常见的有解析解的常微分方程---经典总结

常见的有解析解的常微分方程---经典总结
常见的有解析解的常微分方程---经典总结

常见的有解析解的常微分方程---经典总结

1、可分离变量方程:1122()()()()0f x g y dx f x g y dy +=

两边同除以12()()0g y f x ≠,得1221()()0()()

f x

g y dx dy f x g y += 积分,得1221()()()()

f x

g y dx dy C f x g y +=?? 2、齐次方程:'()y

y f x =

令y u x =,则y ux =,'du y u x dx

=+ 于是,原方程()ln ()()du du dx du u x f u x C dx f u u x f u u

?+=?=?=+--? 3、可化为齐次型的方程:111222

()a x b y c dy f dx a x b y c ++=++ (1)当120c c ==时,

11

112222()()()y

a b a x b y dy y x f f g y dx a x b y x a b x ++===++,利用2求解

(2)1

1220a b a b =,即1122

a b a b λ==,则22122222()()()a x b y c dy f g a x b y dx a x b y c λ++==+++ 令22a x b y u +=,则

22()du a b g u dx =+,利用1求解

(3)1

122

0a b a b ≠,1c ,2c 不全为0 解方程组111222

00a x b y c a x b y c ++=??++=?,求交点(,)αβ

4、一阶线性方程:'()()y p x y q x +=

第一步:求对应齐次方程'()0y p x y +=的通解,得()p x dx y Ce -?=

第二步:令原方程的解为()()p x dx y C x e -?=

第三步:代入原方程整理,得()()'()()()()p x dx p x dx C x e q x C x q x e dx C -??=?=+?

第四步:写出原方程通解()()[()]p x dx p x dx y q x e dx C e -??

=+? 5、贝努里方程:'()()n y p x y q x y +=,其中0,1n ≠

令1n z y -=,则原方程1()()1dz p x z q x n dx ?+=-

(1)()(1)()dz n p x z n q x dx ?+-=-,利用4求解

6、全微分方程:(,)(,)0M x y dx N x y dy +=,且M N y x

??=??

通解为0000(,)(,)x y

x y M x y dx N x y dy C +=?? 7、不显含y 的二阶方程:''(,')y f x y =

令'y p =,则'''y p =

原方程'(,)p f x p ?=,这个一阶方程的解为1(,)p x C ?=

即1'(,)y x C ?=,原方程通解为12(,)y x C C ?=+?

8、不显含x 的二阶方程:''(,')y f y y =

令'y p =,则''dp dp dy dp y p dx dy dx dy

=== 原方程1(,)dp f y p dy p

?=,其解为1(,)p y C ?= 即1(,)dy y C dx ?=,原方程通解为21(,)

dy x C y C ?=+?

9、二阶常系数线性齐次方程:220d y dy p q dx dx

++=

第一步:求特征方程20p q λλ++=的两根。

第二步:(1)两个不等实根1λ和2λ,通解1212x x y C e C e λλ=+

(2)二重根λ,通解12()x y C C x e λ=+

(3)共轭复根1,2i λαβ=±,通解12(cos sin )x y e C x C x αββ=+

10、二阶常系数线性非齐次方程:22()d y dy p q f x dx dx

++=

先求对应的齐次方程的通解y ,再根据()f x 求一个特解0y (与()f x 的形式有关)

(1)()()n f x P x =,其中()n P x 是x 的n 次多项式

(i) 当0q ≠时,设0()n y Q x =,用待定系数法

(ii)当0q =,0p ≠时,设0()n y xQ x =,用待定系数法

(iii)当0q =,0p =时,设20()n y x Q x =,用待定系数法

(2)()()x n f x P x e α=

(i) 当α不是特征方程的根时,设0()x n y Q x e α=,用待定系数法

(ii)当α是特征方程的单根时,设0()x n y xQ x e α=,用待定系数法

(iii)当α是特征方程的重根时,设20()x n y x Q x e α=,用待定系数法

(3)()()cos x n f x P x e x αβ=或()()sin x n f x P x e x αβ= 由欧拉公式知,()cos x n P x e x αβ和()sin x n P x e x αβ是函数()()i x n

