手机锂电池过充的危害

手机锂电池过充的危害
手机锂电池过充的危害

郑州正方科技:

手机如今在我们的生活中已经扮演了一个非常重要的角色,人们的日常生活几乎与手机是密切相关的。人们的生活几乎已经离不开手机了,但是越来越多的关于手机电池爆炸事故的消息不断传来,这也给很多人在使用自己的手机时留下了一片阴影。那么今天小编就来给大家讲解这手机锂电池发生事故的一些原因以及对应的预防措施吧!

首先一点,现在有关手机电池的安全措施的技术其实已经很成熟了。手机发生的一系列事故的主要根源还是在于其中的锂电池。只要你所购买的手机或者手机电池的质量不要太次,基本上正常使用,规范操作是肯定没什么问题的。大多数手机事故都是因为其中的锂电池发生短路。而造成瞬时电流过大,导致电池爆炸。但其中一个最最重要的原因还是手机锂电池中没有佩戴电池保护板,对于电池保护板这个词大家可能会有所生疏。锂电池的应用范围很广,小到手机数码产品,大到电动大巴,正是因为锂电池自身一连串优秀的特点,才使得它能够被广泛的应用。

然而,锂电池最大的一个问题就是正极材料所使用的金属元素过于活泼,所以其自身的可控性相比别的种类的电池来讲较低。一旦发生短路等电路故障,其后果远远超出人们的想象。几乎所有的电池事故发生的直接原因就是电池短路,而造成电池短路的原因却又很多种。所以,不管是多大容量的锂电池,在出厂配套终端产品都要给其配上一块锂电池保护板,来防止电池的短路现象。而大多数山寨次品

手机厂商在产品出厂前压根就没有给手机电池佩戴保护板,为的就是谋取更大的利润。具体关于电池保护板的内容就不在多说,想要了解的朋友可以阅读《锂电池保护板的作用》。

再说说我们平时应该注意的地方,第一,就是切勿让手机电池进行过充,通俗的来讲就是电池在已经充满电的情况,没有拔掉,还在继续充电,这就是过充。过充行为对于锂电池的损坏是很大的,而且伴随的潜在危险也是很大的。因为过充行为很容易导致瞬时电流值过大,很有可能直接击穿上述的保护板。使得电池自身损坏,从而导致火灾之类的。所以,千万不要因为觉得平时给手机电池充电,什么时候想起来了才去拔掉。这对我们来讲都是一种安全隐患。即时没有发生什么事故,但对于电池自身的性能却有着不可逆转的损坏。长期如此,你会发现你的手机电池相比以前非常的不耐用,仅仅用2到3个小时就没有电了。

关于手机电池的问题,今天就说到这里,我们在日常的使用中也一定要谨慎小心。一旦发现温度异常等情况就停止使用。而大家在闲暇时间也可以来看看《锂电池组以及锂电池保护板的相关文章》对我们自身关于锂电池的知识也算是一个了解。

把手机锂电池电量比例保持在65%到75%之间最佳 最好的方式是有机会就充电 每次充一点电也可以

把手机锂电池电量比例保持在65%到75%之间最佳最好的方式是有机会就充电每次充一点电也可以 你平时都是怎么给手机充电的呢?一次性把电池电量充 到100%?直接充一夜?还是等到电池电量耗尽之后再充电? 实际上,你给手机充电的方式可能是错误的,你的充电习惯可能一直在加快电池报废的速度。今天就和大家说说智能手机充电时应该注意的事项,赶紧来看看吧!1 给手机充电的最好方式是一有机会就充电,每次充一点电。哪怕只是几分钟也行,零星时间充电不会损害电池。02 不要等电池电量完 全耗尽后再给手机充电。所谓的“深度放电”即等电池电量几乎耗尽时再给它充电对电池损耗极大。03 尽量把电池电量 比例保持在65%到75%之间。如果始终能够让智能手机里 面的锂电池的电量比例保持在65%到75%之间,电池的使 用寿命是最长的。虽然让电池电量始终保持在这个范围内显然不太现实,但至少你知道最理想的状态是什么样的。04 如果你做不到第3点,那就尽量做到让电池电量比例保持在45%到75%之间。智能手机电池的次优电量范围是45%到75%。对于大多数人来说,这在日常生活中更加现实一些。事实上,你可以养成一个日常习惯,在特定的时间给手机充电,以便让电池电量保持在这个范围内。05 永远不要给手机充满电,尤其是不要一次性将电池电量从很低的比例充满。将手机电

