>0,f (x )为增函数,所以f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e .综上所述,当t ≥1e 时,f (x )min =t ln t ; 当0<t <1e 时,f (x )min =-1e .(3)由g (x )=2e x f (x )可得2x ln x =-x 2+ax -3, 即 a =x +2ln x +3x ,令h (x )=x +2ln x +3x ,则h ′(x )=1+2x -3x 2=(x +3)(x -1)x 2,h (x )与h ′(x )在区间⎝ ⎛⎭⎪⎫1e ,e 上的状况如下:又h ⎝ ⎛⎭⎪⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2,h (e)-h ⎝ ⎛⎭⎪⎫1e =4-2e +2e <0,∴实数a 的取值范围为⎝ ⎛⎦⎥⎤4,e +2+3e .4.解:(1)f (x )的定义域是(0,+∞),f (x )=12x 2-ln x ,f ′(x )=x -1x =x 2-1x =(x +1)(x -1)x.当x ∈(0,1)时,f ′(x )<0,f (x )在(0,1)上递减, 当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上递增, ∴f (x )的微小值是f (1)=12,无极大值.(2)f (x )=12x 2+ln x ,f ′(x )=x +1x >0对任意x ∈[1,e]恒成立,∴f (x )在[1,e]上递增,∴f (x )max =f (e)=12e 2+1,f (x )min =f (1)=12. (3)证明:令h (x )=f (x )-g (x )=12x 2+ln x -23x 3(x ≥1),h ′(x )=x +1x -2x 2=-2x 3+x 2+1x =-(x -1)(2x 2+x +1)x ≤0在[1,+∞)上恒成立,∴h (x )在区间[1,+∞)上递减,∴h (x )≤h (1)=12-23=-16<0. ∴在区间[1,+∞)上,函数f (x )的图象在g (x )=23x 3的图象下方. 5.解:(1)证明:由f (x )=x cos x -sin x 得f ′(x )=cos x -x sin x -cos x =-x sin x . 由于在区间⎝ ⎛⎭⎪⎫0,π2上f ′(x )=-x sin x <0,所以f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减.从而f (x )≤f (0)=0.(2)当x >0时,“sin xx >a ”等价于“sin x -ax >0”; “sin xx <b ”等价于“sin x -bx <0”. 令g (x )=sin x -cx ,则g ′(x )=cos x -c . 当c ≤0时,g (x )>0对任意x ∈⎝⎛⎭⎪⎫0,π2恒成立;当c ≥1时,由于对任意x ∈⎝ ⎛⎭⎪⎫0,π2,g ′(x )=cos x -c <0,所以g (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减,从而g (x )<g (0)=0对任意x ∈⎝⎛⎭⎪⎫0,π2恒成立.当0<c <1时,存在唯一的x 0∈⎝ ⎛⎭⎪⎫0,π2使得g ′(x 0)=cos x 0-c =0.g (x )与g ′(x )在区间⎝⎛⎭⎪⎫0,π2上的状况如下:由于g (x )0]上是增函数,所以g (x 0)>g (0)=0.又“g (x )>0对任意x ∈⎝ ⎛⎭⎪⎫0,π2恒成立”当且仅当g ⎝ ⎛⎭⎪⎫π2=1-π2c ≥0,即0<c ≤2π.综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈⎝ ⎛⎭⎪⎫0,π2恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈⎝⎛⎭⎪⎫0,π2恒成立.所以,若a <sin x x <b 对任意x ∈⎝ ⎛⎭⎪⎫0,π2恒成立,则a 的最大值为2π,b 的最小值为1.6.解:(1)由f (x )=e x -ax 2-bx -1, 有g (x )=f ′(x )=e x -2ax -b , 所以g ′(x )=e x -2a .因此,当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ]. 当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增. 因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减, 因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a<e2时,令g′(x)=0,得x=ln 2a∈(0,1).所以函数g(x)在区间[0,ln 2a]上单调递减,在区间(ln 2a,1]上单调递增.于是,g(x)在[0,1]上的最小值是g(ln 2a)=2a-2a ln 2a-b.综上所述,当a≤12时,g(x)在[0,1]上的最小值是g(0)=1-b;当12<a<e2时,g(x)在[0,1]上的最小值是g(ln 2a)=2a-2a ln 2a-b;当a≥e2时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.(2)设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知,f(x)在区间(0,x0)上不行能单调递增,也不行能单调递减,则g(x)不行能恒为正,也不行能恒为负,故g(x)在区间(0,x0)内存在零点x1.同理g(x)在区间(x0,1)内存在零点x2,所以g(x)在区间(0,1)内至少有两个零点.由(1)知,当a≤12时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点,当a≥e2时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,所以12<a<e2.此时g(x)在区间[0,ln 2a]上单调递减,在区间(ln 2a,1]上单调递增,因此x1∈(0,ln 2a],x2∈(ln 2a,1),必有g(0)=1-b>0,g(1)=e-2a-b>0.由f(1)=0有a+b=e-1<2,有g(0)=1-b=a-e+2>0,g(1)=e-2a-b=1-a>0,解得e-2<a<1.当e-2<a<1时,g(x)在区间[0,1]内有最小值g(ln 2a).若g(ln 2a)≥0,则g(x)≥0(x∈[0,1]),从而f(x)在区间[0,1]上单调递增,这与f(0)=f(1)=0冲突,所以g(ln 2a)<0.又g(0)=a-e+2>0,g(1)=1-a>0,故此时g(x)在(0,ln 2a)和(ln 2a,1)内各只有一个零点x1和x2.由此可知f(x)在[0,x1]上单调递增,在(x1,x2)上单调递减,在[x2,1]上单调递增,所以f(x1)>f(0)=0,f(x2)<f(1)=0,故f(x)在(x1,x2)内有零点.综上可知,a的取值范围是(e-2,1).。
2022版考前三个月(全国通用)高考数学理科二轮复习系列——压轴大题突破练3 Word版含答案

1.已知函数f (x )=(x -a )e x (a ∈R ).(1)当a =2时,求函数f (x )在x =0处的切线方程; (2)求f (x )在区间[1,2]上的最小值.2.(2021·大庆试验中学冲刺模拟)已知a ∈R ,函数f (x )=ln x -a (x -1). (1)若a =1e -1,求函数y =|f (x )|的极值点; (2)若不等式f (x )≤-ax 2e 2+(1+2a -e a )xe 恒成立,求a 的取值范围.(e 为自然对数的底数)3.已知函数f (x )=x e -x .(1)求函数f (x )的单调区间和极值;(2)若当0<x <1时,f (x )>f ⎝⎛⎭⎫k x ,求实数k 的取值范围.4.已知函数f (x )=(1+x )e -2x ,g (x )=ax +x 32+1+2x cos x .当x ∈[0,1]时,(1)求证:1-x ≤f (x )≤11+x;(2)若f (x )≥g (x )恒成立,求实数a 的取值范围.答案精析压轴大题突破练31.解(1)设切线的斜率为k.由于a=2,所以f(x)=(x-2)e x,f′(x)=e x(x-1). 所以f(0)=-2,k=f′(0)=e0(0-1)=-1.所以所求的切线方程为y=-x-2,即x+y+2=0.(2)由题意得f′(x)=e x(x-a+1),令f′(x)=0,可得x=a-1.①若a-1≤1,则a≤2,当x∈[1,2]时,f′(x)≥0,则f(x)在[1,2]上单调递增. 所以f(x)min=f(1)=(1-a)e.②若a-1≥2,则a≥3,当x∈[1,2]时,f′(x)≤0,则f(x)在[1,2]上单调递减. 所以f(x)min=f(2)=(2-a)e2.③若1<a-1<2,则2<a<3,所以f′(x),f(x)随x的变化状况如下表:所以f(x)所以f(x)在[1,2]上的最小值为f(a-1)=-e a-1.综上所述:当a≤2时,f(x)min=f(1)=(1-a)e;当a≥3时,f(x)min=f(2)=(2-a)e2;当2<a<3时,f(x)min=f(a-1)=-e a-1.2.解(1)若a=1e-1,则f(x)=ln x-x-1e-1,f(x)的定义域为(0,+∞),f′(x)=1x-1e-1.当x∈(0,e-1)时,f′(x)>0,f(x)单调递增;当x∈(e-1,+∞)时,f′(x)<0,f(x)单调递减.又由于f(1)=0,f(e)=0,所以当x∈(0,1)时,f(x)<0;当x∈(1,e-1)时,f(x)>0;当x∈(e-1,e)时,f(x)>0;当x∈(e,+∞)时,f(x)<0.故y=|f(x)|的微小值点为1和e,极大值点为e-1.(2)不等式f(x)≤-ax2e2+(1+2a-e a)xe,整理为ln x+ax2e2-(1+2a)xe+a≤0.设g(x)=ln x+ax2e2-(1+2a)xe+a,则g′(x)=1x+2axe2-1+2ae=2ax2-(1+2a)e x+e2e2x=(x-e)(2ax-e)e2x.①当a≤0时,2ax-e<0,又x>0,所以当x∈(0,e)时,g′(x)>0,g(x)递增;当x∈(e,+∞)时,g′(x)<0,g(x)递减.从而g(x)max=g(e)=0.故g(x)≤0恒成立.②当a>0时,g ′(x )=(x -e )(2ax -e )e 2x =2a (x -e )⎝⎛⎭⎫x -e 2a e 2x. 当a =12时,g ′(x )=(x -e )2e 2x≥0,则g (x )在(0,+∞)上单调递增,明显不成立. 当a >12时,e2a<e ,在⎝⎛⎭⎫0,e2a ,(e ,+∞)上g ′(x )>0,函数g (x )单调递增. 在⎝⎛⎭⎫e 2a ,e 上g ′(x )<0,函数g (x )单调递减.又g (e)=0,因此存在x 0>e 使g (x 0)>0,故不满足题意. 当0<a <12时,e a >e2a>e ,而g ⎝⎛⎭⎫e a =ln e a +a e 2⎝⎛⎭⎫e a 2-1+2a e ·ea +a =-ln a -1+a =ln e a a e .而a ∈⎝⎛⎭⎫0,12时,h (a )=e a -a e , h ′(a )=e a -e<0,h ⎝⎛⎭⎫12=e 12-12e>0, 故ln e aa e >0,即g ⎝⎛⎭⎫e a >0,故不满足条件. 综上所述,a ≤0.3.解 (1)由题意知f ′(x )=(1-x )e -x (x ∈R ). 当f ′(x )>0时,x <1;当f ′(x )<0时,x >1.所以函数f (x )的单调递增区间为(-∞,1),单调递减区间为(1,+∞). 又f ′(x )=0时,x =1,所以函数f (x )的极大值为f (1)=1e ,无微小值.(2)当k ≤0时,由于0<x <1,所以kx ≤0<x <1,由(1)知函数f (x )在区间(-∞,1)上单调递增,所以f (x )>f ⎝⎛⎭⎫k x ,符合题意.当0<k <1时,取x =k ,可得f (k )>f (1),这与函数f (x )在区间(-∞,1)上单调递增冲突,不符合题意. 当k ≥1时,由于0<x <1,所以k x ≥1x >1,由(1)知函数f (x )在区间(1,+∞)上单调递减, 所以f ⎝⎛⎭⎫k x ≤f ⎝⎛⎭⎫1x ,要使f ⎝⎛⎭⎫k x <f (x ), 只需令f (x )>f ⎝⎛⎭⎫1x ,即x e -x >1x e -1x , 即ln x -x >-ln x -1x ,即2ln x -x +1x >0.令h (x )=2ln x -x +1x (0<x <1),则h ′(x )=-x 2+2x -1x 2=-(x -1)2x 2<0,所以h (x )在区间(0,1)上为减函数,所以h (x )>h (1)=0,所以f (x )>f ⎝⎛⎭⎫k x ,符合题意. 综上可知k ∈(-∞,0]∪[1,+∞).4.