第003讲 科学计数法和近似数
(完整版)科学计数法、近似数、有效数字归纳,推荐文档

科学计数法、近似数、有效数字【要点提示】一、科学记数法的定义:把一个大于10的数记成a n⨯10的形式的方法叫科学记数法。
1.其中a满足条件1≤│a│<102.用科学记数法表示一个n位整数,其中10的指数是n-1。
3.负整数指数幂:当a n≠0,是正整数时,a an n-=1/4.我们把绝对值小于1的数写成a×10(n为负整数,1≤│a│<10)形式也叫科学计数n法。
它与以前学过绝对值大于1的数用科学计数法表示为a×10(n为正整数)形式有什么区n别与联系?(绝对值大于10的数,n为正整数;绝对值小于1时n为负整数)二、近似数:接近实际数目,但与实际数目还有差别的数叫做近似数。
1.产生近似数的主要原因:a.“计算”产生近似数.如除不尽,有圆周率π参加计算的结果等等; b.用测量工具测出的量一般都是近似数,如长度、重量、时间等等; c.不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;d.由于不必要知道准确数而产生近似数.2.精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
三、有效数字:对于一个数来说:从左边起第一个非0 数字起,到它的末位止,中间所有的数字都叫做这个数的有效数字。
1.对于用科学记数法表示的数a n⨯10,规定它的有效数字就是a中的有效数字。
2.在使用和确定近似数时要特别注意:(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零。
(2)确定有效数字时一定要弄清起始位置和终止位置,初学时可分别做上记号,以免出错。
(3)求精确到某一位的近似值时,只需把下一位的数四舍五入,而不看后面各数位上的数的大小。
【典型例题】例1:用科学记数法记出下列各数:(1)1 000 000; 57 000 000; 123 000 000 000(2)0.00002; 0.000707; 0.000122; -0.000056例2.以下问题中的近似数是哪些,准确数是哪些?(1)某厂1994年产值约2000万元,约是1988年的6.8倍。
新人教版七年级数学(上)——科学计数法与近似数

科学计数法与近似数第一部分:知识精讲知识点一、科学记数法10的形式,其中a 是整数数位只有一位的数(即1一般地,把一个绝对值大于10的数记成a×n≤a<10),n是正整数,这种记数法叫做科学记数法。
知识点二、近似数一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
知识点三、有效数字一个数,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
第二部分:例题精讲例1.用科学记数法记出下列各数:(1)696 000; (2)1 000 000;(3)58 000; (4)―7 800 000例2.下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)132.4; (2)0.0572; (3)2.40万例3.用四舍五入法,按括号中的要求把下列各数取近似数。
(1)0.34082(精确到千分位); (2)64.8 (精确到个位);(3)1.504 (精确到0.01); (4)0.0692 (保留2个有效数字);(5)30542 (保留3个有效数字)。
例4.比较8.76×1011与1.03×1012大小。
例5.已知5.13亿是由四舍五入取得的近似数,它精确到( )A.十分位B.千万位C.亿位D.十亿位第三部分:课堂同步A*夯实基础1.用科学记数法表示下列各数:(1)2730=_________; (2)7 531 000=__________;(3)-8300.12=__________; (4)17014=__________; (5)10 430 000=__________; (6)-3 870 000=__________;2.保留三个有效数字得到21.0的数是( )A.21.2B.21.05C.20.95D.20.943.用科学记数法表示0.0625,应记作( )A.110625.0-⨯B.21025.6-⨯C.3105.62-⨯D.410625-⨯4.“125•”汶川大地震后,世界各国人民为抗震救灾,积极捐款捐物,截止2008年5月27日12时,共捐款人民币327.22亿元,用科学记数法(保留两位有效数字)表示为( )A.101027.3⨯B.10102.3⨯C.10103.3⨯D.11103.3⨯5.地球的质量为13106⨯亿吨,太阳的质量为地球质量的5103.3⨯倍,则太阳的质量为( )亿吨.A.1.98×1018B.1.98×1019C.1.98×1020D.1.98×10656.科学记数法表示下列各数:(1)太阳约有一亿五千万千米; (2)地球上煤的储量估计为15万亿吨以上。