池从25%的低电量充到100%会降低电池容量和缩短电池使用寿命。研究显示,电池与人一样不想受到压力,不要总期望它充得太满。从任何电量水平充到100%电量都不是个好主意。锂电池“不需要完全充满电,没必要这么做。”因此,最好不要把手机电池电量充满,建议在电池充满前(98%、99%)时,或者一看到电池充满就立即拔下充电器。06 最好不要让手机充一夜的电。虽然现在的智能手机使用的都是锂离子电池,当电量在充满后就会自动断电,不会继续过量充电。但是之前也说了给手机充满电并非最好的做法,所以没必要给手机充一夜的电。需要注意的是,使用的手机充电器一定要是正规充电器,最好是原装充电器。一些山寨或型号不匹配的充电器,最好不要用来夜间给手机充电,防止充电器质量差,导致充电器烧毁,伤害手机。07 即使你想给手机充满电,也要注意一点:一旦手机电池电量达到100%,你就应该马上停止充电。充满电后不拔电源,会让电池一直保持满电状态,虽不会爆炸,但是会加快电池损耗。原来一次性把手机充电充电100%并不好,现在终于知道正确方法了!

锂电池充电保护方案计划

方案一:BP2971 电源管理芯片 特点 ·输入电压区间(Pack+):Vss-0.3V~12V ·FET 驱动 CHG和DSG FET驱动输出 ·监测项 过充监测 过放监测 充电过流监测 放电过流监测 短路监测 ·零充电电压,当无电池插入 ·工作温度区间:Ta= -40~85℃ ·封装形式: 6引脚DSE(1.50mm 1.50mm 0.75mm) 应用 ·笔记本电脑 ·手机 ·便携式设备 绝对最大额定值 ·输入电源电压:-4.5V~7V

·最大工作放电电流:7A ·最大充电电流:4.5A ·过充保护电压(OVP):4.275V ·过充压延迟:1.2s ·过充保护电压(释放值):4.175V ·过放保护电压(UVP):2.8V ·过放压延迟:150ms ·过放保护电压(释放值):2.9V ·充电过流电压(OCC):-70mV ·充电过流延迟:9ms ·放电过流电压(OCD):100mV ·放电过流延迟:18ms ·负载短路电压:500mV ·负载短路监测延迟:250us ·负载短路电压(释放值):1V 典型应用及原理图

图1:BP2971应用原理图 引脚功能 NC(引脚1):无用引脚。 COUT(引脚2):充电FET驱动。此引脚从高电平变为低电平,当过充电压被V-引脚所监测到 DOUT(引脚3):放电FET驱动。此引脚从高电平变为低电平,当过放电压被V-引脚所监测到 VSS (引脚4):负电池链接端。此引脚用于电池负极的接地参考电压 BAT(引脚5):正电池连接端。将电池的正端连接到此管脚。并用0.1uF的输入电容接地。 V-(引脚6):电压监测点。此引脚用于监测故障电压,例如过冲,过放,过流

锂电池为什么要加保护板才能用

锂电池为什么要加保护板才能用 保护板的功能主要是对充电型电池的电芯进行保护,维持电池充放电过程中的安全稳定,对整个电池电路系统性能起着重要的作用。(如:锂电池一般由电芯、保护板、外壳组成、例如手机电池) 1保护板的主要功能 1)过充保护功能: 过充保护功能是指在达到某个电压(以下称为过充电检测电压)时,禁止由充电器继续充电。即,将控制过充的MOS管进入关断状态,停止充电。 2)过放保护功能: 过放电保护功能是在电池的电压变低时,停止对负载放电。将控制过放的MOS管进入关断状态,禁止其放电。该过程正好与过充电检测时的动作相反。 3)过流保护功能: 过电流保护功能是在消耗大电流时停止对负载的放电,此功能的目的在于保护电池及MOS管,确保电池在状态下的安全性。过电流检测之后, 电池与负载脱离后将恢复到常态,可以再充电或放电。 4)短路保护功能:短路保护原理同3) 注: 〈1〉保护IC:是保护芯片的核心。通过取样电池电压进行判断,发出各种指令控

制MOS管,对电芯进行管理。 〈2〉MOS管:在保护板电路中主要起开关作用2 3典型的保护板电路 以单节保护板电路(DW01+P)为例:4 5 保护板的分类 1、按材料分类 1)镀金保护板—简称金板 五金保护板 普通镀金保护板 镀厚金保护板 沉金保护板 2)镀锡保护板—简称锡板 普通锡板 无铅锡板 2、按电池分类