(1)证明 要证x ∈[0,1]时,(1+x )e -2x ≥1-x , 只需证明(1+x )e -x ≥(1-x )e x . 记h (x )=(1+x )e -x -(1-x )e x , 则h ′(x )=x (e x -e -x ). 当x ∈(0,1)时,h ′(x )>0, 因此h (x )在[0,1]上是增函数,故h (x )≥h (0)=0,所以f (x )≥1-x ,x ∈[0,1]. 要证x ∈[0,1]时,(1+x )e -2x ≤11+x ,只需证明e x ≥x +1.记K (x )=e x -x -1,则K ′(x )=e x -1, 当x ∈(0,1)时,K ′(x )>0,因此K (x )在[0,1]上是增函数, 故K (x )≥K (0)=0. 所以f (x )≤11+x ,x ∈[0,1].综上,1-x ≤f (x )≤11+x ,x ∈[0,1].(2)解f (x )-g (x )=(1+x )e -2x -(ax +x 32+1+2x cos x )≥1-x -ax -1-x 32-2x cos x =-x (a +1+x 22+2cos x ).(由(1)知)故G (x )=x 22+2cos x ,则G ′(x )=x -2sin x .记H (x )=x -2sin x ,则H ′(x )=1-2cos x , 当x ∈(0,1)时,H ′(x )<0, 于是G ′(x )在[0,1]上是减函数. 从而当x ∈(0,1)时,G ′(x )<G ′(0)=0. 故G (x )在[0,1]上是减函数. 于是G (x )≤G (0)=2, 从而a +1+G (x )≤a +3.所以,当a ≤-3时,f (x )≥g (x )在[0,1]上恒成立. 下面证明,当a >-3时,f (x )≥g (x )在[0,1]上不恒成立. f (x )-g (x )≤11+x -1-ax -x 32-2x cos x=-x1+x-ax -x 32-2x cos x=-x (11+x+a +x 22+2cos x ).(由(1)知)记I (x )=11+x +a +x 22+2cos x =11+x +a +G (x ),则I ′(x )=-1(1+x )2+G ′(x ), 当x ∈(0,1)时,I ′(x )<0, 故I (x )在[0,1]上是减函数,于是I (x )在[0,1]上的值域为[a +1+2cos 1,a +3]. 由于当a >-3时,a +3>0, 所以存在x 0∈(0,1),使得I (x 0)>0, 此时f (x 0)<g (x 0),即f (x )≥g (x )在[0,1]上不恒成立.综上,实数a 的取值范围是(-∞,-3].。
2022年新高考数学函数压轴小题专题突破专题11 零点嵌套问题(解析版)

专题11 零点嵌套问题1.已知函数2()()()f x ax lnx x lnx x =+−−有三个不同的零点1x ,2x ,3x (其中123)x x x <<,则2312123(1)(1)(1)lnx lnx lnxx x x −−−的值为( ) A .1a − B .1a − C .1− D .12.已知1x ,2x ,3x 是函数2()x f x ax lnx x lnx =+−−三个不同的零点,且123x x x <<,设1(1i i i lnxM i x =−=,2,3),则2123(M M M = )A .1B .1−C .eD .1e3.已知函数2()()(1)()1x x f x xe a xe a =+−+−有三个不同的零点1x ,2x ,3x .其中123x x x <<,则3122123(1)(1)(1)x x x x e x e x e −−−的值为( ) A .1B .2(1)a −C .1−D .1a −4.已知函数2()()x x x axf x a e e =+−有三个不同的零点1x ,2x ,3x (其中123)x x x <<,则1232312(1)(1)(1)x x x x x x e e e −−−的值为( ) A .1B .1−C .aD .a −5.若关于x 的方程0xx x x e m e x e ++=+有三个不相等的实数解1x ,2x ,3x ,且1230x x x <<<,其中m R ∈,e 为自然对数的底数,则1232312(1)(1)(1)x x x x x x e e e +++的值为( ) A .1m + B .e C .1m − D .16.若关于x 的方程0xx x x e m e x e ++=−有三个不相等的实数解1x ,2x ,3x ,且1230x x x <<<,其中m R ∈,2.718e =为自然对数的底数,则1232312(1)(1)(1)x x x x x x e e e −−−的值为( ) A .e B .1m − C .1m + D .17.若关于x 的方程2|1|0|1|1x x e m e −++=−+有三个不相等的实数解1x 、2x 、3x ,123(0)x x x <<<其中m R ∈,2.71828e…,则3122(|1|1)(|1|1)(|1|1)x x x e e e −+−+−+ 的值为( )A .eB .4C .1m −D .1m +8.若存在正实数m ,使得关于x 的方程(224)[()]0x a x m ex ln x m lnx ++−+−=有两个不同的根,其中e 为自然对数的底数,则实数a 的取值范围是( ) A .(,0)−∞ B .1(0,)2eC .(−∞,10)(2e∪,)+∞ D .1(2e,)+∞ 9.若存在正实数m ,使得关于x 的方程(224)[()]0x a x m ex ln x m lnx ++−+−=成立,其中e 为自然对数的底数,则实数a 的取值范围是( ) A .(,0)−∞ B .1(0,)2eC .1(,0)[,)2e−∞+∞ D .1[,)2e+∞ 10.已知函数()(21)u x e x m =−−,()()x ln x m lnx υ+−若存在m ,使得关于x 的方程2()()a u x x x υ= 有解,其中e 为自然对数的底数则实数a 的取值范围是( ) A .1(,0)(,)2e−∞+∞ B .(,0)−∞ C .1(0,)2eD .1(,0)[,)2e−∞+∞ 11.已知2()()()f x ax lnx x lnx x =+−−恰有三个不同零点,则a 的取值范围为 .12.已知函数2()x f x ax lnx x lnx=+−−有三个不同的零点1x ,2x ,3x (其中123)x x x <<,则2312123(1)(1)(1)lnx lnx lnxx x x −−−的值为 .专题11 零点嵌套问题1.已知函数2()()()f x ax lnx x lnx x =+−−有三个不同的零点1x ,2x ,3x (其中123)x x x <<,则2312123(1)(1)(1)lnx lnx lnxx x x −−−的值为( ) A .1a − B .1a − C .1− D .1【解析】解:令()0f x =,分离参数得x lnxa x lnx x−−, 令()x lnxh x x lnx x=−−, 由22(1)(2)()0()lnx lnx x lnx h x x x lnx −−′==−,得1x =或x e =. 当(0,1)x ∈时,()0h x ′<;当(1,)x e ∈时,()0h x ′>;当(,)x e ∈+∞时,()0h x ′<. 即()h x 在(0,1),(,)e +∞上为减函数,在(1,)e 上为增函数.12301x x e x ∴<<<<<,11x lnx lnx alnx x lnx x x =−=−−−,令lnxxµ=, 则11aµµ−−,即2(1)10a a µµ+−+−=, 1210a µµ+=−<,1210a µµ=−<,对于lnx x µ=,21lnxxµ−′= 则当0x e <<时,0µ′>;当x e >时,0µ′<.而当x e >时,µ恒大于0. 画其简图,不妨设12µµ<,则111lnx x µ=,322323lnx lnx x x µµ===, 22312123123(1)(1)(1)(1)(1)(1)lnx lnx lnxx x x µµµ−−−=−−− 2212[(1)(1)][1(1)(1)]1a a µµ=−−=−−+−=.故选:D .2.已知1x ,2x ,3x 是函数2()x f x ax lnx x lnx =+−−三个不同的零点,且123x x x <<,设1(1i i i lnx M i x =−=,2,3),则2123(M M M = )A .1B .1−C .eD .1e【解析】解:令()0f x =得x lnx a x lnx x−−, 令lnx t x =,则11x t x lnx t=−−−,11a t t ∴=−−. 即2(1)10t a t a +−+−=. 令()lnx g x x =,则21()lnxg x x−′=, ()g x ∴在(0,)e 上单调递增,在(,)e +∞上单调递减,且当01x <<时,()0g x <,当x e >时,()0g x >, ()g x g ∴…(e )1e =,∴当10t e<<时,关于x 的方程()g x t =有两大于1的解,当0t …时,关于x 的方程()g x t =只有一小于1的解. 当1t e=时,关于x 的方程()g x t =有唯一解x e =. ()f x 有三个不同的零点,∴关于t 的方程2(1)10t a t a +−+−=在(−∞,10]{}e 和1(0,)e上各有1个解. 不妨设两解为1t ,2t ,则121t t a +=−,121t t a =−, 若1t e =,则11e a e e=−−,此时方程的另一解为1101e t a e e =−−=−<−, ∴原方程只有两解,不符合题意;同理0t =也不符合题意;设120t t <<,则111M t =−,2321M M t ==−, ∴2222123121212(1)(1)(1)1M M M t t t t t t =−−=−−+=.故选:A .3.已知函数2()()(1)()1x x f x xe a xe a =+−+−有三个不同的零点1x ,2x ,3x .其中123x x x <<,则3122123(1)(1)(1)x x x x e x e x e −−−的值为( ) A .1B .2(1)a −C .1−D .1a −【解析】解:令x t xe =,则(1)x t x e ′=+, 故当(1,)x ∈−+∞时,0t ′>,x t xe =是增函数, 当(,1)x ∈−∞−时,0t ′<,x t xe =是减函数, 可得1x =−处x t xe =取得最小值1e−,x →−∞,0t →,画出x t xe =的图象,由()0f x =可化为2(1)10t a t a +−+−=,故结合题意可知,2(1)10t a t a +−+−=有两个不同的根, 故△2(1)4(1)0a a =−−−>,故3a <−或1a >, 不妨设方程的两个根分别为1t ,2t , ①若3a <−,1214t t a +=−>, 与1220t t e−<+<相矛盾,故不成立;②若1a >,则方程的两个根1t ,2t 一正一负;不妨设120t t <<,结合x t xe =的性质可得,_111x x e t =,_221x x e t =,_332x x e t =, 故3122123(1)(1)(1)x x x x e x e x e −−−2112(1)(1)(1)t t t =−−− 21212(1())t t t t =−++又121t t a =− ,121t t a +=−,31222123(1)(1)(1)(111)1x x x x e x e x e a a ∴−−−=−++−=. 故选:A .4.已知函数2()()x x x axf x a e e =+−有三个不同的零点1x ,2x ,3x (其中123)x x x <<,则1232312(1)(1)(1)x x x x x x e e e −−−的值为( )A .1B .1−C .aD .a −【解析】解:令()x x t x e =,则1x xt e−′=, ∴当1x <时,()0t x ′>,函数()t x 在(,1)−∞单调递增,当1x >时,()0t x ′<,在(1,)+∞单调递减,且()1()1t x t e==极大值, 由题意,2()g t t at a =+−必有两个根10t <,且210t e<<,由根与系数的关系有,12t t a +=−,12t t a =−,由图可知,1x x t e =有一解10x <,2xxt e =有两解2x ,3x ,且2301x x <<<, 故12322222312122121212(1)(1)(1)(1)(1)(1)[(1)(1)][1()](1)1x x x x x x t t t t t t t t t a a e e e−−−=−−−=−−=−++=+−=. 故选:A .5.若关于x 的方程0xx x x e m e x e ++=+有三个不相等的实数解1x ,2x ,3x ,且1230x x x <<<,其中m R ∈,e 为自然对数的底数,则1232312(1)(1)(1)x x x x x x e e e +++的值为( )A .1m +B .eC .1m −D .1【解析】解:由方程0xx xx e m e x e ++=+ ⇒101xxxm x e ++=+, 令xxte =,则有101t m t ++=+. 