科学计数法近似数有效数字归纳

科学计数法、近似数、有效数字【要点提示】一、科学记数法的定义:把一个大于10的数记成a n⨯10的形式的方法叫科学记数法。
1.其中a 满足条件1≤│a │<102.用科学记数法表示一个n 位整数,其中10的指数是n -1。
3.负整数指数幂:当a n ≠0,是正整数时,a a n n -=1/4.我们把绝对值小于1的数写成a ×10n (n 为负整数,1≤│a │<10)形式也叫科学计数法。
它与以前学过绝对值大于1的数用科学计数法表示为a ×10n (n 为正整数)形式有什么区别与联系(绝对值大于10的数,n 为正整数;绝对值小于1时n 为负整数)二、近似数:接近实际数目,但与实际数目还有差别的数叫做近似数。
1.产生近似数的主要原因:a.“计算”产生近似数.如除不尽,有圆周率π参加计算的结果等等;b.用测量工具测出的量一般都是近似数,如长度、重量、时间等等;c.不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;d.由于不必要知道准确数而产生近似数.2.精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
三、有效数字:对于一个数来说:从左边起第一个非0数字起,到它的末位止,中间所有的数字都叫做这个数的有效数字。
10,规定它的有效数字就是a中的1.对于用科学记数法表示的数a n有效数字。
2.在使用和确定近似数时要特别注意:(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零。
(2)确定有效数字时一定要弄清起始位置和终止位置,初学时可分别做上记号,以免出错。
(3)求精确到某一位的近似值时,只需把下一位的数四舍五入,而不看后面各数位上的数的大小。
【典型例题】例1:用科学记数法记出下列各数:(1)1000000;;(2);;;例2.以下问题中的近似数是哪些,准确数是哪些(1)某厂1994年产值约2000万元,约是1988年的6.8倍。
(2)甲班有学生52人,平均身高约1.58米,平均体重约为52.4千克。
中考数学考点科学记数法和近似数_考点解析

中考数学考点科学记数法和近似数_考点解析
我们为大家收集整理了关于科学记数法和近似数,以方便大家参考。
当我们要标记或运算某个较大或较小且位数较多时,用科学记数法免去浪费很多空间和时间。
1、有效数字
一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法
把一个数写做的形式,其中,n是整数,这种记数法叫做科学记数法。
希望大家可以学会科学记数法和近似数.想了解更多精彩内容,请关注我们的网站!。
华东师大初中七年级上册数学科学记数法与近似数 知识讲解[精品]
![华东师大初中七年级上册数学科学记数法与近似数 知识讲解[精品]](https://img.taocdn.com/s3/m/92dd7ddc7c1cfad6195fa765.png)
科学记数法与近似数 知识讲解【学习目标】1.理解科学记数法的意义,并会用科学记数法表示一个较大的数;2.了解近似数的概念,能按精确度的要求取近似数,能根据近似数的不同形式确定其精确度;3.体会近似数在生活中的实际应用.【要点梳理】要点一、科学记数法把一个大于10的数表示成10n a ⨯的形式(其中a 是整数数位只有一位的数,l ≤|a |<10,n 是正整数),这种记数法叫做科学记数法,如42000000=74.210⨯. 要点诠释:(1)负数也可以用科学记数法表示,“-”照写,其它与正数一样,如-3000=3310-⨯;(2)把一个数写成10n a ⨯形式时,若这个数是大于10的数,则n 比这个数的整数位数少1.要点二、近似数及精确度1. 近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.2. 精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度.要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度一般用“精确到哪一位”的形式的来表示,一般来说精确到哪一位表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米.【典型例题】类型一、科学记数法1.