1)单节保护板 2)双节保护板 3)多节保护板6保护板的市场容量 全球市场容量约100KK/M 1)A级市场(40KK/M) 注:A级市场的保护IC主要的生产商有精工、理光、美之美;MOSFET 主要的生产商有三洋、AO; 2)B级市场(40KK/M) 注:B级市场的保护IC主要的生产商有富晶、新德、中星微;MOSFET主要的生产商有三合微、华瑞、南海、喧昶、茂达; 3)C级市场(20KK/M) 注:C级市场的保护IC主要的生产商有士兰、黑森林、金微科; MOSFET主要的生产商有珠海南科、黑森林、金微科; 电池保养常识: 1 记忆效应镍氢充电电池上常见的现象。具体表现就是:如果长期不充满电就开始使用电池的话,电池的电量就会明显下降,就算以后想充满也充不满了。所以保养镍

关于手机锂电池充电的知识

关于手机锂电池充电的知识 摘要简要回顾了航天工业铝合金焊接技术的发展,并对国内外铝合金在航天器上的应用情况进行了综述和分析。介绍了铝合金焊接技术的最新发展和应用前景,其中包括变极性等离子焊、局部真空电子束焊、气脉冲焊接技术、搅拌摩擦焊、焊接修复技术以及焊接工艺裕度和焊接结构安全评定技术。 ? 关键词铝合金,焊接,航天。 ? ? Prospects for Welding Technology of Aluminum Alloy in Aerospace Industry in 21st Century ? Liu Zhihua Zhao Bing Zhao Qing ? (Beijing Institute of Material and Technology,Beijing ,100076) ? Abstract The development of welding technology of aluminum alloy in aerospace industry is reviewed and the application of aluminum alloy in

spacecrafts is summarized and analysed in this paper. The up to date development and application prospect of welding technologies of aluminum alloy are introduced. These welding technologies include variable polarity plasma welding, local vacuum electronic beam welding, air pulse welding, stirring friction welding, welding reparing technique, and the evaluation techniques of welding technological margin and welded construction safety. Key Words Aluminum alloy, Welding, Aerospace. ? ? 1 前言 铝合金不但具有高的比强度、比模量、断裂韧度、疲劳强度和耐腐蚀稳定性,同时还具有良好的成形工艺性和良好的焊接性,因此成为在航天工业中应用最广泛的一类有色金属结构材料。 例如,铝合金是运载火箭及各种航天器的主要结构材料。美国的阿波罗飞船的指挥舱、登月舱,航天飞机氢氧推进剂贮箱、乘务员舱等也都采用了铝合金作为结构材料。我国研制的各种大型运载火箭亦广泛选用了铝合金作为主要结构材料。 航天工业铝合金焊接技术的发展和应用与材料的发展有着密切的联系,本文将简要回顾航天工业铝合金焊接技术的发展并介绍几种极有应用前景的铝合金焊接工艺技术。

锂电池保护板原理

锂电池保护板原理文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

锂电池保护板原理锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。 锂电池的保护功能通常由保护电路板和PTC等电流器件协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,及时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。 普通锂电池保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件FUSE、PTC、NTC、ID、存储器等。其中控制IC,在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关关断,保护电芯的安全。 在保护板正常的情况下,Vdd为高电平,Vss,VM为低电平,DO、CO为高电平,当Vdd,Vss,VM任何一项参数变换时,DO或CO端的电平将发生变化。 1、过充电检出电压:在通常状态下,Vdd逐渐提升至CO端由高电平变为低电平时VDD-VSS间电压。 2、过充电解除电压:在充电状态下,Vdd逐渐降低至CO端由低电平变为高电平时VDD-VSS间电压。 3、过放电检出电压:通常状态下,Vdd逐渐降低至D O端由高电平变为低电平时VDD- VSS间电压。 4、过放电解除电压:在过放电状态下,Vdd逐渐上升到DO端由低电平变为高电平时 VDD-VSS间电压。