P x e αβ+的实部和虚部。先考虑方程2()2()i x n d y dy p q P x e dx dx

αβ+++=的解,用(2)的方法,取其实部或虚部即可。

微分方程总结

第十章:微分方程总结姓名:刘桥 学号:40905237 班级:工商49班 小组:第八小组 组长:刘洪材

一、 微分方程的基本概念 1. 微分方程及其阶的定义 微分方程:凡含有未知函数的导数或微分的方程叫微分方程. 分类1:常微分方程(未知函数为一元函数的微分方程) ()() ,dy axy a dx dy p x y Q x dx =+=为常数 偏微分方程(未知函数为多元函数,从而出现偏导数的微分方程) () 22,2224 2 u u f x y x y u u y x ??+=????=?? 微分方程的阶.:微分方程中出现的未知函数导数或微分的最高阶数. 分类2:一阶微分方程 (,,)0,(,);F x y y y f x y ''== 高阶(n )微分方程 ()(,,,,)0,n F x y y y '= ()(1)(,,, ,).n n y f x y y y -'= 分类3:线性与非线性微分方程. ()(),y P x y Q x '+=2()20;x y yy x ''-+= 分类4:单个微分方程与微分方程组. 32,2,dy y z dx dz y z dx ?=-??? ?=-?? 2. 微风方程的解 微分方程的解:代入微分方程能使方程成为恒等式的函数. 微分方程解的分类:通解(微分方程的解中含有任意常数,且任意常数的个数与 微分方程的阶数相同.)

,y y '=例;x y ce =通解 0,y y ''+=12sin cos ;y c x c x =+通解 特解( 确定了通解中任意常数以后的解.) 初始条件:用来确定任意常数的条件. 初值问题: 求微分方程满足初始条件的解的问题. 积分曲线:微分方程的任一特解的图形都是一条曲线,称为微分方程的积分曲线 二、 一阶微分方程 1. 可分离变量的方程 可分离变量的微分方程:形如: ()()g y dy f x dx =的一阶微分方程. 例题回味:求方程()290y dy x dy ye ++ =的通解 分离变量得,21 9 y ye dy dx x = + 两边同时积分得, 2 1 9y ye dy dx x =- +?? 于是得到通解为,()11arctan 33 y x y e c -=+ 2. 齐次方程 如果一阶微分方程可化为()dy y f dx x =形如的方程,那么久称之为齐次方程. 解法:作变量代换,y u x = ,y xu =或 两边分求微分得, ,dy udx xdu =+ 代入原式得,(),du u x f u dx +=().du x f u u dx =-即 ()0,f u u -≠若则对上式分离变量得, ()du dx f u u x =-. 两边分别积分得, ()du dx f u u x =-? ? 求出积分后,将y u x = 代入,就求得了原微分方程的通解. 例题回味:求解微分方程(cos )cos 0.y y x y dx x dy x x -+=

常微分方程知识点总结

常微分方程知识点总结 常微分方程知识点你学得怎么样呢?下面是的常微分方程知识 点总结,欢迎大家阅读! 微分方程的概念 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中 就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和数之间的关系找出来,列出包含一个数或几个数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的 问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似, 也是要把研究的问题中已知函数和函数之间的关系找出来,从列出的包含函数的一个或几个方程中去求得函数的表达式。但是无论在方程

的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常 有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星 的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

直线与方程(经典例题)

直线与方程 知识点复习: 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α时,0≥k ; 当( ) 180,90∈α时,0

信号与系统课程总结

信号与系统课程总结 The final edition was revised on December 14th, 2020.