2(1)10t m t m ⇒++++=, 令函数()x x g x e =,1()xx g x e −′=, ()g x ∴在(,1)−∞递增,在(1,)+∞递减,其图象如下,要使关于x 的方程0xx xx e m e x e ++=+有三个不相等的实数解1x ,2x ,3x ,且1230x x x <<< 结合图象可得关于t 的方程2(1)10t m t m ++++=一定有两个实根1t ,2t ,12(0)t t << 且111x x t e =,23322x x x x t e e ==, 1232312(1)(1)(1)x x x x x x e e e∴+++ 212[(1)(1)]t t =++.121212(1)(1)()1(1)(1)11t t t t t t m m ++=+++=+−++=.1232231212(1)(1)(1)[(1)(1)]1x x x x x x t t e e e ∴+++++. 故选:D .6.若关于x 的方程0x x x x e m e x e ++=−有三个不相等的实数解1x ,2x ,3x ,且1230x x x <<<,其中m R ∈,2.718e =为自然对数的底数,则1232312(1)(1)(1)x x x x x x e e e −−−的值为( )A .eB .1m −C .1m +D .1【解析】解:由方程0xx xx e m e x e ++=−⇒101x x x m x e ++=−, 令xx t e =,则有101t m t ++=−. 2(1)10t m t m ⇒+−+′−=, 令函数()xxg x e =,1()x x g x e −′=, ()g x ∴在(,1)−∞递增,在(1,)+∞递减,其图象如下,要使关于x 的方程0xx xx e m e x e ++=−有3个不相等的实数解1x ,2x ,3x ,且1230x x x <<< 结合图象可得关于t 的方程2(1)10t m t m +−+′−=一定有两个实根1t ,2t ,12(0)t t << 且111x x t e =,23223x x x x t e e== ∴1232231212(1)(1)(1)[(1)(1)]x x x x x x t t e e e−−−−−. 121212(1)(1)()1(1)(1)11t t t t t t m m −−=−++=−−−+=. ∴1232231212(1)(1)(1)[(1)(1)]1x x x x x xt t e e e−−−−−.故选:D .7.若关于x 的方程2|1|0|1|1x x e m e −++=−+有三个不相等的实数解1x 、2x 、3x ,123(0)x x x <<<其中m R ∈,2.71828e…,则3122(|1|1)(|1|1)(|1|1)x x x e e e −+−+−+ 的值为( )A .eB .4C .1m −D .1m +【解析】解:令|1|x t e =−,函数|1|x y e =−的图象如下:方程22|1|00|1|11x xe m t m e t −++=⇒++=−++.即2(1)20t m t m ++++=, 要使方程2|1|0|1|1x x e m e −++=−+有三个不相等的实数解1x 、2x 、3x ,123(0)x x x <<<,则方程2(1)20t m t m ++++=一定有两个实根1t ,2t , 可验证0t =或1不符合题意,所以方程2(1)20t m t m ++++=一定有两个实根1t ,2t ,且1201t t <<<. 且_1_21|1||1|x x e e t −=−=,_32|1|x e t −=, 则3122212(|1|1)(|1|1)(|1|1)[(1)(1)]x x x e e e t t −+−+−+++ . 121212(1)(1)()1(2)(1)12t t t t t t m m ++++++−++.则3122212(|1|1)(|1|1)(|1|1)[(1)(1)]4x x x e e e t t −+−+−+++ , 故选:B .8.若存在正实数m ,使得关于x 的方程(224)[()]0x a x m ex ln x m lnx ++−+−=有两个不同的根,其中e 为自然对数的底数,则实数a 的取值范围是( ) A .(,0)−∞ B .1(0,)2eC .(−∞,10)(2e∪,)+∞ D .1(2e,)+∞ 【解析】解:由题意得1(12)(1)(2)2m me ln t e lnt a x x−=+−+=−,(11)m t x +>, 令()(2)f t t e lnt =−,(1)t >, 则2()1ef t lnt t′=+−,212()0e f t t t ′′=+>,当t e >时,()f t f ′>′(e )0=,当1t e <<时,()f t f ′<′(e )0=, ()f t f ∴…(e )e =−, 12e a∴−>−, 而1t →时,()0f t →, 则要满足102e a−<−<, 解得:12a e>, 故选:D .9.若存在正实数m ,使得关于x 的方程(224)[()]0x a x m ex ln x m lnx ++−+−=成立,其中e 为自然对数的底数,则实数a 的取值范围是( ) A .(,0)−∞ B .1(0,)2eC .1(,0)[,)2e−∞+∞ D .1[,)2e+∞ 【解析】解:由(224)[()]0x a x m ex ln x m lnx ++−+−=得 2(2)0x mx a x m ex lnx+++−=, 即12(2)0x m x ma e ln x x+++−=, 即设x mt x+=,则0t >, 则条件等价为12(2)0a t e lnt +−=, 即1(2)2t e lnt a−=−有解,设()(2)g t t e lnt =−, 2()1eg t lnt t′=+−为增函数, g ′ (e )211120elne e=+−=+−=, ∴当t e >时,()0g t ′>,当0t e <<时,()0g t ′<,即当t e =时,函数()g t 取得极小值为:g (e )(2)e e lne e =−=−, 即()g t g …(e )e =−, 若1(2)2t e lnt a−=−有解,则12e a −−…,即12e a…, 则0a <或12a e…, ∴实数a 的取值范围是1(,0)[2e−∞ ,)+∞. 故选:C .10.已知函数()(21)u x e x m =−−,()()x ln x m lnx υ+−若存在m ,使得关于x 的方程2()()a u x x x υ= 有解,其中e 为自然对数的底数则实数a 的取值范围是( )A .1(,0)(,)2e −∞+∞ B .(,0)−∞ C .1(0,)2e D .1(,0)[,)2e−∞+∞ 【解析】解:由2()()a u x x x υ= 可得[2(21)2]0x m a e x am lnx x +−−−= , 即2[(21)]10m x m a e ln x x +−−−= ,即2(2)10x m x m a e ln x x ++−−= , 令x m t x +=,则方程1(2)2e t lnt a−=有解. 设()(2)f t e t lnt =−,则22()1e t e f t lnt lnt t t −′=−+=−+−, 显然()f t ′为减函数,又f ′(e )0=,∴当0t e <<时,()0f t ′>,当t e >时,()0f t ′<,()f t ∴在(0,)e 上单调递增,在(,)e +∞上单调递减,()f t ∴的最大值为f (e )e =, ∴12e a …,解得0a <或12a e…. 故选:D .11.已知2()()()f x ax lnx x lnx x =+−−恰有三个不同零点,则a 的取值范围为 (1,11)(1)e e +− . 【解析】解:令()0f x =,分离参数得x lnx ax lnx x −−, 令()x lnx h x x lnx x =−−, 由22(1)(2)()0()lnx lnx x lnx h x x x lnx −−′==−,得1x =或x e =. 当(0,1)x ∈时,()0h x ′<;当(1,)x e ∈时,()0h x ′>;当(,)x e ∈+∞时,()0h x ′<. 即()h x 在(0,1),(,)e +∞上为减函数,在(1,)e 上为增函数.1x ∴=时,()h x 有极小值h (1)1=;x e =时,()h x 有极大值h (e )11(1)e e =+−; 设lnxx µ=,则1µ<;这是因为对于函数y lnx x =−,0x >,有1xy x −′=,当01x <<时,0y ′>,函数单调递增;当1x >时,0y ′<,函数单调递减; 即1x =时函数有极大值,也是最大值1−,故0x ∀>,0lnx x −<,lnx x <,即得1lnxx <;11()(1)121111h x µµµµ=−=+−−−=−−…;∴当2()()()f x ax lnx x lnx x =+−−恰有三个不同零点,即y a =与()y h x =有三个不同的交点; 111(1)a e e ∴<<+−.故答案为:(1,11)(1)e e +−.12.已知函数2()x f x ax lnx x lnx =+−−有三个不同的零点1x ,2x ,3x (其中123)x x x <<,则2312123(1)(1)(1)lnxlnxlnx x x x −−−的值为 1 . 【解析】解:由2()0x f x ax lnx x lnx =+−=−分离参数得x lnxa x lnx x −−, 令()x lnxh x x lnx x =−−, 由222211(1)(2)()0()()lnxlnx lnx lnx x lnx h x x lnx x x x lnx −−−−′=−==−−,得1x =或x e =.当(0,1)x ∈时,()0h x ′<;当(1,)x e ∈时,()0h x ′>;当(,)x e ∈+∞时,()0h x ′<.即()h x 在(0,1),(,)e +∞上为减函数,在(1,)e 上为增函数.而当0x →,()h x →+∞,当x →+∞,()1h x →, 又h (1)1=,h (e )11(1)e e =+−; 结合函数的单调性可得,实数a 的取值范围为(1,11)(1)e e +−. 则12301x x e x <<<<<, 11x lnx lnx a lnx x lnx x x =−=−−−,令lnx x µ=, 则11aµµ−−,即2(1)10a a µµ+−+−=, 1210a µµ+=−<,1210a µµ=−<, 对于lnx xµ=,21lnx x µ−′= 则当0x e <<时,0µ′>;当x e >时,0µ′<.而当x e >时,µ恒大于0. 画其简图,不妨设12µµ<,则31212123,lnx lnx lnx x x x µµ===, ∴22231212212123(1)(1)(1)(1)(1)(1)[(1)(1)]lnx lnx lnx x x x µµµµµ−−−=−−−=−− 221212[1()][1(1)(1)]1a a µµµµ=−++=−−+−= 故答案为:1。
高考数学二轮复习函数的极值、最值

由f(x)=ax2-2x+ln x(x>0),
得 f′(x)=2ax-2+1x=2ax2-x2x+1(x>0), 若函数f(x)=ax2-2x+ln x有两个不同的极值点x1,x2, 则方程2ax2-2x+1=0有两个不相等的正实根,
Δ=4-8a>0, 所以x1+x2=1a>0,
x1x2=21a>0,
(2)(2022·安康模拟)若函数f(x)=ex-ax2-2ax有两个极值点,则实数a的
取值范围为
A.-12,0
B.-∞,-12
C.0,12
√D.12,+∞
由f(x)=ex-ax2-2ax, 得f′(x)=ex-2ax-2a.
因为函数f(x)=ex-ax2-2ax有两个极值点, 所以f′(x)=ex-2ax-2a=0有两个不同的解, 即21a=x+ex1有两个不同的解,转化为 g(x)=x+ex1与 y=21a的图象有两个交点, 设 g(x)=x+ex 1,则 g′(x)=-exx, 令 g′(x)=0,即-exx=0,解得 x=0,
专题一 函数与导数
第5讲 函数的极值、最值
考情分析
利用导数研究函数的极值、最值是重点考查内容,多以选择题、填空题压轴 考查,或以解答题的形式出现,难度中等偏上,属综合性问题.
内容索引
考点一 利用导数研究函数的极值 考点二 利用导数研究函数的最值 考点三 极值、最值的简单应用
专题强化练
考点一
利用导数研究函数的极值
令f′(x)=0, 解得 x=-1(舍去),x=π2或 x=32π. 因为 f π2=cos π2+π2+1sin π2+1=2+π2, f 32π=cos 32π+32π+1sin 32π+1=-32π, 又f(0)=cos 0+(0+1)sin 0+1=2,f(2π)=cos 2π+(2π+1)sin 2π+1=2, 所以 f(x)max=f π2=2+π2,f(x)min=f 32π=-32π.