5、过电流1检出电压:在通常状态下,VM逐渐升至DO由高电平变为低电平时VM-VSS间电压。 6、过电流2检出电压:在通常状态下,VM从OV起以1ms以上4ms以下的速度升到 DO端由高电平变为低电平时VM-VSS间电压。 7、负载短路检出电压:在通常状态下,VM以OV起以1μS以上50μS以下的速度升至DO端由高电平变为低电平时VM-VSS间电压。 8、充电器检出电压:在过放电状态下,VM以OV逐渐下降至DO由低电平变为变为高电平时VM-VSS间电压。 9、通常工作时消耗电流:在通常状态下,流以VDD端子的电流(IDD)即为通常工作时消耗电流。 10、过放电消耗电流:在放电状态下,流经VDD端子的电流(IDD)即为过流放电消耗电流。 1、通常状态:电池电压在过放电检出电压以上(以上),过充电检出电压以下(以下),VM端子的电压在充电器检出电压以上,在过电流/检出电压以下(OV)的情况下,IC通过监视连接在VDD-VSS间的电压差及VM-VSS间的电压差而控制MOS管,DO、CO端都为高电平,MOS管处导通状态,这时可以自由的充电和放电; 当电池被充电使电压超过设定值VC后,VD1翻转使Cout变为低电平,T1截止,充电停止,当电池电压回落至VCR时,Cout变为高电平,T1导通充电继续,VCR小于VC一个定值,以防止电流频繁跳变。 当电池电压因放电而降低至设定值VD()时, VD2翻转,以IC内部固定的短时间延时后,使Dout变为低电平,T2截止,放电停止。

锂电池保护电路设计方案

锂电池保护电路设计方案 锂电池材料构成及性能探析 首先我们来了解一下锂电池的材料构成,锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。 负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价 格的降低。对锂离子动力电池尤其如此。比如一块手机用的小型锂离子电池大约只需要5克左右的正极材料,而驱动一辆公共汽车用的锂离子动力电池可能需要高达500千克的正极材料。 尽管从理论上能够用作锂离子电池正极材料种类很多,常见的正极材料主要成分为LiCoO2,充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。这就是锂电池工作的原理。 锂电池充放电管理设计 锂电池充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。原理虽然很简单,然而在实际的工业生产中,需要考虑的实际问题要多得多:正极的材料需要添加剂来保持多次充放的活性,负极的材料需要在分子结构级去设计以容纳更多的锂离子;填充在正负极之间的电解液,除了保持稳定,还需要具有良好导电性,减 小电池内阻。 虽然锂离子电池有以上所说的种种优点,但它对保护电路的要求比较高,在使用过程中应严格避免出现过充电、过放电现象,放电电流也不宜过大,一般而言,放电速率不应大于0.2C。锂电池的充电过程如图所示。在一个充电周期内,锂离子电池在充电开始之前需要检测电池的电压和温度,判断是否可充。如果电池电压或温度超出制造商允许的范围,则禁止充电。允许充电的电压范围是:每节电池2.5V~4.2V。

手机锂电池保护板相关知识1

保护板初步知识 1、保护板的由来 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现 . 2、主要保护能能 过充电保护功能过放电保护功能 过电流保护电流包括过流1 过流2 短路保护 3、保护板的组成和元件: 保护板通常包括控制IC、开关MOS、储存电容、识别电阻及辅助器件NTC/PTC等组成。其中控制IC在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关断开,保护电芯的安全。 PTC是正温度系数热敏电阻,NTC是负温度系数热敏电阻.PTC与NTC在应用上有不同的地方是:PTC在电路中可以做过电流保护,NTC主要是开关浪涌电流的抑制.他们也有共同的作用就是温度感测和侦测试 4、原理图及元件介绍 IC 它由精确的比较器来获得保护可靠的保护参数,主要参数:-过充电压-过充恢复电压-过放电压-过放恢复电压-过流检测电压-短路保护电压-耗电 MOSFET 串在主充放电回路中,担当高速开关,执行保护动作。我司所用的都是串在B- P-间。MOSFET包含三个电极:漏极(D)源极(S)栅极(G);当G极为高电平时,D极与S极导通,当G极为低电平时,D极与S极断开。主要参数: -内阻-耐电流 -耐电压-内部是否连通-封装 FUSE PTC :二次保护器件。 原理图:

正极:B+ FUSE P+ 负极:B- MOS(2、3)脚MOS(1)脚接MOS(8)脚MOS(5、6)脚夫P- 5、功能介绍: 通常状态:当电芯电压在2。5V---4。2V之间,IC的充电控制脚(第1脚)和放电管控制脚(第3脚)同时处于高电平,充电MOS、放电MOS同时打开,B-与P-连通,保护板有输出电压,能正常允放电. -过放状态:当电池接上手机等负载后,电芯电压渐渐降低,同时IC同部通过R1电阻实时监测电芯电压,当电芯电压降到IC的过放保护电压时,IC放电控制脚(第1脚)输出电压为0V,即低电平,放电MOS关闭,无输出电压。 - 过充状态:当电池通过充电器充电时,随着充电时间的增加,电芯电压越来越高,当电芯电压升高到过充保护电压时,IC将认为电芯处于过充电电压状态,IC的充电控制脚(第3脚)输出为低电平,即0V;此时充电MOS管关闭,B-与P-处于断开状态,充电回路切断,充电停止。保护板处于过充状态并一直保持。等到P+ P-之间接上负载后,因此时虽然充电管处于关闭状态,但其内部的二极管的正方向与放电回路的方向相同,故放电回路可以放电,当电芯电压被放低至过充电恢复电压以下时,充电管又导通,电芯的B-与保护板的P-又重新接上,电芯又能正常的充放电。 -过流及短路保护:当电池的负载电流超过IC的过流保护值时,IC的放电控制脚(第1脚)输出低电平,MOS管关闭。3、 常见的问题点: -内阻大:决定电池内阻的器件有PCB的线阻,MOS管的导通内阻,FUSE的内阻,电芯内阻及镍片的电阻。 解决方法:首先判断电芯内阻(一般要求小于60mΩ)是否超过标准,其次是测试保护板内阻(一般要求小于60mΩ)、FUSE内阻(一般要求小于15mΩ),最后检查镍片及接触电阻(一般要求小于15mΩ)-无电压无内阻(不能充放电等):无电压无内阻通常是充电MOSFET 关闭或放电MOSFET关闭或充放电MOS同时关闭,导致MOS管关闭的原因有IC不能正常工作或MOS管自身损坏或MOS连锡,虚焊。解决方法:先检查IC第5脚电压电否正常(电压与电芯电压相同),第6脚与B-是否连好,电芯电压是否正常,R1电阻是阻值是否正确,R1是否虚焊。其次检查IC的充电控制脚(3脚)和放电控制脚(5脚)电压是否正确(在通常的状态,IC的1、3脚都是高电平,等于电芯电压)。再次检查MOS是否短路,虚焊。 无ID(热敏):ID电阻一端连接保护板的P-端子,一端连接保接保护板的ID端子,若有此类问题时,可首先确认线路是否导通,其次可确认电阻本身是否不良或是否连锡。 短路保护、过流保护不良:可先检查R2是否虚焊,IC的过流检测端子(IC的第2脚)是否虚焊,若无以上两种不良,那么应是IC本身损坏。

手机锂离子电池与电芯的基本知识

第一节锂离子电池的基本知识 一般而言,锂离子电池有三部分构成: 1.锂离子电芯 2.保护电路(PCM) 3.外壳即胶壳 电池的分类 从锂离子电池与手机配合情况来看,一般分为外置电池和内置电池,这种叫法很容易理解,外置电池就是直接装在手上背面,如: MOTOROLA 191,SAMSUNG 系列等;而内置电池就是装入手机后,还另有一个外壳把其扣在手机电池内, 如:MOTOROLA 998,8088,NOKIA的大部分机型 1.外置电池 外置电池的封装形式有超声波焊接和卡扣两种:

1.1超声波焊接 外壳 这种封装形式的电池外壳均有底面壳之分,材料一般为ABS+PC料,面壳一般喷油处理,代表型号有 :MOTOROLA 191,SAMSUNG 系列,原装电池的外壳经喷油处理后长期使用一般不会磨花,而一些品牌电池或水货电池用上几天外壳喷油就开始脱落了.其原因为:手机电池的外壳较便宜,而喷油处理的成本一般为外壳的几倍(好一点的),这样处理一般有三道工序:喷光油(打底),喷油(形成颜色),再喷亮油(顺序应该是这样的,如果我没记错的话),而一些厂商为了降低成本就省去了第一和第三道工序,这样成本就很低了. 超声波焊塑机 其作用为: 行业内比较好的国产超声波焊塑机应该是深圳科威信机电公司生产的. 焊接 有了好的超声波焊塑机不够的,是否能够焊接OK,还与外壳的材料和焊塑机参数设置有很大关系,外壳方面主要与生产厂家的水口料掺杂情况有关,而参数设置则需自己摸索,由于涉及到公司一些技术资料,在这里不便多讲. 1.2卡扣式 卡扣式电池的原理为底面壳设计时形成卡扣式,其一般为一次性,如果卡好后用户强行折开的话,就无法复原,不过这对于生产厂家来讲不是很大的难度(卡好后再折开),其代表型号有:爱立信788,MOTOROLA V66. 2.内置电池