信号与系统总结 一信号与系统的基本概念 1信号的概念 信号是物质运动的表现形式;在通信系统中,信号是传送各种消息的工具。 2信号的分类 ①确定信号与随机信号 取决于该信号是否能够由确定的数学函数表达 ②周期信号与非周期信号 取决于该信号是否按某一固定周期重复出现 ③连续信号与离散信号 取决于该信号是否在所有连续的时间值上都有定义 ④因果信号与非因果信号 取决于该信号是否为有始信号(即当时间t小于0时,信号f(t)为零,大于0时,才有定义) 3系统的概念 即由若干相互联系,相互作用的单元组成的具有一定功能的有机整体 4系统的分类 无记忆系统:即输出只与同时刻的激励有关 记忆系统:输出不仅与同时刻的激励有关,而且与它过去的工作状态有关 5信号与系统的关系 相互依存,缺一不可 二连续系统的时域分析 1零输入响应与零状态响应 零输入响应:仅有该时刻系统本身具有的起始状态引起的响应 零状态响应:在起始状态为0的条件下,系统由外加激励信号引起的响应 注:系统的全响应等于系统的零输入响应加上零状态响应 2冲激响应与阶跃响应 单位冲激响应:LTI系统在零状态条件下,由单位冲激响应信号所引起的响应

单位阶跃响应:LTI系统在零状态条件下,由单位阶跃响应信号所引起的响应 三傅里叶变换的性质与应用 1线性性质 2脉冲展缩与频带变化 时域压缩,则频域扩展 时域扩展,则频域压缩 3信号的延时与相位移动 当信号通过系统后仅有时间延迟而波形保持不变,则系统将使信号的所有频率分量相位滞后 四拉普拉斯变换 1傅里叶变换存在的条件:满足绝对可积条件 注:增长的信号不存在傅里叶变换,例如指数函数 2卷积定理 表明:两个时域函数卷积对应的拉氏变换为相应两象函数的乘积 五系统函数与零、极点分析 1系统稳定性相关结论 ①稳定:若H(s)的全部极点位于s的左半平面,则系统是稳定的; ②临界稳定:若H(s)在虚轴上有s=0的单极点或有一对共轭单极点,其余极点全在s的左半平面,则系统是临界稳定的; ③不稳定:H(s)只要有一个极点位于s的右半平面,或者虚轴上有二阶或者二阶以上的重极点,则系统是不稳定的。 六离散系统的时域分析 1常用的离散信号 ①单位序列②单位阶跃序列③矩阵序列④正弦序列⑤指数序列 七离散系统的Z域分析 1典型Z变换 ①单位序列②阶跃序列③指数序列④单边正弦和余弦序列 2Z变化的主要性质 ①线性性质②移位性质③尺度变换④卷和定理 八连续和离散系统的状态变量分析 1状态方程

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

(完整版)常微分方程的大致知识点

= + ?x = + ?x = + ?x 常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有 x 或 y 的项) y x 4、一阶线性非齐次方程 常数变易法,或 y = e ? a ( x )dx [? b (x )e -? a ( x )dx dx + C ] 5、伯努力方程 令 z = y 1-n ,则 dz = (1 - n ) y -n dy ,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 dx 6、全微分方程 若?M ?y 若 ?M ?y dx = ?N ,则u (x , y ) = C ,(留意书上公式) ?x ≠ ?N ,则找积分因子,(留意书上公式) ?x f (x f ( y , (二)毕卡序列 x y 1 y 0 0 x f (x , y 0 )dx , y 2 y 0 0 x f (x , y 1 )dx , y 3 y 0 0 f (x , y 2 )dx ,其余类推 (三)常系数方程 1、常系数齐次L (D ) y = 0 方法:特征方程 7、可降阶的二阶微分方程 d 2 y = , dy ) ,令 dy = d 2 y p ,则 = dy dx 2 d 2 y = dx dy ) ,令 dx dy = p ,则 dx 2 d 2 y dx = p dp dx 2 dx dx dx 2 dy 8、正交轨线族