(2016•山西)我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为( )A .5.5×106千米 B .5.5×107千米 C .55×106千米 D .0.55×108千米【思路点拨】科学记数法的表示形式为a ×10n 的形式.其中1≤|a|<10,n 为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【答案】B .【解析】解:5500万=5.5×107.故选:B .【总结升华】此题考查科学记数法的表示方法,表示时关键要正确确定a 的值以及n 的值.举一反三:【变式】(2015•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为( )A .0.675×105B . 6.75×104C . 67.5×103D . 675×102【答案】B .2. 把下列用科学记数法表示的数转化成原数.(1)33.1410⨯; (2)71.73210-⨯; (3)61.39210⨯千米【答案与解析】此题是对科学记数法的逆用解:(1)33.14103140⨯=;(2)71.7321017320000-⨯=-;(3)61.39210⨯千米=1392000千米【总结升华】将科学记数法表示的数转化为原数,方法简单:n 是几就将10n a ⨯中a 的小数点向右移动几位.类型二、近似数及精确度3.(2015•深圳模拟)由四舍五入法得到的近似数6.8×103,下列说法中正确的是( )A . 精确到十分位,有2个有效数字B . 精确到个位,有2个有效数字C . 精确到百位,有2个有效数字D . 精确到千位,有4个有效数字【思路点拨】103代表1千,那是乘号前面个位的单位,那么小数点后一位是百.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字,用科学记数法表示的数a×10n的有效数字只与前面的a 有关,与10的多少次方无关.【答案】C .【解析】解:个位代表千,那么十分位就代表百,乘号前面从左面第一个不是0的数字有2个数字,那么有效数字就是2个.【总结升华】本题考查了近似数与有效数字,较大的数用a×10n 表示,看精确到哪一位,需看个位代表什么;有效数字需看乘号前面的有效数字.举一反三:【变式】用四舍五入法,按括号中的要求把下列各数取近似数(1)27.15万(精确到千位);(2)12 341 000(精确到万位).【答案】解:(1)27.15万=2715005272000 2.7210≈=⨯或表示为27.2万;(2)12 341 00012340000≈=71.23410⨯.4.下列由四舍五入得到的近似数,它们精确到哪一位.(1)1.20 (2)1.49亿; (3)50.3010-⨯【答案与解析】解:(1) 1.20精确到百分位;(2)1.49亿精确到百万位;(3)50.3010-⨯精确到千位.【总结升华】一般的近似数,四舍五入到哪一位就说它精确到哪一位,例:1.20精确到百分位,则百分位就是精确度;若是汉字单位“万、千、百”类近似数,精确度是由其最后一位数所在的数位确定的,但必须先把该数写成单位为“个”位的数再确定其精确度;用形如10n a ⨯的数,其精确度看a 中最后一位数在原数中的数位.类型三、近似数与精确数【高清课堂:科学记数法、近似数 356850 典型例题4】5.测得某同学的身高约是 1.66米,那么意味着他身高的精确值x 所在范围是___________________.【答案】x ≤<1.655 1.665【解析】1.66是由四舍五入得到的数,若通过“入”得到1.66,则最小数应是1.655,若通过“舍”得到1.66,则最大数不存在,但能判断小于1.665,所以x ≤<1.655 1.665.【总结升华】本类型题目的答案一般形式为:12a a a ≤<, “精确度”是用来说明结果与实际数误差大小的,如精确到0.01表示结果与实际数字相差不大于0.005.举一反三:【变式】近似数2.0的准确数a 的取值范围是_________________.【答案】1.95 2.05a ≤<.。
《科学计数法及近似数》教案

《科学计数法及近似数》教案章节一:科学计数法的概念与表示方法1. 引入:通过展示一个较大的数字,如地球到太阳的平均距离(约1.496×10^8公里),引导学生思考如何简便地表示这样大的数字。
2. 讲解科学计数法的定义:科学计数法是一种表示非常大或非常小数字的方法,形式为a×10^n,其中1≤|a|<10,n为整数。
3. 示例:将一些较大的数字,如1000000、0.000001转换为科学计数法表示。
4. 练习:让学生尝试将一些较大的数字和较小的数字转换为科学计数法表示,并互相检查。
章节二:科学计数法的运算规则1. 引入:通过展示一些例子,如2.5×10^3 + 1.2×10^3,引导学生思考如何进行科学计数法的加法运算。