专题16 函数与导数常见经典压轴小题全归类(精讲精练)(原卷版)

专题16函数与导数常见经典压轴小题全归类【命题规律】1、导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.2、应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题.【核心考点目录】核心考点一:函数零点问题之分段分析法模型核心考点二:函数嵌套问题核心考点三:函数整数解问题核心考点四:唯一零点求值问题核心考点五:等高线问题核心考点六:分段函数零点问题核心考点七:函数对称问题核心考点八:零点嵌套问题核心考点九:函数零点问题之三变量问题核心考点十:倍值函数核心考点十一:函数不动点问题核心考点十二:函数的旋转问题核心考点十三:构造函数解不等式核心考点十四:导数中的距离问题核心考点十五:导数的同构思想核心考点十六:不等式恒成立之分离参数、分离函数、放缩法核心考点十七:三次函数问题核心考点十八:切线问题核心考点十九:任意存在性问题核心考点二十:双参数最值问题核心考点二十一:切线斜率与割线斜率核心考点二十二:最大值的最小值问题(平口单峰函数、铅锤距离)核心考点二十三:两边夹问题和零点相同问题核心考点二十四:函数的伸缩变换问题【真题回归】1.(2022·全国·统考高考真题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1-B .12-C .12D .12.(2022·全国·统考高考真题)函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( )A .ππ22-,B .3ππ22-, C .ππ222-+,D .3ππ222-+, 3.(多选题)(2022·全国·统考高考真题)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线4.(2022·天津·统考高考真题)设a ∈R ,对任意实数x ,记(){}2min 2,35f x x x ax a =--+-.若()f x 至少有3个零点,则实数a 的取值范围为______.5.(2022·全国·统考高考真题)已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.6.(2022·全国·统考高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.7.(2022·浙江·统考高考真题)已知函数()22,1,11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________;若当[,]x a b ∈时,1()3f x ≤≤,则b a -的最大值是_________.8.(2022·全国·统考高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 9.(2022·北京·统考高考真题)设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为________;a 的最大值为___________.【方法技巧与总结】1、求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现()()f f a 的形式时,应从内到外依次求值;当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.2、含有抽象函数的分段函数,在处理时首先要明确目标,即让自变量向有具体解析式的部分靠拢,其次要理解抽象函数的含义和作用(或者对函数图象的影响).3、含分段函数的不等式在处理上通常有两种方法:一种是利用代数手段,通过对x 进行分类讨论将不等式转变为具体的不等式求解;另一种是通过作出分段函数的图象,数形结合,利用图象的特点解不等式.4、分段函数零点的求解与判断方法:(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.5、动态二次函数中静态的值:解决这类问题主要考虑二次函数的有关性质及式子变形,注意二次函数的系数、图象的开口、对称轴是否存在不变的性质,二次函数的图象是否过定点,从而简化解题.6、动态二次函数零点个数和分布问题:通常转化为相应二次函数的图象与x 轴交点的个数问题,结合二次函数的图象,通过对称轴,根的判别式,相应区间端点函数值等来考虑.7、求二次函数最值问题,应结合二次函数的图象求解,有三种常见类型: (1)对称轴变动,区间固定; (2)对称轴固定,区间变动; (3)对称轴变动,区间也变动.这时要讨论对称轴何时在区间之内,何时在区间之外.讨论的目的是确定对称轴和区间的关系,明确函数的单调情况,从而确定函数的最值.8、由于三次函数的导函数为我们最熟悉的二次函数,所以基本的研究思路是:借助导函数的图象来研究原函数的图象.如借助导函数的正负研究原函数的单调性;借助导函数的(变号)零点研究原函数的极值点(最值点);综合借助导函数的图象画出原函数的图象并研究原函数的零点…具体来说,对于三次函数()()32 0f x ax bx cx d a =+++>,其导函数为()()232 0f x ax bx c a '=++>,根的判别式()243b ac ∆=-.增区间:(), x -∞,0∆≤恒成立,三次函数()f x 在R 上为增函数,没有极值点,有且只有一个零点;(2)当0∆≥时,()0f x '=有两根1x ,2x ,不妨设12x x <,则1223b x x a+=-,可得三次函数()f x 在()1, x -∞,()2, x +∞上为增函数,在()12, x x 上为减函数,则1x ,2x 分别为三次函数()32f x ax bx cx d=+++的两个不相等的极值点,那么:① 若()()120f x f x ⋅>,则()f x 有且只有1个零点; ② 若()()120f x f x ⋅<,则()f x 有3个零点; ③ 若()()120f x f x ⋅=,则()f x 有2个零点.特别地,若三次函数()()32 0f x ax bx cx d a =+++>存在极值点0x ,且()00f x =,则()f x 地解析式为()()()20f x a x x x m =--.同理,对于三次函数()()32 0f x ax bx cx d a =+++<,其性质也可类比得到.9、由于三次函数()()32 0f x ax bx cx d a =+++≠的导函数()232f x ax bx c '=++为二次函数,其图象变化规律具有对称性,所以三次函数图象也应当具有对称性,其图象对称中心应当为点, 33bb faa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,此结论可以由对称性的定义加以证明.事实上,该图象对称中心的横坐标正是三次函数导函数的极值点.10、对于三次函数图象的切线问题,和一般函数的研究方法相同.导数的几何意义就是求图象在该店处切线的斜率,利用导数研究函数的切线问题,要区分“在”与“过”的不同,如果是过某一点,一定要设切点坐标,然后根据具体的条件得到方程,然后解出参数即可.11、恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.12、如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值.13、当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数图象之间的关系,得出答案或列出条件,求出参数的范围.14、两类零点问题的不同处理方法利用零点存在性定理的条件为函数图象在区间[a ,b ]上是连续不断的曲线,且()()0f a f b ⋅<..①直接法:判断-一个零点时,若函数为单调函数,则只需取值证明()()0f a f b ⋅<.②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明()()0f a f b ⋅<.15、利用导数研究方程根(函数零点)的技巧(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等. (2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现. 16、已知函数零点个数求参数的常用方法(1)分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.【核心考点】核心考点一:函数零点问题之分段分析法模型 【典型例题】例1.(2023·浙江奉化·高二期末)若函数322ln ()x ex mx xf x x -+-=至少存在一个零点,则m 的取值范围为( ) A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎡⎫++∞⎪⎢⎣⎭C .1,e e ⎛⎤-∞+ ⎥⎝⎦D .1,e e ⎡⎫++∞⎪⎢⎣⎭例2.(2023·天津·耀华中学高二期中)设函数()322ln f x x ex mx x =-+-,记()()f xg x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是 A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .210,e e ⎛⎤+ ⎥⎝⎦C .21e ,e ⎛⎫++∞ ⎪⎝⎭D .2211e ,e e e ⎛⎤--+ ⎥⎝⎦例3.(2023·湖南·长沙一中高三月考(文))设函数()22x xf x x x a e=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是( ) A .1(0,1]e+B .1(0,]e e +C .1[,)e e ++∞D .1(,1]e-∞+核心考点二:函数嵌套问题 【典型例题】例4.(2023·全国·高三专题练习)已知函数2()(1)x f x x x e =--,设关于x 的方程25()()()f x mf x m R e-=∈有n 个不同的实数解,则n 的所有可能的值为A .3B .1或3C .4或6D .3或4或6例5.(2023·全国·高三专题练习(文))已知函数()||12x f x e =-,()()11,021ln ,0x x g x x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()0g f x m -=有四个不同的解,则实数m 的取值集合为( ) A .ln 20,2⎛⎫ ⎪⎝⎭B .ln 2,12⎛⎫⎪⎝⎭C .ln 22⎧⎫⎨⎬⎩⎭D .()0,1例6.(2023·河南·高三月考(文))已知函数()ln x f x x=,若关于x 的方程()()210f x af x a ++-=⎡⎤⎣⎦有且仅有三个不同的实数解,则实数a 的取值范围是( ) A .()2e,1e --B .()1e,0-C .(),1e -∞-D .()1e,2e -核心考点三:函数整数解问题 【典型例题】例7.(2023·福建宁德·高三)当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的最大值为( ) A .2-B .1-C .0D .1例8.(2023·江苏·苏州大学附属中学高三月考)已知a Z ∈,关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13B .21C .26D .30例9.(2023·江苏宿迁·高一月考)用符号[x ]表示不超过x 的最大整数(称为x 的整数部分),如[﹣1.2]=﹣2,[0.2]=0,[1]=1,设函数f (x )=(1﹣ln x )(ln x ﹣ax )有三个不同的零点x 1,x 2,x 3,若[x 1]+[x 2]+[x 3]=6,则实数a 的取值范围是( ) A .10,e ⎛⎫⎪⎝⎭B .ln 31,3e ⎛⎫⎪⎝⎭ C .ln 21,2e ⎡⎫⎪⎢⎣⎭ D .ln 2ln 3,23⎡⎫⎪⎢⎣⎭ 核心考点四:唯一零点求值问题 【典型例题】例10.(2023·安徽蚌埠·模拟预测(理))已知函数()()()2ln 1ln f x x x a x =-+--有唯一零点,则a =( )A .0B .12-C .1D .2例11.(2023·辽宁沈阳·模拟预测)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()x g x h x e x +=+,若函数()()12216x f x g x λλ-=+--有唯一零点,则正实数λ的值为( )A .12B .13C .2D .3例12.(2023·新疆·莎车县第一中学高三期中)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin xg x h e x x x ++=-,若函数()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为 A .1-或12B .1或12-C .1-或2D .2-或1核心考点五:等高线问题 【典型例题】例13.(2023·陕西·千阳县中学模拟预测(理))已知函数2()log 1f x x =-,若方程()f x a =(0)a >的4个不同实根从小到大依次为1x ,2x ,3x ,4x ,有以下三个结论:①142x x +=且232x x +=;②当1a =时,12111x x +=且34111x x +=;③21340x x x x +=.其中正确的结论个数为( ) A .0 B .1 C .2 D .3例14.(2023·江苏省天一中学高三月考)已知函数2()(2)x f x x x e =-,若方程()f x a =有3个不同的实根()123123x x x x x x <<,,,则22ax -的取值范围为( ) A .10e⎡⎫-⎪⎢⎣⎭,B.1e⎡-⎢⎣⎭C.()D.(例15.(2023·浙江·高一单元测试)已知函数(){}2max ,32f x x x =-,其中{},max ,,p p q p q q p q ≥⎧=⎨<⎩,若方程()()302f x ax a =+>有四个不同的实根1x 、2x 、3x 、()41234x x x x x <<<,则1423x x x x ++的取值范围是( )A .93,102⎫⎛-- ⎪⎝⎭B .193,102⎫⎛-- ⎪⎝⎭C .39,210⎫⎛- ⎪⎝⎭D .319,210⎫⎛- ⎪⎝⎭核心考点六:分段函数零点问题 【典型例题】例16.(2023·山东青岛·高三期末)已知函数2|ln(1),1()(2),1x x f x x x ⎧+-=⎨+≤-⎩,若方程()0f x m -=有4个不相同的解,则实数m 的取值范围为( ) A .(0,1]B .[0,1)C .(0,1)D .[0,1]例17.