? ? dy 单的实根, , y = C e 1x + C e 2 x 1 2 1 2 单的复根1, 2 = ± i , y = e x (C cos x + C 2 sin x ) 重的实根 = = , y = (C + C x )e x 1 2 1 2 重的复根1, 2 = ± i ,3, 4 = ± i , y = e x [(C + C 2 x ) c os x + (C 3 + C 4 x ) sin x ] 2、常系数非齐次L (D ) y = 方法:三部曲。 f (x ) 第一步求L (D ) y = 0 的通解Y 第二步求L (D ) y = f (x ) 的特解 y * 第三步求L (D ) y = f (x ) 的通解 y = Y + y * 如何求 y * ? 当 f (x ) = P m (x )e x 时, y * = x k Q (x )e x 当 f (x ) = P m (x )e ux cos vx + Q (x )e ux sin vx 时, y * = x k e ux (R (x ) cos vx + S m (x ) sin vx ) 当 f (x ) 是一般形式时, y * = ? x W (x ,) f ()d ,其中 W(.)是郎斯基行列式 x 0 W () (四)常系数方程组 方法:三部曲。 第一步求 dX dt = A (t ) X 的通解, Φ(t )C 。利用特征方程 A - I = 0 ,并分情况讨论。 第二步求 dX dt 第三步求 dX dt = A (t ) X + f (t ) 的特解, Φ(t )?Φ-1 (s ) f (s )ds ,(定积分与不定积分等价) = A (t ) X + f (t ) 的通解, Φ(t )C + Φ(t )?Φ-1 (s ) f (s )ds (五)奇点与极限环 ? dx = ax + b y dt ? ? = cx + dy 1、分析方程组? dt 的奇点的性质,用特征方程: A - I = 0 特征方程的根有 3 种情况:相异实根、相异复根、相同实根。第一种情况:相异实根,1 ≠ 2 1 1 m m m

高一直线与方程练习题及答案详解

直线与方程练习题 一、选择题 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=, 则,a b 满足() A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为() A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( ) A .0 B .8- C .2 D .10 4.已知0,0ab bc <<,则直线ax by c +=通过() A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限 5.直线1x =的倾斜角和斜率分别是() A .045,1 B .0135,1- C .090,不存在 D .0180,不存在 6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足() A .0≠m B .2 3-≠m C .1≠m D .1≠m ,2 3-≠m ,0≠m 7.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是() A .524=+y x B .524=-y x C .52=+y x D .52=-y x 8.若1(2,3),(3,2),(,)2 A B C m --三点共线 则m 的值为( ) A.21 B.2 1- C.2- D.2

9.直线x a y b 22 1-=在y 轴上的截距是() A .b B .2b - C .b 2 D .±b 4.直线13kx y k -+=,当k 变动时,所有直线都通过定点() A .(0,0) B .(0,1) C .(3,1) D .(2,1) 10.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关() A .平行 B .垂直 C .斜交 D .与,,a b θ的值有关 二、填空题 1.点(1,1)P -到直线10x y -+=的距离是________________. 2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________; 3.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 4.与直线5247=+y x 平行,并且距离等于3的直线方程是____________。 三、解答题 1.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程。 2.过点(5,4)A --作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5.

常微分学习心得

常微分学习心得 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

常微分学习心得 常微分方程是研究自然现象,物理工程和工程技术的强有力工具,熟练掌握常微分方程的一些基本解法是学习常微分方程的主要任务,凡包含自变量,未知函数和未知函数的导数的方程叫做微分方程。满足微分方程的函数叫做微分方程的解,含有独立的任意常数的解称为微分方程的通解。确定通解中任意常数后所得的解称为该方程的特解。 例如:求解方程dy dx =y x +tan y x 解:令μ=y x ,及dy dx =x dμdx +μ代入,则原方程变为 x dμdx +μ=μ+tan μ,即dμdx =tan μx 将上式变量分离即有cot μd μ=dx x , 两边积分得㏑|sin μ|=㏑|x |+c 这里c 为任意常数 整理后得:sin μ=±e c ,令±e c =c 得到sin μ=c x 此外,方程还有解tan μ=0,sin μ=0. 如果在sin μ=c x 中允许c=0,则sin μ=0也就包括在sin μ=c x 中,这就是方程dμdx =tan μx 的通解为sin μ=c x 代回原方程得通解sin y x =c x 。