2. 讲解科学计数法的加法和减法运算规则:同底数相加减,指数不变,系数相加减。
3. 示例:展示一些科学计数法的加法和减法运算,如2.5×10^3 + 1.2×10^3、4.7×10^-2 2.3×10^-2。
4. 练习:让学生尝试进行一些科学计数法的加法和减法运算,并互相检查。
章节三:科学计数法的乘法和除法运算1. 引入:通过展示一些例子,如2.5×10^3 ×3.2×10^2,引导学生思考如何进行科学计数法的乘法运算。
2. 讲解科学计数法的乘法运算规则:同底数相乘,指数相加,系数相乘。
3. 示例:展示一些科学计数法的乘法运算,如2.5×10^3 ×3.2×10^2、7.4×10^-5 ÷2.5×10^-3。
4. 练习:让学生尝试进行一些科学计数法的乘法和除法运算,并互相检查。
章节四:近似数的的概念与表示方法1. 引入:通过展示一些实际问题,如将一辆车的速度从60公里/小时近似为60公里/小时,引导学生思考如何表示近似数。
人教版初一数学上册 科学记数法与近似数 讲义

科学记数法与近似数知识点一:科学记数法解题技巧:把一个数表示成a(1≤a<10,n为整数)与10的幂相乘的形式叫做科学记数法写科学记数法的步骤①先把小数点移到原数第一个不为0的数字的右下角,省略末尾所有的零②从这个数变回原数,小数点要向右移动多少位,就乘以10的多少次方例1、地球和月球约为384000000米,用科学记数法可以写成____________米例2、中国约有1400000000人,1400000000可以写成_________人1、光的速度约为300000000米/秒,用科学记数法可以写成____________米/秒2、珠穆朗玛峰的高度约为8844.43米,用科学记数法可以写成____________米3、将下列的数字用科学记数法表示5201314= 666998= -25329= -1001000= 123.456= 101.001= -9394.555= -535488.6=4、将下列的数字用科学记数法表示3700000千米=___________米 2890000人=___________万人13409000立方米=___________立方分米 13500000毫升=___________升5、一个国家有13920万人,用科学记数法可以写成( )A 、人4101.392⨯B 、人6101.392⨯C 、人7101.392⨯D 、人8101.392⨯6、冥王星围绕太阳公转的轨道半径长度约为5900000000千米,这个数用科学记数法表示是()A 、5.9×109mB 、5.9×1012mC 、59×1013mD 、0.59×1012m7、如果每人给我1分钱,那么全国14亿人一共给了我( )A 、1.4×107元B 、14×107元C 、1.4×108元D 、1.4×105元8、国税系统完成税收收入人民币3.8723×1011元,也就是收入了( )A 、38.723亿元B 、387.23亿元C 、3872.3亿元D 、38723亿元9、若一个数等于2.3×1022,则这个数的整数位数是( )A 、20B 、21C 、22D 、2310、5200=5.2×10n ,则n 等于( )A 、2B 、3C 、4D 、511、还原534.221×107结果为()A、5342210B、53422100C、534221000D、5342210000知识点二:负指数的科学记数法写负指数科学记数法的步骤③先把小数点移到原数第一个不为0的数字的右下角,省略左边所有的零④从这个数变回原数,小数点要向左移动多少位,就乘以10的负多少次方例1、常温常压下,氢气的密度约为0.089克/升,可以写作____________克/升例2、世界上最小的开花植物是澳大利亚的出水浮萍,它的果实像一粒微小的无花果,质量只有0.00000007g,这个数可以表示为_____________g1、将下列的数字用科学记数法表示0.000005=0.000803=-0.01001= -0.304005=2、自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”。
科学计数法和近似数(知识点+练习)

科学记数法和近似数————小学知识回顾————四舍五入法求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。
这种求近似数的方法,叫做四舍五入法。