(2023·全国·高三专题练习)已知函数2log ,1()11,14x x f x x x >⎧⎪=⎨+≤⎪⎩,()()g x f x kx =-,若函数()g x 有两个零点,则k 的取值范围是( ) A .10,4⎛⎤⎥⎝⎦B .10,ln 2e ⎛⎫ ⎪⎝⎭C .10,e ⎡⎫⎪⎢⎣⎭D .11,42eln ⎡⎫⎪⎢⎣⎭例18.(2023·江苏·高三专题练习)已知函数22,0()log ,0x x f x x x ⎧≤=⎨>⎩,函数()()g x f x x m =++,若()g x 有两个零点,则m 的取值范围是( ). A .[1,)-+∞B .(,1]-∞-C .[0,)+∞D .[1,0)-核心考点七:函数对称问题 【典型例题】例19.(2023·安徽省滁州中学高三月考(文))已知函数()22ln ,03,02x x x x f x x x x ->⎧⎪=⎨--≤⎪⎩的图象上有且仅有四个不同的点关于直线1y =的对称点在10kx y +-=的图象上,则实数k 的取值范围是A .1,12⎛⎫⎪⎝⎭B .13,24⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭例20.(2023·全国·高一课时练习)若直角坐标平面内的两点P ,Q 满足条件:①P ,Q 都在函数()f x 的图象上;②P ,Q 关于原点对称,则称点对[],P Q 是函数()f x 的一个“友好点对”(注:点对[],P Q 与[],Q P 看作同一个“友好点对”).已知函数()22log ,04,0x x f x x x x >⎧=⎨--≤⎩,则此函数的“友好点对”有( )A .0个B .1个C .2个D .3个例21.(2023·福建·厦门一中高一竞赛)若函数y =f (x )图象上存在不同的两点A ,B 关于y 轴对称,则称点对[A ,B ]是函数y =f (x )的一对“黄金点对”(注:点对[A ,B ]与[B ,A ]可看作同一对“黄金点对”)已知函数2229,0()4,041232,4x x f x x x x x x x +<⎧⎪=-+≤≤⎨⎪-+>⎩,则此函数的“黄金点对”有( )A .0对B .1对C .2对D .3对核心考点八:零点嵌套问题 【典型例题】例22.(2023·湖北武汉·高三月考)已知函数2()()(1)()1x x f x xe a xe a =+-+-有三个不同的零点123,,x x x .其中123x x x <<,则3122123(1)(1)(1)x x x x e x e x e ---的值为( )A .1B .2(1)a -C .1-D .1a -例23.(2023·全国·模拟预测(理))已知函数2()e e x x x ax f x a ⎛⎫=+- ⎪⎝⎭有三个不同的零点123,,x x x (其中123x x x <<),则3122312111e e ex x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为 A .1B .1-C .aD .a -例24.(2023·浙江省杭州第二中学高三开学考试)已知函数()()()2ln ln f x ax x x x x =+--,有三个不同的零点,(其中123x x x <<),则2312123ln ln ln 111x x x x x x ⎛⎫⎛⎫⎛⎫---⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为 A .1a - B .1a - C .-1 D .1核心考点九:函数零点问题之三变量问题 【典型例题】例25.(2023·全国·高三)若存在两个正实数x 、y ,使得等式3(24)(ln ln )0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是( ).A .()0-∞,B .3(0)[)2e-∞⋃+∞,, C .3(0]2e,D .3[)2e+∞, 例26.(2023·山东枣庄·高二期末)对于任意的实数[1,e]x ∈,总存在三个不同的实数y ,使得ln 0ye xy x ay y--=成立,其中e 为自然对数的底数,则实数a 的取值范围是A .2(,)4e -∞-B .2(,0)4e -C .2[,)4e -+∞D .2(,)4e -+∞例27.(2023·四川省新津中学高三月考(理))若存在两个正实数,x y ,使得等式330yx x e ay -=成立,其中e 为自然对数的底数,则实数a 的取值范围为A .2[,)8e +∞B .3(0,]27eC .3[,)27e +∞D .2(0,]8e核心考点十:倍值函数 【典型例题】例28.(河南省郑州市第一中学2022-2023学年高三上学期期中考试数学(理)试题)对于函数()y f x =,若存在区间[],a b ,当[],x a b ∈时的值域为[](),0ka kb k >,则称()y f x =为k 倍值函数.若()2xf x e x =+是k倍值函数,则实数k 的取值范围是( ) A .()1,e ++∞B .()2,e ++∞C .1,e e ⎛⎫++∞ ⎪⎝⎭D .,e e 2⎛⎫++∞ ⎪⎝⎭例29.(2023·四川·内江市教育科学研究所高二期末(文))对于函数()y f x =,若存在区间,a b ,当[],x a b ∈时,()f x 的值域为[],ka kb ,则称()y f x =为k 倍值函数.若()xf x e =是k 倍值函数,则k 的取值范围为( )A .10,e ⎛⎫⎪⎝⎭B .()1,eC .(),e +∞D .1,e ⎛⎫+∞ ⎪⎝⎭例30.(2023·吉林·长春十一高高二期中(理))对于函数()y f x =,若存在区间[],a b ,当[],x a b ∈时,()f x 的值域为[],ka kb ,则称()y f x =为k 倍值函数.若()ln f x x x =+是k 倍值函数,则k 的取值范围为( ) A .10,e ⎛⎫ ⎪⎝⎭B .1,e ⎛⎫+∞ ⎪⎝⎭C .11,1e ⎛⎫+ ⎪⎝⎭D .11,e ⎛⎫++∞ ⎪⎝⎭核心考点十一:函数不动点问题 【典型例题】例31.(2023·广东海珠·高三期末)设函数()f x a R e ∈,为自然对数的底数),若曲线y x x =上存在点00()x y ,使得00()f y y =,则a 的取值范围是( ) A .1e[1]e-, B .1e[e 1]e-+, C .[1e 1]+, D .[1,e]例32.(2023·山西省榆社中学高三月考(理))若存在一个实数t ,使得()F t t =成立,则称t 为函数()F x 的一个不动点.设函数()1(xg x e x a =+-(a R ∈,e 为自然对数的底数),定义在R 上的连续函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.若存在01|()(1)2x x f x f x x ⎧⎫∈+-+⎨⎬⎩⎭,且0x 为函数()g x 的一个不动点,则实数a 的取值范围为( )A .⎛⎫-∞ ⎪ ⎪⎝⎭ B .⎡⎫+∞⎪⎢⎪⎣⎭ C .⎛⎤⎥ ⎝⎦ D .⎛⎫+∞⎪ ⎪⎝⎭例33.(2023·四川自贡·高二期末(文))设函数()()1ln 2=+-∈f x x x a a R ,若存在[]1,b e ∈(e 为自然对数的底数),使得()()f f b b =,则实数a 的取值范围是( ) A .1,122⎡⎤--⎢⎥⎣⎦eB .e 1,ln 212⎡⎤--⎢⎥⎣⎦C .1,ln 212⎡⎤--⎢⎥⎣⎦D .1,02⎡⎤-⎢⎥⎣⎦核心考点十二:函数的旋转问题 【典型例题】例34.(2023·上海市建平中学高三期末)双曲线2213x y -=绕坐标原点O 旋转适当角度可以成为函数f (x )的图象,关于此函数f (x )有如下四个命题,其中真命题的个数为( ) ①f (x )是奇函数;②f (x )的图象过点32⎫⎪⎪⎝⎭或32⎫-⎪⎪⎝⎭; ③f (x )的值域是33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;④函数y =f (x )-x 有两个零点. A .4个B .3个C .2个D .1个例35.(2023·山东青岛·高三开学考试)将函数2([3,3])y x =∈-的图象绕点(3,0)-逆时针旋转(0)ααθ≤≤,得到曲线C ,对于每一个旋转角α,曲线C 都是一个函数的图象,则θ最大时的正切值为( )A .32B .23C .1D 例36.(2023·浙江·高三期末)将函数π2sin 0,22x y x ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的图像绕着原点逆时针旋转角α得到曲线T ,当(]0,αθ∈时都能使T 成为某个函数的图像,则θ的最大值是( )A .π6B .π4C .3π4D .2π3核心考点十三:构造函数解不等式 【典型例题】例37.(2023·江西赣州·高三期中(文))已知函数()()f x x R ∈满足(1)1f =,且()f x 的导数1()2f x '>,则不等式||1(||)22x f x <+的解集为( ) A .(,1)-∞-B .(1,)+∞C .(1,1)-D .(,1][1,)-∞-+∞例38.(2023·全国·高二课时练习)设定义在R 上的函数()f x 的导函数为()'f x ,若()()'2f x f x +<,()02021f =,则不等式()22019x x e f x e >+(其中e 为自然对数的底数)的解集为( ) A .()0+∞,B .()2019+∞,C .()0-∞,D .()()02019-∞+∞,,例39.(2023·全国·高二课时练习)已知()f x 的定义域为0,,()'f x 为()f x 的导函数,且满足()()f x xf x '<-,则不等式()()()2111f x x f x +>--的解集是( )A .0,1B .2,C .1,2D .1,核心考点十四:导数中的距离问题 【典型例题】例40.(2023春•荔湾区期末)设函数22()()(22)f x x a lnx a =-+-,其中0x >,a R ∈,存在0x 使得04()5f x 成立,则实数a 的值是( ) A .15B .25C .12D .1例41.(2023•龙岩模拟)若对任意的正实数t ,函数33()()()3f x x t x lnt ax =-+--在R 上都是增函数,则实数a 的取值范围是( )A .1(,]2-∞B .(-∞C .(-∞D .(-∞,2]例42.(2023•淮北一模)若存在实数x 使得关于x 的不等式2221()22x e a x ax a -+-+成立,则实数a 的取值范围是( ) A .1{}2B .1{}4C .1[2,)+∞D .1[4,)+∞核心考点十五:导数的同构思想 【典型例题】例43.(2023·全国·高三专题练习)已知关于x 的不等式ln ln(1)0x e mx x m ---+≥在(0,)+∞恒成立,则m 的取值范围是( ) A .(]1,1-B .(]1,1e --C .(]1,1e -D .(]1,e例44.(2023·安徽·合肥一中高三月考(理))设实数0m >,若对任意的()1,x ∈+∞,不等式2ln 20mxxe m-≥恒成立,则实数m 的取值范围是( ) A .1,2e ⎡⎫+∞⎪⎢⎣⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .[)1,+∞D .[),e +∞例45.(2023·宁夏·石嘴山市第一中学高二月考(理))若对任意()0,x ∈+∞,不等式ln 0ax ae x ->恒成立,则实数a 的取值范围为( )A .1,e e ⎛⎫- ⎪⎝⎭B .1,e⎛⎫+∞ ⎪⎝⎭C .1e e ⎛⎫ ⎪⎝⎭,D .(),e +∞核心考点十六:不等式恒成立之分离参数、分离函数、放缩法 【典型例题】例46.(2023·浙江·高三月考)已知函数2()1x f x xe =-,不等式()ln f x mx x ≥+对任意(0,)x ∈+∞恒成立,则实数m 的取值范围是( ) A .(,2]-∞B .[0,2]C .(2,e 1⎤-∞-⎦D .20,1e ⎡⎤-⎣⎦例47.(2023·四川省资中县第二中学高二月考(理))关于x 的不等式()32ln 113x x a x xe x+++-≥对任意0x >恒成立,则a 的取值范围是( ). A .(],1-∞-B .(){},1e -∞⋃C .[],1e --D .(],0-∞例48.(2023·全国·高三专题练习)已知,a b ∈R ,若关于x 的不等式2ln 0x a x a b -+-≥恒成立,则ab 的最大值为_______.核心考点十七:三次函数问题 【典型例题】例49.(2023·全国·高三课时练习)设函数()y f x ''=是()y f x '=的导数,经过探究发现,任意一个三次函数()()320ax bx d a f x cx =+++≠的图象都有对称中心()()00,x f x ,其中0x 满足()00f x ''=,已知函数()3272392f x x x x =-+-,则12320212022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2021 B .20212C .2022D .40212例50.(2023·安徽·东至县第二中学高三月考(理))人们在研究学习过程中,发现:三次整式函数()f x 都有对称中心,其对称中心为00(,())x f x (其中0''()0f x =).已知函数32()345f x x x x =-++.若()4,()10f m f n ==,则m n +=( ) A .1B .32C .2D .3例51.(2023·全国·高三月考(文))已知m ,n ,p ∈R ,若三次函数()32f x x mx nx p =+++有三个零点a ,b ,c ,且满足()()3112f f -=<,()()022f f =>,则111a b c ++的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .11,43⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭核心考点十八:切线问题 【典型例题】例52.(2023·云南红河·高三月考(理))下列关于三次函数32()(0)()f x ax bx cx d a x R =+++≠∈叙述正确的是( )①函数()f x 的图象一定是中心对称图形; ②函数()f x 可能只有一个极值点; ③当03bx a≠-时,()f x 在0x x =处的切线与函数()y f x =的图象有且仅有两个交点; ④当03bx a≠-时,则过点()()00,x f x 的切线可能有一条或者三条. A .①③B .②③C .①④D .②④例53.(2023·江西·南昌二中高三月考(文))若函数2()1f x x =+的图象与曲线C:()21(0)x g x a e a =⋅+>存在公共切线,则实数a 的取值范围为 A .220,e ⎛⎤ ⎥⎝⎦B .240,e ⎛⎤ ⎥⎝⎦C .21,e ⎡⎫+∞⎪⎢⎣⎭D .23,e ⎡⎫+∞⎪⎢⎣⎭例54.(2023·全国·高二单元测试)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a <B .e b a >C .0e b a <<D .0e a b <<核心考点十九:任意存在性问题 【典型例题】例55.