一阶微分方程的初等解法中把微分方程的求解问题化为了积分问题,这类初等解法是,与我们生活中的实际问题密切相关的值得我们好好探讨。 在高阶微分方程中我们学习的线性微分方程,作为研究线性微分方程的基础,它在物理力学和工程技术,自然科学中时存在广泛运用的,对于一般的线性微分方程,我们又学习了常系数线性微分变量的方程,其中涉及到复值与复值函数问题,相对来说是比较复杂难懂的。 至于后面的非线性微分方程,其中包含的稳定性,定性基本理论和分支,混沌问题及哈密顿方程,非线性方程绝大部分的不可解不可积现象导致了我们只能通过从方程的结构来判断其解的性态问题,在这一章节中,出现的许多概念和方法是我们从未涉及的,章节与章节中环环相扣,步步深入,由简单到复杂,其难易程度可见一斑。 由此,常微分方程整体就是由求通解引出以后的知识点,以求解为基础不断拓展,我们所要学习的就是基础题解技巧,培养自己机制与灵活性,多反面思考问题的能力,敏锐的判断力也是不可缺少的。、

常微分方程的大致知识点

常微分方程的大致知识点Last revision on 21 December 2020

常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有x y y x 或的项) 4、一阶线性非齐次方程 常数变易法,或])([)()(?+??=-C dx e x b e y dx x a dx x a 5、伯努力方程 令n y z -=1,则dx dy y n dx dz n --=)1(,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 6、全微分方程 若x N y M ??=??,则C y x u =),(,(留意书上公式) 若 x N y M ??≠??,则找积分因子,(留意书上公式) 7、可降阶的二阶微分方程 ),(22dx dy x f dx y d =,令dx dy dx y d p dx dy ==22,则 ),(22dx dy y f dx y d =,令dy dp p dx y d p dx dy ==22,则 8、正交轨线族 (二)毕卡序列 ?+=x x dx y x f y y 0),(001,?+=x x dx y x f y y 0),(102,?+=x x dx y x f y y 0),(203,其余类推 (三)常系数方程 1、常系数齐次0)(=y D L 方法:特征方程 单的实根21,λλ,x x e C e C y 2121λλ+= 单的复根i βαλ±=2,1,)sin cos (21x C x C e y x ββα+= 重的实根λλλ==21,x e x C C y λ)(21+= 重的复根i βαλ±=2,1,i βαλ±=4,3,]sin )(cos )[(4321x x C C x x C C e y x ββα+++=