————初中知识链接————1.科学记数法:(1)把一个大于10的数表示成a×10n的形式(其中a是整数位只有一位的数,n 是正整数且比整数位数小1),使用这种表示数的方法就是科学记数法.(2)用科学记数表示时,n与数位的关系是:n=位数-1或数位=n+1.2.近似数:(1)与实际数很接近的数,我们称它为近似数,是由四舍五入得来的,与实际数很接近的数.(2)近似数的精确程度:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.3.有效数字这时,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字,象上面我们取3.142为的近似数,它精确到千分位(即精确到0.001),共有4个有效数字3、1、4、2.【经典题型】小学经典题型1.把下面各数保留一位小数,取近似数:(1)3.877 (2)10.349 (3)0.98(4)3.446 (5)16.17(6)63.63632.把下面各数改写成以“亿”为单位的数。
3800000000= 20600000000= 51000000000= 70000000000= 430000000000= 600000000= 9000000000= 100000000000=3.计算:(1)1.2345678×9≈ (得数保留6位小数)(2)1.2345678×18≈ (得数保留5位小数)(3)1.2345678×45≈ (得数保留5位小数)初中经典题型1.企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300万元用科学记数法表示为( )A .89310⨯元B .89.310⨯元C .79.310⨯元D .80.9310⨯元2.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为( )A .48210⨯B .58210⨯C .58.210⨯D .68.210⨯3.2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为( )A .115.95210⨯B .1059.5210⨯C .125.95210⨯D .9595210⨯4.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为( )A .62.2110⨯B .52.2110⨯C .322110⨯D .60.22110⨯5.2018年某州生产总值约为153300000000,用科学记数法表示数153300000000是( )A .91.53310⨯B .101.53310⨯C .111.53310⨯D .121.53310⨯6.用四舍五入法将130542精确到千位,正确的是( )A .131000B .60.13110⨯C .51.3110⨯D .413.110⨯7.近似数1.23×103精确到( )A .百分位B .十分位C .个位D .十位8.30269精确到百位的近似数是( )A.303 B.30300 C.33.0310⨯⨯D.430.2309.用四舍五入法对0.4249取近似数精确到百分位的结果是()A.0.42 B.0.43 C.0.425 D.0.42010.对数字1.8045进行四舍五入取近似数,精确到0.01的结果为()A.1.8 B.1.80 C.1.81 D.1.80511.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为 ( )A.6.75×103吨 B.6.75×104吨 C.6.75×105吨 D.6.75×10-4吨12.56.2万平方米用科学记数法表示正确的是()A.5.62×104m2 B.56.2×104m2 C.5.62×105m2D.0.562×103m213.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1) B.0.05(精确到千分位)C.0.05(精确到百分位) D.0.0502(精确到0.0001)14.下列说法错误的是()A.近似数2.50精确到百分位 B.1.45×105精确到千位C.近似数13.6亿精确到千万位 D.近似数7000万精确到个位15.我国的北斗卫星导航系统与美国的GPS和俄罗斯格洛纳斯系统并称世界三大卫星导航系统,北斗系统的卫星轨道高达36000公里,将36000用科学记数法表示为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科学计数法和近似数【知识结构】【知识清单】一、科学计数法把一个数写做a×10n的形式,其中1≤a<10,n是整数,这种记数法叫做科学记数法。
当我们要标记或运算某个较大或较小且位数较多时,一般用科学记数法。
例如:100.0000000123 1.2310-=⨯=⨯,819200000000 1.9210二、近似数【准确数】:一个能表示原来物体或事件的实际数量的数,这个数称为准确数。