(2023·河南·郑州外国语中学高三月考(理))若不等式()()()221212log 1log 3,,13x xa x x ++-≥-∈-∞恒成立,则实数a 的范围是( ) A .[0,)+∞B .[1,)+∞C .(,0]-∞D .(,1]-∞.例56.(2023·全国·高三专题练习)已知函数2()=++f x x px q 对,∀∈p q R ,总有0[1,5]∃∈x ,使()0f x m≥成立,则m 的范围是( ) A .5,2⎛⎤-∞ ⎥⎝⎦B .(,2]-∞C .(,3]-∞D .(,4]-∞例57.(2023·全国·高二课时练习)已知()()1ln f x x x =+,若k ∈Z ,且()()2k x f x -<对任意2x >恒成立,则k 的最大值为( ) A .3B .4C .5D .6核心考点二十:双参数最值问题 【典型例题】例58.(2023·浙江·宁波市北仑中学高三开学考试)已知,a b ∈R ,且0ab ≠,对任意0x >均有()()(ln )0x a b x a x b ----≥,则( ) A .0,0a b <<B .0,0a b <>C .0,0a b ><D .0,0a b >>例59.(2023·山西运城·高三期中(理))已知在函数()()0,0f x ax b a b =+>>,()()ln 2g x x =+,若对2x ∀>-,()()f x g x ≥恒成立,则实数ba的取值范围为( )A .[)0,+∞B .[)1,+∞C .[)2,+∞D .[),e +∞例60.(2023·黑龙江·鹤岗一中高三月考(理))当(1,)x ∈+∞时,不等式ln(1)230(x ax b a --+,b R ∈,0)a ≠恒成立,则ba 的最大值为( )A .1eB .2C .43D .2e核心考点二十一:切线斜率与割线斜率 【典型例题】例61.(2023·广东·佛山一中高三月考)已知函数2()ln (1)1h x a x a x =+-+(0)a < ,在函数()h x 图象上任取两点,A B ,若直线AB 的斜率的绝对值都不小于5,则实数a 的取值范围是( )A .(,0)-∞B .⎛-∞ ⎝⎦C .,⎛-∞ ⎝⎦D .⎫⎪⎪⎝⎭例62.(2023·山西大同·高一期中)已知函数(),()f x g x 是定义在R 上的函数,且()f x 是奇函数,()g x 是偶函数,()()f x g x +=2x ax +,记2()()()g x h x xf x x =+,若对于任意的1212x x <<<,都有()()12120h x h x x x -<-,则实数a 的取值范围为( ) A .1,02⎡⎫-⎪⎢⎣⎭B .(0,)+∞C .(,1]-∞-D .(0,2]例63.(2023·全国·高一课时练习)已知函数(),142,12x a x f x a x x ⎧≥⎪=⎨⎛⎫-+< ⎪⎪⎝⎭⎩,若对任意的1x ,2x ,且12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围是( )A .()1,+∞B .[)1,8C .()4,8D .[)4,8核心考点二十二:最大值的最小值问题(平口单峰函数、铅锤距离) 【典型例题】例64.设二次函数2()(2)32f x a x ax =-++在R 上有最大值,最大值为m (a ),当m (a )取最小值时,(a =) A .0B .1C .12D例65.(2023春•绍兴期末)已知函数2()||||f x x a x b =+++,[0x ∈,1],设()f x 的最大值为M ,若M 的最小值为1时,则a 的值可以是( ) AB .0 CD .1例66.(2023•济南模拟)已知函数2()||2x f x ax b x -=--+,若对任意的实数a ,b ,总存在0[1x ∈-,2],使得0()f x m 成立,则实数m 的取值范围是( ) A .1(,]4-∞B .(-∞,1]2C .(-∞,2]3D .(-∞,1]核心考点二十三:两边夹问题和零点相同问题 【典型例题】例67.(2023春•湖州期末)若存在正实数x ,y 使得不等式22414lnx x lny ln y -++-成立,则(xy += ) ABCD 例68.(2023•上饶二模)已知实数x ,y 满足2(436)326x y ln x y e x y +-+--+-,则x y +的值为( ) A .2B .1C .0D .1-例69.(2023•崇明区期末)若不等式(||)sin()06x a b x ππ--+对[1x ∈-,1]恒成立,则a b +的值等于() A .23B .56C .1D .2核心考点二十四:函数的伸缩变换问题 【典型例题】例70.(2023·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是( ) A .[]2,3 B .[]1,3 C .[]1,4D .[]2,4例71.(2023·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18≥-f x t t恒成立,则实数t 的取值范围是( ) A .(](],10,3-∞-B.((,0,3⎤-∞⎦C .[)[)1,03,-+∞D .))3,⎡⎡+∞⎣⎣例72.(2023届山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为( ) A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤【新题速递】一、单选题1.(2023·广西南宁·南宁二中校考一模)已知函数()2,01,011x x f x x x x ⎧≤⎪=-≤<⎨≥,若函数()()()22231g x m f x mf x =-+,存在5个零点,则m =( ) A .1B .12C .1或12D .1-2.(2023春·陕西西安·高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( )A .1B .3C .4D .53.(2023·江西景德镇·统考模拟预测)已知函数()11,041,0x xf x x x ⎧+<⎪⎪=⎨⎪->⎪⎩,若()()12f x f x =,则12x x -的最小值为( ) A .4B .92C .143D .54.(2023春·内蒙古赤峰·高三统考阶段练习)已知实数0a >,0b >,1a b +=,则下列说法中,正确的是( ). A .114a b+≤B .存在a ,b ,使得223a b +≥C .22log log 1a b ⋅≤D .存在a ,b ,使得直线10ax by 与圆224x y +=相切5.(2023·全国·高三专题练习)已知()0,2A ,()(),00B t t <,动点C 在曲线T :()2401y x x =≤≤上,若△ABC 面积的最小值为1,则t 不可能为( ) A .4-B .3-C .2-D .1-6.(2023·浙江温州·统考模拟预测)已知P 为直线=1y x --上一动点,过点P 作抛物线2:2C x y =的两条切线,切点记为A ,B ,则原点到直线AB 距离的最大值为( ) A .1BCD .27.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知0a >,0b >,直线2e y x b -=+与曲线ln y x a =-相切,则11a b+的最小值是( ) A .16B .12C .8D .48.(2023春·江苏苏州·高三苏州中学校考阶段练习)若关于x 的不等式(41ln )ln 3k x x x x --<-+对于任意(1,)x ∈+∞恒成立,则整数k 的最大值为( ) A .-2 B .-1 C .0 D .1二、多选题9.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()e xf x x =-,()lng x x x =-,则下列说法正确的是( )A .()e xg 在()0,∞+上是增函数B .1x ∀>,不等式()()2ln f ax f x ≥恒成立,则正实数a 的最小值为2eC .若()f x t =有两个零点12,x x ,则120x x +>D .若()()()122f x g x t t ==>,且210x x >>,则21ln t x x -的最大值为1e10.(2023春·重庆·高三统考阶段练习)已知函数32()e 3xf x ax =-有三个不同的极值点1x ,2x ,3x ,且123x x x <<,则下列结论正确的是( )A .2e 8a >B .11x <-C .2x 为函数()f x 的极大值点D .()23e 3f x <11.(2023春·福建宁德·高三校考阶段练习)已知函数()3f x x ax b =++,其中a ,b 为实数,则下列条件能使函数()f x 仅有一个零点的是( ) A .3a =-,3b =-B .3a =-,2b =C .0a =,3b =-D .1a =,2b =12.(2023春·山东潍坊·高三统考期中)定义在R 上的函数()f x 的导函数为()f x ',对于任意实数x ,都有2()e ()x f x f x -=,且满足22()()21e x f x f x x -'+=+-,则( )A .函数()e ()x F x f x =为偶函数B .(0)0f =C .不等式e ()e e x xxf x +<的解集为(1,)+∞ D .若方程2()()0f x x a x--=有两个根12,x x ,则122x x a +> 13.(2023·浙江温州·统考模拟预测)若函数()y f x =的图象上存在两个不同的点P ,Q ,使得()f x 在这两点处的切线重合,则称函数()y f x =为“切线重合函数”,下列函数中是“切线重合函数”的是( ) A .sin cos y x x =+ B .(sin c s )o y x = C .sin y x x =+D .2sin y x x =+14.(2023春·江苏南京·高三统考阶段练习)已知双曲线C :224x y -=,曲线E :2y ax x b =++,记两条曲线过点()1,0的切线分别为1l ,2l ,且斜率均为正数,则( ) A .若=0a ,1b =,则C 与E 有一个交点 B .若=1a ,=0b ,则C 与E 有一个交点C .若0a b ,则1l 与E 夹角的正切值为7-D .若==1a b ,则1l 与2l 三、填空题15.(2023·河南郑州·高三阶段练习)正实数a ,b 满足1e 4a a +=+,()ln 3b b +=,则b a -的值为____________. 16.(2023·全国·高三校联考阶段练习)已知函数()234202312342023x x x x f x x =+-+-++,()234202312342023x x x x g x x =-+-+--,设()()()53F x f x g x =+⋅-,且函数()F x 的零点均在区间[](a b a b <,,a ,)b Z ∈内,则b a -的最小值为__________.17.(2023春·广东广州·高三统考阶段练习)方程e 0x ax a -+=有唯一的实数解,实数a 的取值范围为__________.18.(2023春·山东·高三山东省实验中学校考阶段练习)已知函数()()23e ,? 0e ,? 0x x xf x x a x ⎧->=⎨-≤⎩,若()()12f x f x =,且12x x -的最大值为4,则实数a 的值为_______.19.(2023·全国·高三专题练习)若存在0a >,0b >,满足(2e )ln (2e )ln a t b a b t b a a +-=-,其中e 为自然对数的底数,则实数t 的取值范围是___________.20.(2023·四川资阳·统考模拟预测)若2224ln x ax a x ->,则a 的取值范围是______.。
2021-2022年高考数学二轮复习专项精练压轴大题突破练四函数与导数2理

2021年高考数学二轮复习专项精练压轴大题突破练四函数与导数2理1.(xx·湖南省长沙市长郡中学临考冲刺训练)已知函数f(x)=x3-3x2-m,g(x)=3e x -6(1-m)x-3(m∈R,e为自然对数的底数).(1)试讨论函数f(x)的零点个数;(2)证明:当m>0且x>0时,总有g(x)>f′(x).(1)解f(x)=x3-3x2-m的零点个数即为方程x3-3x2=m的根的个数.记h(x)=x3-3x2,则h′(x)=3x(x-2),令h′(x)=0,得x=0或x=2.当x变化时,h′(x),h(x)的变化情况如下表:x (-∞,0)0(0,2)2(2,+∞) h′(x)+0-0+h(x)↗极大值0↘极小值-4 ↗故可画出h(x)的草图如图所示.由图象知,当m<-4或m>0时,函数f(x)有一个零点;当m=-4或m=0时,函数f(x)有两个零点;当-4<m<0时,函数f(x)有三个零点.(2)证明f′(x)=3x2-6x,记函数u(x)=g(x)-f′(x)=3e x-3x2+6mx-3(x>0),则u′(x)=3(e x-2x+2m),记v(x)=e x-2x+2m,则v′(x)=e x-2,当x变化时,v′(x),v(x)的变化情况如下表:x (0,ln 2)ln 2(ln 2,+∞)由上表可知,v (x )≥v (ln 2), 而v (ln 2)=eln 2-2ln 2+2m=2-2ln 2+2m =2(m -ln 2+1), 由m >0知,m >ln 2-1. 所以v (ln 2)>0,所以v (x )>0,即u ′(x )>0,所以u (x )在区间(0,+∞)上为增函数, 所以当x >0时,u (x )>u (0)=0. 即当m >0且x >0时,g (x )>f ′(x ).2.(xx 届江苏省南通、扬州、泰州模拟)已知函数f (x )=ax 2+cos x (a ∈R ),记f (x )的导函数为g (x ).(1)证明:当a =12时,g (x )在R 上为单调函数;(2)若f (x )在x =0处取得极小值,求a 的取值范围;(3)设函数h (x )的定义域为D ,区间(m ,+∞)⊆D .若h (x )在(m ,+∞)上是单调函数,则称h (x )在D 上广义单调.试证明函数y =f (x )-x ln x 在(0,+∞)上广义单调.(1)证明 当a =12时,f (x )=12x 2+cos x ,所以f ′(x )=x -sin x ,即g (x )=x -sin x , 所以g ′(x )=1-cos x ≥0, 所以g (x )在R 上单调递增.(2)解 因为g (x )=f ′(x )=2ax -sin x , 所以g ′(x )=2a -cos x .①当a ≥12时,g ′(x )≥1-cos x ≥0,所以函数f ′(x )在R 上单调递增. 若x >0,则f ′(x )>f ′(0)=0; 若x <0,则f ′(x )<f ′(0)=0,所以函数f (x )的单调递增区间是(0,+∞),单调递减区间是(-∞,0), 所以f (x )在x =0处取得极小值,符合题意. ②当a ≤-12时,g ′(x )≤-1-cos x ≤0,所以函数f ′(x )在R 上单调递减.