《直线与方程》教案+例题精析

考点1:倾斜角与斜率 (一)直线的倾斜角 例1例1. 若θ为三角形中最大内角,则直线0tan :=++m y x l θ的倾斜角的范围是( ) A.??? ?????? ??32,22,0πππ B.??? ?????? ??32223ππππ,, C.??? ?????? ??πππ,,330 D.?? ? ?????? ??πππ,,3220 2 若直线:l y kx =2360x y +-=的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .,63ππ?????? B .,62ππ?? ??? C .,32ππ?? ??? D .,62ππ?????? (二)直线的斜率及应用 3、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 例2、设,,a b c 是互不相等的三个实数,如果333(,)(,)(,)A a a B b b C c c 、、在同一直线上,求证:0a b c ++= 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为() A.1 B.4 C.1或3 D.1或4 3.已知直线l 则直线的倾斜角为( ) A. 60° B. 30° C. 60°或120° D. 30°或150° 4.若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ). A .4,5a b == B .1b a -= C .23a b -= D .23a b -= 5.右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k 3 B. k 3<k 1<k 2 C. k 3<k 2<k 1 D. k 1<k 3<k 2 6.已知两点A (x ,-2),B (3,0),并且直线AB 的斜率为2,则x = . 7.若A (1,2),B (-2,3),C (4,y )在同一条直线上,则y 的值是 . 8.已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围. 9、直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 考点2:求直线的方程 例3. 已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程; (2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少? (3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由. 1、求过点P (2,-1),在x 轴和y 轴上的截距分别为a 、b,且满足a=3b 的直线方程。 2、设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A. x +y -5=0 B. 2x -y -1=0 C. 2y -x -4=0 D. 2x +y -7=0 3、直线过点(-3,4),且在两坐标轴上的截距之和为12,则该直线方程为________. 4、过点P (-2,3)且在两坐标轴上的截距相等的直线l 的方程为_____________. 5、已知点A (2,-3)是直线a 1x +b 1y +1=0与直线a 2x +b 2y +1=0的交点,则经过两个不同点P 1(a 1,b 1)和P 2(a 2,b 2)的直线方程是( )A .2x -3y +1=0 B .3x -2y +1=0 C .2x -3y -1=0 D .3x -2y -1=0 6、.过点P (0,1)且和A (3,3),B (5,-1)的距离相等的直线方程是( ) A .y =1 B .2x +y -1=0 C .y =1或2x +y -1=0 D .2x +y -1=0或2x +y +1=0 7.如图,过点P (2,1)作直线l ,分别为交x 、y 轴正半轴于A 、B 两点。(1)当⊿AOB

2018年电大第三版常微分方程答案知识点复习考点归纳总结参考

习题1.2 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为:

dx dy =- y x y x +- 令x y =u 则dx dy =u+x dx du 代入有: -1 12++u u du=x 1 dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32+=0 解:原方程为:dx dy =y e y 2e x 3 2 e x 3-3e 2y -=c. 9.x(lnx-lny)dy-ydx=0 解:原方程为: dx dy =x y ln x y 令 x y =u ,则dx dy =u+ x dx du

数学必修2---直线与方程典型例题

第三章直线与方程 【典型例题】 题型一求直线的倾斜角与斜率 设直线I斜率为k且1

3.1.2两条直线平行与垂直的判定 【 【典型例题】 题型一两条直线平行关系 例1 已知直线l i 经过点M (-3, 0)、N (-15,-6), 12 经过点R (-2, - )、S (0, 2 5),试判断^与12是否平行? 2 变式训练:经过点P( 2,m)和Q(m,4)的直线平行于斜率等于1的直线,贝U m的值是(). A . 4 B. 1 C. 1 或3 D. 1 或4 题型二两条直线垂直关系 例2已知ABC的顶点B(2,1), C( 6,3),其垂心为H( 3,2),求顶点A的坐标. 变式训练:(1) h的倾斜角为45 ° 12经过点P (-2,-1 )、Q (3,-6),问h与12是否垂直? (2)直线11,12的斜率是方程x2 3x 1 0的两根,则h与12的位置关系是—. 题型三根据直线的位置关系求参数 例3已知直线h经过点A(3,a)、B (a-2,-3),直线S经过点C (2,3)、D (-1,a-2) (1)如果I1//I2,则求a的值;(2)如果11丄12,则求a的值 题型四直线平行和垂直的判定综合运用 例4四边形ABCD的顶点为A(2,2 2 2)、B( 2,2)、C(0,2 2.. 2)、D(4,2),试判断四边形ABCD的形状.