例如:某班级有27个男同学,28个女同学,这27和28是两个准确数,与实际情况完全符合。
【近似数】:经过一定方法处理后,得到的一个与原始数据相差不大的一个数,或与准确数相近的一个数。
例如:我国人口有13亿,13亿就是一个近似数。
π约等于3.14,这个3.14也是一个近似数。
近似最常见的取法是四舍五入法。
【近似数的精确位数】:一个近似数四舍五入到哪一位,那么就说这个近似数精确到哪一位。
常见的精确位数的表示有两种:(1)精确到百分位(个位...)(2)精确到0.1(0.001...),精确到1000(100)等注意1:十万百万千万亿万千百十个万分位千分位百分位十分位精确到1000,就是精确到千位;精确到0.1,就是精确到十分位;精确到0.001,就是精确到千分位;以此类推。
例如:1.41456精确到百分位得到1.41;1.41456精确到0.0001得到1.4146(注意四舍五入)。
注意2:带单位的数的精确位数例如:2.631万的精确位数是多少?典型错误理解:2.631中最右侧的数字是1,1在千分位,因此精确到千分位。
正确理解:2.631万=26310,2.631万中的最右侧的1代表的不是0.001,而是10,因此,2.63万精确到十位。
注意区分:3.142,精确到千分位3.142万,精确到十位3.142亿,精确到十万位注意3:科学计数法表示的精确位数用科学计数法a×10n的形式表示的数,要确定其精确位数,只需要确定a中的最低位,在原数中对应的位数,即为这个科学计数法表示的数的精确位数。
例:要确定3.14×105的精确位数,3.14×105的原数是314000,3.14×105中a=3.14,需要确定这里的4在原数314000中的位数,4在原数314000中千位,因此3.14×105精确到千位。
同样的,如果要把一个大数写成精确到百位,千位,万位的近似数,也必须使用科学计数法才能实现。
例:把1238456精确到万位,这里数字3在万位,近似数怎么写?典型错误写法:1240000,这样写,其实是精确到了个位。
正确写法:1.24×106【近似数的有效数字】对于一个近似数,从左边第一个不为0的数字起,到末位数字为止的数所有数字,都叫做这个数的有效数字。
例如:0.618有3个有效数字6、1、80.618000有6个有效数字6、1、8、0、0、00.0006180只有4个有效数字6、1、8、0,(从左边数第一个不为0的数是6。
因此6左边的0都不是有效数字,6以及6右边所有的数都是有效数字)注意:科学计数法的有效数字用科学计数法a×10n的形式表示的数,其有效数字的个数,只看a 即可,其精确位数和有效数字,与这个数的原数都不一样。
例:虽然192000=1.92×105,但是192000和1.92×105的精确位数和有效数字都是不一样的。
写成192000,精确到个位,有6个有效数字1、9、2、0、0、0写成1.92×105,精确到千位,有3个有效数字1、9、2【考试分析】一、科学计数法题型1:用科学计数法表示数例1-1:(2020•广安)2020年我国武汉暴发新冠肺炎疫情,全国人民发扬“一方有难.八方支援”的精神,积极参与到武汉防疫抗疫保卫战中.据统计,参与到武汉防疫抗疫中的全国医护人员约为42000人,将42000这个数用科学记数法表示正确的是()A.42×103B.4.2×104C.0.42×105 D.4.2×103【解答】解:42000=4.2×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.例1-2:(2020•赤峰)2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A.99×10﹣10B.9.9×10﹣10C.9.9×10﹣9D.0.99×10﹣8【解答】解:0.0000000099=9.9×10﹣9,故选:C.考频:高难度:极易易错点:①a×10n的形式中,a和n的取值范围。
②数错小数点题型2:科学计数法与精确位数和有效数字例2-1:(2020•上城区模拟)某种鲸鱼的体重约为1.36×105千克,关于这个近似数,下列说法正确的是()A.精确到百分位B.精确到十分位C.精确到个位D.精确到千位【解答】解:近似数1.36×105精确到千位.故选:D.例2-2:(2020•海淀区校级模拟)截止2020年5月3日,我国新冠疫情得到有效控制,但世界累计确诊3395978人,将3395978人用科学记数法(保留三个有效数字)表示应为()A.3.395×106B.3.395×107C.3.40×106D.3.40×107【解答】解:3395978=3.40×106.故选:C.