若x >0,则f ′(x )<f ′(0)=0; 若x <0,则f ′(x )>f ′(0)=0, 所以f (x )的单调递减区间是(0,+∞), 单调递增区间是(-∞,0),所以f (x )在x =0处取得极大值,不符合题意.③当-12<a <12时,∃x 0∈(0,π),使得cos x 0=2a ,即g ′(x 0)=0,但当x ∈(0,x 0)时,cosx >2a ,即g ′(x )<0,所以函数f ′(x )在(0,x 0)上单调递减,所以f ′(x )<f ′(0)=0,即函数f (x )在(0,x 0)上单调递减,不符合题意.综上所述,a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. (3)证明 记h (x )=ax 2+cos x -x ln x (x >0). ①若a >0,注意到ln x <x ,则ln x 12<x 12,即ln x <2x ,h ′(x )=2ax -sin x -1-ln x >2ax -2x -2=2a ⎝ ⎛⎭⎪⎫x -1-4a +12a ⎝ ⎛⎭⎪⎫x -1+4a +12a .当x >⎝⎛⎭⎪⎫1+4a +12a 2时,h ′(x )>0, 所以当m =⎝⎛⎭⎪⎫1+4a +12a 2时,函数h (x )在(m ,+∞)上单调递增. ②若a ≤0,当x >1时,h ′(x )=2ax -sin x -1-ln x ≤-sin x -1-ln x <0,所以当m =1时,函数h (x )在(m ,+∞)上单调递减.综上所述,函数y =f (x )-x ln x 在区间(0,+∞)上广义单调. 3.(xx 届天津市耀华中学模拟)已知f (x )=2x +1-e ax(a ∈R ). (1)讨论f (x )的单调性;(2)若x 1,x 2为方程f (x )=1的两个相异的实根,求证:x 1+x 2>2a.(1)解 f ′(x )=2-a e ax.当a ≤0时,f (x )在(-∞,+∞)上单调递增; 当a >0时,f (x )在⎝⎛⎭⎪⎫-∞,1aln 2a 上单调递增,在⎝ ⎛⎭⎪⎫1aln 2a,+∞上单调递减. (2)证明 x 1,x 2为方程f (x )=1的两个相异的实根, 则x 1,x 2为方程2x -e ax=0的两个相异的实根, 即x 1,x 2为方程ax =ln(2x )的两个相异的实根, 所以ax 1=ln(2x 1),ax 2=ln(2x 2). 不妨设x 1>x 2>0,则a >0,所以a (x 1-x 2)=ln x 1x 2,即a =lnx 1x 2x 1-x 2,要证明x 1+x 2>2a⇔a >2x 1+x 2, 只需证明lnx 1x 2x 1-x 2>2x 1+x 2,即证明ln x 1x 2>2x 1-x 2x 1+x 2,令x 1x 2=t >1,g (t )=ln t -2t -1t +1>0 (t >1),g (1)=0.g ′(t )=1t -2t +1-2t -1t +12=t -12t t +12>0,所以函数g (t )在(1,+∞)上单调递增, 所以g (t )>g (1)=0,所以ln x 1x 2>2x 1-x 2x 1+x 2成立,即x 1+x 2>2a.4.(xx 届福建省厦门第一中学模拟)函数f (x )=ln x +12x 2+ax (a ∈R ),g (x )=e x+32x 2.(1)讨论f (x )的极值点的个数; (2)若对于∀x >0,总有f (x )≤g (x ). ①求实数a 的取值范围;②求证:对于∀x >0,不等式e x +x 2-(e +1)x +e x>2成立.(1)解 由题意得f ′(x )=x +1x+a=x 2+ax +1x(x >0),令Δ=a 2-4,当Δ=a 2-4≤0,即-2≤a ≤2时,x 2+ax +1≥0对x >0恒成立,即f ′(x )=x 2+ax +1x≥0对x >0恒成立,此时f (x )没有极值点. 当Δ=a 2-4>0,即a <-2或a >2,①当a <-2时,设方程x 2+ax +1=0两个不同实根为x 1,x 2,不妨设x 1<x 2, 则x 1+x 2=-a >0,x 1x 2=1>0,故x 2>x 1>0, ∴当x <x 1或x >x 2时,f ′(x )>0; 当x 1<x <x 2时,f ′(x )<0,故x 1,x 2是函数f (x )的两个极值点.②当a >2时,设方程x 2+ax +1=0的两个不同实根为x 1,x 2,则x 1+x 2=-a <0,x 1x 2=1>0, 故x 2<0,x 1<0,∴当x >0时,f ′(x )>0, 故函数f (x )没有极值点.综上,当a <-2时,函数f (x )有两个极值点. 当a ≥-2时,函数f (x )没有极值点.(2)①解 由题意可知,a ≤⎝ ⎛⎭⎪⎫e x +x 2-ln x x min, 设φ(x )=e x+x 2-ln xx,易知φ(x )=e x +x 2-ln x x在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x )min =φ(1)=e +1,a ≤e +1. ∴a 的取值范围为(-∞,e +1].②证明 ∵e x+x 2-(e +1)x ≥ln x ,当且仅当x =1时取等号, ∴只需证明ln x +ex≥2,设θ(x )=ln x +ex,易得θ(x )=ln x +ex在(0,e)上单调递减,在(e ,+∞)上单调递增,θ(x )≥θ(e)=2,即ln x +ex≥2,当x =e 时取等号.e x >2成立.综上,两式不同时取等号,故e x+x2-(e+1)x+。
2022高考数学(文)二轮复习高考小题标准练(十) Word版含答案
温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。
关闭Word 文档返回原板块。
高考小题标准练(十)满分75分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={-1,1},B={x|1≤2x <4},则A ∩B 等于( ) A.{-1,0,1} B.{1} C.{-1,1} D.{0,1}【解析】选B.由于1≤2x <4,所以20≤2x <22,所以B={x|0≤x<2},所以A ∩B={1}. 2.已知复数z 1=1-i ,z 2=1+i ,则z 1z 2i等于( )A.2iB.-2iC.2+iD.-2+i 【解析】选B.z 1z 2i=(1−i)(1+i)i=1−i 2i=2i=-2i.3.已知双曲线x 2a 2-y 2b2=1(a>0,b>0)的一条渐近线与直线x+3y+1=0垂直,则双曲线的离心率等于( ) A.√6 B.2√33C.√10D.√3【解析】选C.直线x+3y+1=0的斜率k=-13,双曲线的渐近线方程y=±b ax , 因此ba·(-13)=-1,得b=3a ,令a=k ,则c=√a 2+b 2=√10k ,离心率e=ca =√10kk=√10. 【加固训练】双曲线x 24a2-y 2b2=1的右焦点F 与抛物线y 2=4px(p>0)的焦点重合,且在第一象限的交点为M ,MF 垂直于x 轴,则双曲线的离心率是( ) A.2√2+2 B.2√2 C.√2+1 D.√2+2【解析】选C.由题意知,点M(p ,2p), p =√4a 2+b 2,所以p 24a 2-4p 2b2=1,化简得b 2=4ap ,所以e=p2a =b 28a 2,而e=√1+b 24a 2=√1+2e ,解得e=√2+1.4.定义:|a 1 a 2a 3 a 4|=a 1a 4-a 2a 3,若函数f(x)=|√3 1cosx sinx|,将其图象向左平移m (m>0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A.π3B.23π C.π6D.56π【解析】选B.由已知可得f(x)=√3sin x-cos x=2sin (x −π6).将其图象向左平移m 个单位(m>0)后可得g(x)=2sin (x +m −π6),其图象关于y 轴对称,则其为偶函数,故有g(x)=2sin [π2+(x +m −46π)]=2cos (x +m −4π6).即m-4π6=0,所以m=23π.5.定义:在数列{a n }中,若满足a n+2a n+1-a n+1a n=d(n ∈N *,d为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2 015a 2 013=( )A.4×20212-1B.4×20222-1C.4×20212-1D.4×20212 【解题提示】首先应依据新定义获得数列{a n+1a n}为等差数列,进而求得通项公式,结合通项公式的特点即可获得问题的解答.【解析】选C.由题意可知:a2a 1=1,a3a 2=3,a3a 2-a2a 1=3-1=2.所以数列{a n+1a n}为以1为首项以2为公差的等差数列.所以a n+1a n=1+(n-1)×2=2n-1,n ∈N *,所以a 2 015a 2 013=4×20212-1.6.如图所示程序框图,运行后输出S=( )A.45B.-55C.-66D.66【解题提示】依据程序框图的流程,可推断程序的功能是S=12-22+32-42+…+(-1)n+1·n2,推断程序运行终止时的n值,计算可得答案.【解析】选B.由程序框图知,第一次运行T=(-1)2·12=1,S=0+1=1,n=1+1=2;其次次运行T=(-1)3·22=-4,S=1-4=-3,n=2+1=3;第三次运行T=(-1)4·32=9,S=1-4+9=6,n=3+1=4;…直到n=9+1=10时,满足条件n>9,运行终止,此时T=(-1)11·102,S=1-4+9-16+…+92-102=1+(2+3)+(4+5)+(6+7)+ (8+9)-100=1+92×9-100=-55.7.某锥体三视图如图,依据图中所标数据,该锥体的各侧面中,面积最大的是( ) A.3 B.2 C.6 D.8【解析】选C.由于三视图复原的几何体是四棱锥,顶点在底面的射影是底面矩形的长边的中点,底面边长分别为4,2,后面是等腰三角形,腰为3,所以后面的三角形的高为:√32−22=√5,面积为:12×4×√5=2√5.两个侧面面积为:12×2×3=3,前面三角形的面积为:12×4×√(√5)2+22=6,四棱锥的四个侧面中面积最大的是前面三角形的面积6.8.已知向量a,b满足a·b=0,|a|=1,|b|=2,则|a-b|=( )A.0B.1C.2D.√5【解析】选D.|a-b|==√5.【加固训练】已知向量a是与单位向量b夹角为60°的任意向量,则对任意的正实数t,|t a-b|的最小值是( )A.0B.12C.√32D.1【解析】选C.由于(t a-b)2=t2a2-2t a·b+b2=t2|a|2-t|a|+1=+34≥34,所以|t a-b|的最小值是√32.9.已知函数f(x)={|x+1x|,x≠0,0,x=0,则关于x的方程[f(x)]2+bf(x)+c=0有5个不同实数解的充要条件是( )A.b<-2且c>0B.b>-2且c<0C.b<-2且c=0D.b ≤-2且c=0【解析】选C.由于方程[f(x)]2+bf(x)+c=0有且只有5个不同实数解,所以对应于f(x)等于某个非零常数有4个不同实数解,由题意作出f(x)的简图:由图可知,只有当f(x)=0时,它有一个根.且f(x)=-b 时有四个根, 由图可知-b>2,所以b<-2.故所求充要条件为b<-2且c=0.10.P 为椭圆x 216+y 215=1上任意一点,EF 为圆N :(x-1)2+y 2=4的任意一条直径,则PE →·PF→的取值范围是( )A.[0,15]B.[5,15]C.[5,21]D.(5,21) 【解析】选C.PE →·PF →=(PN →+NE →)·(PN →+NF →) =(PN →+NE →)·(PN →-NE →)=PN 2→-NE 2→=|PN→|2-4.由于a-c ≤|PN →|≤a+c ,即3≤|PN →|≤5,所以PE →·PF →的范围是[5,21].二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.如图是某学校抽取的同学体重的频率分布直方图,已知图中从左到右的前3个小组的频率依次成等差数列,第2小组的频数为15,则抽取的同学人数为 .【解析】设前三小组的频率依次为a-d ,a ,a+d ,则3a=1-(0.0375+0.0125)×5=0.75,a=0.25,设抽取的同学人数为x ,所以由15x =0.25得,x=60,即抽取的同学人数是60.答案:60【加固训练】若(2x +1√x3)n的开放式中全部项的二项式系数之和为64,则该二项式的开放式中x 2项的系数为 .【解析】由于(2x +√x 3)n的开放式中全部项的二项式系数之和为64,所以2n =64,解得n=6;所以二项式的开放式为T r+1=C 6r (2x)6-r (√x 3)r =C 6r 26-r ·x 6−43r,令6-43r=2,解得r=3,所以x 2项的系数为C 6323=160.答案:16012.设等比数列{a n }的前n 项和为S n ,若27a 3-a 6=0,则S 6S 3= .【解析】设等比数列{a n }的公比为q ,由于27a 3-a 6=0,所以27a 1q 2=a 1q 5,解得q 3=27,所以S 6S 3=a 1(1−q 6)1−qa 1(1−q 3)1−q=1+q 3=28.答案:2813.已知直线mx+y+m-1=0上存在点(x ,y)满足{x +y −3≤0,x −2y −3≤0,x >1,则实数m 的取值范围为 .【解题提示】作出不等式组对应的平面区域,利用直线mx+y+m-1=0与平面区域的关系,建立条件关系确定m 的取值范围. 【解析】作出不等式组对应的平面区域如图:直线mx+y+m-1=0等价为y=-m(x+1)+1,则直线过定点D(-1,1),要使直线mx+y+m-1=0上存在点(x ,y)满足{x +y −3≤0,x −2y −3≤0,x >1,,则满足A 在直线mx+y+m-1=0的上方,且B 在直线mx+y+m-1=0的下方,由{x =1,x +y −3=0解得{x =1,y =2,,即A(1,2),由{x =1,x −2y −3=0解得{x =1,y =−1,即B(1,-1),则满足{m +2+m −1>0,m −1+m −1<0,即{m >−12,m <1,得-12<m<1. 答案:(−12,1)14.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60m ,则河流的宽度BC 等于 m.【解析】设AD 垂直BC ,垂足为D.由题意得:CD=60√3,BD=60tan15°=60(2-√3),所以BC=CD-BD=120√3-120. 答案:120√3-12015.已知函数f(x)={3−x ,x ≤0,√x,x >0,若函数g(x)=f(x)-12x-b 有且仅有两个零点,则实数b 的取值范围是 .【解析】函数g(x)=f(x)-12x-b 有两个零点等价于方程f(x)-12x-b=0有两个不同的解,等价于函数y=f(x)与函数y=12x+b 的图象有两个不同的交点,在同一坐标系内作出两个函数图象,数形结合,当x=0时,12×0+b>0,即b>0,当直线y=12x+b 与y=√x 的图象相切时,b=12,所以函数y=f(x)与函数y=12x+b 的图象有两个不同的交点时,0<b<12. 答案:0<b<12关闭Word 文档返回原板块。