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

必修二《直线与方程》单元测试题(含详细答案)之欧阳学创编

第三章《直线与方程》单元检测 试题 时间120分钟,满分150分。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.已知点A(1,3),B(-1,33),则直线AB的倾斜角是() A.60°B.30° C.120°D.150° [答案]C 2.直线l过点P(-1,2),倾斜角为45°,则直线l的方程为() A.x-y+1=0 B.x-y-1=0 C.x-y-3=0 D.x-y+3=0 [答案]D 3.如果直线ax+2y+2=0与直线3x-y-2=0平行,则a的值为() A.-3 B.-6

C.3 2D.2 3 [答案]B 4.直线x a2- y b2=1在y轴上的截距为() A.|b| B.-b2 C.b2D.±b [答案]B 5.已知点A(3,2),B(-2,a),C(8,12)在同一条直线上,则a的值是() A.0 B.-4 C.-8 D.4 [答案]C 6.如果AB<0,BC<0,那么直线Ax+By+C=0不经过() A.第一象限 B.第二象限 C.第三象限 D.第四象限 [答案]D 7.已知点A(1,-2),B(m,2),且线段AB的垂直平分线的方程是x+2y-2=0,则实数m的值是() A.-2 B.-7 C.3 D.1 [答案]C 8.经过直线l1:x-3y+4=0和l2:2x+y=5=0的

交点,并且经过原点的直线方程是( ) A .19x -9y =0 B .9x +19y =0 C .3x +19y =0 D .19x -3y =0 [答案] C 9.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0) B .(17,27) C .(27,17) D .(17,114) [答案] C 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0 [答案] D 11.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( ) A .-4 B .-2 C .0 D .2 [答案] B 12.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3),则点B 的坐标可能是( )

常微分方程总结

(1) 概念 微分方程:一般,凡表示未知函数、未知函数的导数与自变量的之间关系的方程。 微分方程的阶:微分方程中所出现的未知函数的最高阶导数的阶数。如: 一阶:2dy x dx = 二阶:220.4d s dt =- 三阶:32243x y x y xy x ''''''+-= 四阶:()4410125sin 2y y y y y x ''''''-+-+= 一般n 阶微分方程的形式:()() ,,,,0n F x y y y '=。这里的()n y 是必须出现。 (2)微分方程的解 设函数()y x ?=在区间I 上有n 阶连续导数,如果在区间I 上, ()()()(),,0n F x x x x ?????'≡???? 则()y x ?=称为微分方程()(),,,,0n F x y y y '=的解。 注:一个函数有n 阶连续导数→该函数的n 阶导函数也是连续的。 函数连续→函数的图像时连在一起的,中间没有断开(即没有间断点)。 导数→导函数简称导数,导数表示原函数在该点的斜率大小。 导函数连续→原函数的斜率时连续变化的,而并没有在某点发生突变。 函数连续定义:设函数()y f x =在点0x 的某一邻域内有定义,如果()()0 0lim x x f x f x →=则称函数()f x 在点0x 连续。 左连续:()() ()000lim x x f x f x f x --→== 左极限存在且等于该点的函数值。 右连续:()() ()000lim x x f x f x f x ++→== 右极限存在且等于该点的函数值。 在区间上每一个点都连续的函数,叫做函数在该区间上连续。如果是闭区间,包括端点,是指函数在右端点左连续,在左端点右连续。 函数在0x 点连续?()()()()000 0lim lim lim x x x x x x f x f x f x f x -+→→→=== 1、()f x 在点0x 有定义 2、()0 lim x x f x →极限存在

二阶常微分方程解

二阶常微分方程解

————————————————————————————————作者: ————————————————————————————————日期:

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 §7.1 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 ?? 22 dx y d +p dx dy +qy=0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22dx y d ,dx dy ,y 各乘以 常数因子后相加等于零,如果能找到一个函数y,其

22dx y d ,dx dy ,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=e r x (其中r 为待定常数)来试解 将y =e rx ,dx dy =re r x,22dx y d =r 2e r x 代入方程(7.1) 得 r 2e rx +pre rx +qerx =0 或 e r x(r 2+pr+q )=0 因为e rx ≠0,故得 ? r 2 +pr +q=0 由此可见,若r 是二次方程 ?? r 2+pr +q=0 (7.2) 的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程(7.2)有两个不相等的实根r 1, r 2,此时e r 1x ,e r2x 是方程(7.1)的两个特解。

相关文档
最新文档