考频:中难度:较易易错点:不知如何确定科学计数法表示的数的精确位数和有效数字二、近似数题型1:近似数的精确位数例1-1:(2020•济宁)用四舍五入法将数3.14159精确到千分位的结果是()A.3.1B.3.14C.3.142D.3.141【解答】解:3.14159精确到千分位的结果是3.142.故选:C.例1-2:(2017•苏州)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2B.2.0C.2.02D.2.03【解答】解:2.026≈2.03,故选:D.例1-3:(2019•宁波模拟)宁波市政府新闻办召开新闻发布会,上半年全市实现地区生产总值5037.3亿元,其中5037.3亿精确到()A.亿位B.千万位C.百万位D.十分位【解答】解:5037.3亿精确到千万位,故选:B.考频:中难度:较易易错点:数字在不同的写法下,判断精确位数。
题型2:近似数的有效数字例2-1:(2020秋•海淀区模拟)用四舍五入法对0.02021取近似数,保留两位有效数字,结果是.【解答】解:0.02021取近似数,保留两位有效数字,结果是0.020.故答案为0.020.例2-2:近似数5.3万精确到位,有个有效数字.【解答】解:近似数5.3万精确到千位,有2个有效数字.故答案为:千,2.考频:低难度:极易易错点:一个数在不同的写法下,判断有效数字的方法。
【典型真题】1.(2020•济宁)用四舍五入法将数3.14159精确到千分位的结果是()A.3.1 B.3.14 C.3.142 D.3.141 2.(2017•通辽)近似数5.0×102精确到()A.十分位B.个位C.十位D.百位3.(2019•大城县一模)近似数5.10精确到()A.个位B.十分位C.百分位D.十位4.(2019•玉林模拟)用四舍五入法得到的近似数2.18×104,下列说法正确的是()A.它精确到百分位B.它精确到百位C.它精确到万位D.它精确到0.015.(2018•高碑店市一模)按括号内的要求用四舍五入法取近似数,下列正确的是()A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0234≈0.0(精确到0.1)D.0.0136≈0.014(精确到0.0001)6.(2018•常熟市一模)据统计,2017年我市实现地区生产总值2279.55亿元,用四舍五入法将2279.55精确到0.1的近似值为()A.2280.0 B.2279.6C.2279.5D.22797.(2017•威海模拟)用四舍五入法对“145762”取近似数,要求精确到千位,下列表示正确的是()A.1.5×105B.1.46×105C.1.458×105D.15万8.(2017•金安区校级模拟)用四舍五入法得到近似数4.005万,关于这个数有下列说法,其中正确的是()A.它精确到万位B.它精确到0.001C.它精确到万分位D.它精确到十位9.(2020•陕西)中华民族的母亲河黄河,发源于巴颜喀拉山脉北麓,注入渤海,流域面积约为750000千米2.将750000千米2用科学记数法表示为()A.7.5×104千米2B.7.5×105千米2C.75×104千米2D.75×105千米210.(2020•贵港)目前世界上刻度最小的标尺是钻石标尺,它的最小刻度为0.2nm(其中1nm=10﹣9m),用科学记数法表示这个最小刻度(单位:m),结果是()A.2×10﹣8m B.2×10﹣9mC.2×10﹣10m D.2×10﹣11m11.(2019•攀枝花)用四舍五入法将130542精确到千位,正确的是()A.131000B.0.131×106C.1.31×105D.13.1×10412.(2018•巴中)2017年四川省经济总量达到3.698万亿元,居全国第6位,在全国发展大局中具有重要地位.把3.698万亿用科学记数法表示(精确到0.1万亿)为()A.3.6×1012B.3.7×1012C.3.6×1013D.3.7×101313.(2015•鄂州)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为()A.3.9×104B.3.94×104C.39.4×103D.4.0×10414.(2020•丛台区校级三模)一个数用科学记数法表示为2.909×105,那么这个数为()A.2909B.29090C.290900D.290900015.(2019•道外区一模)19000000用科学记数法表示为,2.5万精确到位,有个有效数字.16.(2016•富顺县校级模拟)下列说法:①近似数3.9×103精确到十分位;②按科学记数法表示8.04×105原数为80400;③把数60430保留2个有效数字得6.0×104;④用四舍五入法得到的近似数9.1780是精确到0.001;⑤近似数2.40万精确到百位,有3个有效数字.其中正确的有个.。