2022年高考理科数学通用版二轮专题复习专题:(二十三) 第21题解答题“函数、导数与不等式”
专题检测(二十三) 第21题解答题“函数、导数与不等式”专练1.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点; (2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值. 解:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2), 令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表: x (-∞,0)0 ⎝⎛⎭⎫0,23 23 ⎝⎛⎭⎫23,1 f ′(x ) -0 +0 -f (x )极小值极大值故当x =0时,函数f (x )取得极小值为f (0)=0,函数f (x )的极大值点为x =23.(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎡⎭⎫23,1上单调递减,在⎣⎡⎦⎤0,23上单调递增.因为f (-1)=2,f ⎝⎛⎭⎫23=427,f (0)=0, 所以f (x )在[-1,1)上的最大值为2. ②当1≤x ≤e 时,f (x )=a ln x , 当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增, 则f (x )在[1,e]上的最大值为f (e)=a .故当a ≥2时,f (x )在[-1,e]上的最大值为a ; 当a <2时,f (x )在[-1,e]上的最大值为2.2.(2021·山西四校联考)已知函数f (x )=1x-a ln x (a ∈R).(1)若h (x )=f (x )-2x ,当a =-3时,求h (x )的单调递减区间; (2)若函数f (x )有唯一的零点,求实数a 的取值范围. 解:(1)由题意,h (x )=1x +3ln x -2x (x >0),h ′(x )=-1x 2+3x -2=-2x 2-3x +1x 2=-(2x -1)(x -1)x 2,由h ′(x )<0,得0<x <12或x >1,故h (x )的单调递减区间是⎝⎛⎭⎫0,12和(1,+∞). (2)问题等价于a ln x =1x有唯一的实根,显然a ≠0,则关于x 的方程x ln x =1a 有唯一的实根,构造函数φ(x )=x ln x ,则φ′(x )=1+ln x , 由φ′(x )=1+ln x =0,得x =e -1, 当0<x <e -1时,φ′(x )<0,φ(x )单调递减,当x >e-1时,φ′(x )>0,φ(x )单调递增,∴φ(x )的极小值为φ(e -1)=-e -1.作出函数φ(x )的大致图象如图所示,则要使方程x ln x =1a 有唯一的实根,只需直线y =1a与曲线y =φ(x )有唯一的交点,则1a =-e -1或1a >0, 解得a =-e 或a >0,故实数a 的取值范围是{-e}∪(0,+∞). 3.(2021·沈阳质检)已知函数f (x )=e x -1-x -ax 2. (1)当a =0时,证明:f (x )≥0;(2)当x ≥0时,若不等式f (x )≥0恒成立,求实数a 的取值范围; (3)若x >0,证明:(e x -1)ln(x +1)>x 2.解:(1)证明:当a =0时,f (x )=e x -1-x ,f ′(x )=e x -1. 当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, f (x )min =f (0)=0,∴f (x )≥0.(2)f ′(x )=e x -2ax -1,令h (x )=e x -2ax -1, 则h ′(x )=e x -2a .①当2a ≤1,即a ≤12时,在[0,+∞)上,h ′(x )≥0,h (x )单调递增,h (x )≥h (0),即f ′(x )≥f ′(0)=0,∴f (x )在[0,+∞)上为增函数,∴f (x )≥f (0)=0, ∴当a ≤12时满足条件.②当2a >1时,令h ′(x )=0,解得x =ln 2a ,在[0,ln 2a )上,h ′(x )<0,h (x )单调递减,∴当x ∈(0,ln 2a )时,有h (x )<h (0)=0,即f ′(x )<f ′(0)=0,∴f (x )在区间(0,ln 2a )上为减函数, ∴f (x )<f (0)=0,不合题意.综上,实数a 的取值范围为⎝⎛⎦⎤-∞,12. (3)证明:由(2)得,当a =12,x >0时,e x-1>x +x 22,欲证不等式(e x -1)ln(x +1)>x 2,只需证ln(x +1)>2xx +2.设F (x )=ln(x +1)-2xx +2,则F ′(x )=1x +1-4(x +2)2=x 2(x +1)(x +2)2.∵当x >0时,F ′(x )>0恒成立,且F (0)=0, ∴F (x )>0恒成立. ∴原不等式得证.4.(2021·天津高考)设a ,b ∈R ,|a |≤1.已知函数f (x )=x 3-6x 2-3a (a -4)x +b ,g (x )=e x f (x ). (1)求f (x )的单调区间;(2)已知函数y =g (x )和y =e x 的图象在公共点(x 0,y 0)处有相同的切线, ①求证:f (x )在x =x 0处的导数等于0;②若关于x 的不等式g (x )≤e x 在区间[x 0-1,x 0+1]上恒成立,求b 的取值范围. 解:(1)由f (x )=x 3-6x 2-3a (a -4)x +b ,可得f ′(x )=3x 2-12x -3a (a -4)=3(x -a )[x -(4-a )]. 令f ′(x )=0,解得x =a ,或x =4-a . 由|a |≤1,得a <4-a .当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,a )(a,4-a ) (4-a ,+∞)f ′(x ) +-+f (x )所以f (x )的单调递增区间为(-∞,a ),(4-a ,+∞),单调递减区间为(a,4-a ). (2)①证明:因为g ′(x )=e x [f (x )+f ′(x )],由题意知⎩⎪⎨⎪⎧g (x 0)=e x 0,g ′(x 0)=e x 0,所以⎩⎪⎨⎪⎧f (x 0)e x 0=e x 0,e x 0[f (x 0)+f ′(x 0)]=e x 0,解得⎩⎪⎨⎪⎧f (x 0)=1,f ′(x 0)=0.所以f(x)在x=x0处的导数等于0.②因为g(x)≤e x,x∈[x0-1,x0+1],由e x>0,可得f(x)≤1.又因为f(x0)=1,f′(x0)=0,所以x0为f(x)的极大值点,结合(1)知x0=a.另一方面,由于|a|≤1,故a+1<4-a,由(1)知f(x)在(a-1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时,f(x)≤f(a)=1在[a-1,a+1]上恒成立,从而g(x)≤e x在[x0-1,x0+1]上恒成立.由f(a)=a3-6a2-3a(a-4)a+b=1,得b=2a3-6a2+1,-1≤a≤1.令t(x)=2x3-6x2+1,x∈[-1,1],所以t′(x)=6x2-12x,令t′(x)=0,解得x=2(舍去)或x=0.因为t(-1)=-7,t(1)=-3,t(0)=1,因此t(x)的值域为[-7,1].所以b的取值范围是[-7,1].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微专题07 函数压轴小题 秒杀总结 一、对于利用导数研究不等式的恒成立与有解问题的求解策略: 1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; 2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题. 3、根据恒成立求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数
后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大. 二、对于双变量问题,首先变形后引入新变量把问题变为单变量,再引入新函数,利用导数求得函数值的范围,然后再解相应的不等式可得所求参数范围. 三、函数零点的求解与判断方法: (1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点; (2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点; (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 四、已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决; (3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解. 典型例题
例1.(2021·福建省福州第一中学高二期末)若对,xyR,有()()()4fxyfxfy,函数2sin()()cos1xgxfxx在区间[2021,2021]上存在最大值和最小值,则其最大值与最小值的和为( ) A.4 B.8 C.12 D.16
例2.(2021·天津·耀华中学高二期中)设函数322lnfxxexmxx,记fxgxx,若函数gx至少存在一个零点,则实数m的取值范围是 A.
2
1,ee B.210,ee
C.
2
1e,e
D.2211e,eee 例3.(2021·全国·高三专题练习)已知函数2()(1)xfxxxe,设关于x的方程25()()()fxmfxmRe有n个不同的实数解,则n的所有可能的值为
A.3 B.1或3 C.4或6 D.3或4或6 例4.(2021·四川自贡·高二期末(理))函数e13xfxxaxa,其中1a,若有且只有一个整数0x,使得00fx,则a的取值范围是( )
A.
23,e4 B.23,
e4
C.
2,1
e
D.2,1e
例5.(2021·全国·高三专题练习)已知函数211()2()xxfxxxaee有唯一零点,则a A.
1
2 B.13 C.12 D.1
例6.(2021·重庆市第七中学校模拟预测)已知函数ln,02,4,24xxfxfxx,若方程fxm有四个不等实根12341234,,,xxxxxxxx,时,不等式22341211kxxxxk恒
成立,则实数k的最小值为
A.
9
8 B.2516 C.322 D.132
例7.(2021·全国·高三专题练习)已知函数1,13ln,393xxfxxx,若函数gxfxax
有两个不同的零点,则实数a的取值范围是( ) A.
21,
32
B.ln311,932e
C.
1ln312,,3923e
D.ln31210,,9332e
例8.(2021·湖南·高三月考)若直角坐标平面内A,B两点满足:①点A,B都在函数()fx的图象上;②点A,B关于原点对称,则称点(,)AB是函数()fx的一个“姊妹点对”点对(,)AB
与(,)BA可看作是同一个“姊妹点对”.已知函数1(0)()ln(0)axxfxxx恰有两个“姊妹点对”,则实数a的取值范围是( ) A.20ae
B.20ae C.10ae D.10ae
例9.(2021·浙江省杭州第二中学高三开学考试)已知函数2lnlnfxaxxxxx,有三个不同的零点,(其中123xxx),则2312123lnlnln111xxxxxx的值为 A.1a B.1a C.-1 D.1 例10.(2021·全国·高二)若存在两个正实数x、y,使得等式3(24)(lnln)0xayexyx成立,其中e为自然对数的底数,则实数a的取值范围是( ). A.
()0,
B.
3(0)[)2e,,
C.
3(0]2e,
D.
3[)2e,
例11.(2021·吉林·长春十一高高二期中(理))对于函数yfx,若存在区间,ab,当,xab时,fx的值域为,kakb,则称yfx为k倍值函数.若lnfxxx是k倍
值函数,则k的取值范围为( )
A.
10,e B.1,e
C.11,1e D.11,e
例12.(2021·四川自贡·高二期末(文))设函数1ln2fxxxaaR,若存在1,be
(e为自然对数的底数),使得ffbb,则实数a的取值范围是( )
A.
1,122e B.e1,ln212
C.
1,ln212 D.1,02
例13.(2016·湖南·高三开学考试(理))将函数y=ln(x+1)(x≥0) 的图象绕坐标原点逆时针方向旋转角θ(θ∈(0,α]),得到曲线C,若对于每一个旋转角θ,曲线C都仍然是一个函数的图象,则α的最大值为
A.π B. C. D.
过关测试 1.(2021·甘肃省民乐县第一中学高三月考(文))设函数
32()sinln13fxaxbxcxx
的最大值为5,则()fx的最小值为( )
A.5 B.1 C.2 D.3 2.(2021·河南·温县第一高级中学高三月考(理))若函数
113esin1exxxfx
在区间
3,5上的最大值、最小值分别为p、q,则pq的值为( ).
A.2 B.1 C.6 D.3
3.(2021·广东潮阳·高一期末)函数
22
2ln141axaxxfxxa
,若fx最大值为M,
最小值为N,1,3a,则MN的取值范围是______. 4.(2021·安徽·合肥市第九中学高三月考(理))已知定义域为R的函数
2222020sin()2xxeexxfxx
有最大值和最小值,且最大值和最小值的和为6,则
λ-μ=___. 5.(2021·浙江奉化·高二期末)若函数
322ln()xexmxxfxx
至少存在一个零点,则m的
取值范围为( ) A.
2
1,ee
B.21,ee C.1,ee D.1,ee
6.(2021·四川资阳·高一期末)定义在R上函数fx,若函数1yfx关于点1,0对称,
且21,0,1,e2,1,,xxxfxx则关于x的方程221fxmfx(mR)有n个不同的实数解,则n的所有可能的值为 A.2 B.4 C.2或4 D.2或4或6
7.(2021·河南·高三月考(文))已知函数
lnxfxx,若关于x的方程
210fxafxa
有且仅有三个不同的实数解,则实数a的取值范围是( )
A.2e,1e B.1e,0 C.,1e D.1e,2e 8.(2021·河南·高三月考(理))已知()fx
是定义在R上的偶函数,且满足
23,01()2ln,1xxxfxxxx
,若关于x的方程2[()]1()0fxafxa有10个不同的实数解,
则实数a的取值范围是( ) A.1,2 B.2,1{2ln22} C.2,2ln22 D.2,2ln22