锂离子电池充放电安全检测设计

锂离子电池充放电安全检测设计 手机的锂离子电池充电安全性日益受到消费者重视,因此充电器制造商在设计产品时,须掌握锂离子电池的相关规格和特性,并使用具备完善电池检测及保护功能的充电芯片,以降低过电流、过电压或过温等状况所造成的危险。 随着科技进步、生活质量提升,电子产品的踪迹到处可见,其中又以手机为人类生活中不可或缺的必需品。不论是早期黑金刚手机或现今功能强大的智能手机,皆需要电源才能运作。 早期手机的电池主要有二种,一是镍氢、镍镉电池,二是锂离子电池,但现在使用镍氢、镍镉电池来做为电源的手机,已经是非常的少见,绝大部分都是使用锂离子电池,尤其消费者希望手机待机时间更长,且体积要更小,所以镍氢、镍镉电池已经慢慢不能符合消费者的期望而被淘汰。虽然镍氢、镍镉电池在价格以及替代电池取得的便利性优于锂离子电池,在其他电子产品上仍旧可看到镍氢、镍镉电池的踪迹;但是,在体积、重量及容量方面,镍氢、镍镉电池皆不如锂离子电池,所以现今标榜着轻薄短小的电子产品,几乎都是使用锂离子电池。 智能型手机因其功能强大、屏幕耗电量大,更是需要电池容量大及电力更耐久的锂离子电池。当手机电池电量不足时,使用者通常会以充电器或搭配一组移动电源随时对电池进行充电。 体积/容量兼具锂离子电池为电子产品首选 充电电池依其材质的不同可分为四类:铅酸电池、镍镉电池、镍氢电池和锂离子电池。

表1 充电电池比较表 由表1优缺点看来,镍镉、镍氢及锂离子电池较适合使用在电子产品上;而锂离子电池无论是在体积、重量及容量(电子产品的使用时间)较优于镍镉、镍氢电池,也无记忆效应的问题,所以锂离子电池在电子产品使用上似乎方便许多。 延长使用寿命锂离子电池充/放电压成关键 一般来说,锂离子电池会有电性安全的范围限制。由于锂离子电池的特性,当电池电压在充电时上升到最高设定电压后,要立即停止充电,避免电池因过充电造成电池损毁而产生危险;电池供电(放电)时,电池电压如果降至最低设定电压以下便要停止放电,避免因过放电而降低使用寿命。 此外,为确保电池使用上的安全,锂离子电池还必须要加装短路保护,以避免发生危险;即使大多数的锂离子电池都有加装保护电路,然而在选择优质的充电器或移动电源时,这仍然是一项重要的考量因素。

电池保护板工作原来

锂电池保护板的主要参数 锂电池保护板主要由保护IC和MOS管构成 (1)保护IC主要参数 1) 封装 2) 过充电压 3) 过充释放电压 4) 过放电压 5) 过放释放电压 6) 耐压 (2) MOSFET主要参数 1) N沟、P沟 2) 内阻 3) 封装(TSSOP8 <简称薄片> 、SOP8<简称厚片>、SOT23-6等) 4) 耐电流 5) 耐电压 6) 内部是否连通 锂电池保护板的工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET串在主充放电回路中担当高速开关,执行保护动作。下面以D W01 配MOS管8205A进行讲解: 激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS开关。 1.锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使

手机锂离子电池的充放电及使用

手机锂离子电池的充放电及使用 这部分是本文的重点,我们分三点来谈。 1、如何为新电池充电 在使用锂电池中应注意的是,电池放置一段时间后则进入休眠状态,此时容量低于正常值,使用时间亦随之缩短。但锂电池很容易激活,只要经过3—5次正常的充放电循环就可激活电池,恢复正常容量。由于锂电池本身的特性,决定了它几乎没有记忆效应。因此用户手机中的新锂电池在激活过程中,是不需要特别的方法和设备的。不仅理论上是如此,从我自己的实践来看,从一开始就采用标准方法充电这种“自然激活”方式是最好的。对于锂电池的“激活”问题,众多的说法是:充电时间一定要超过12小时,反复做三次,以便激活电池。这种“前三次充电要充12小时以上”的说法,明显是从镍电池(如镍镉和镍氢)延续下来的说法。所以这种说法,可以说一开始就是误传。锂电池和镍电池的充放电特性有非常大的区别,而且可以非常明确的告诉大家,我所查阅过的所有严肃的正式技术资料都强调过充和过放电会对锂电池、特别是液体锂离子电池造成巨大的伤害。因而充电最好按照标准时间和标准方法充电,特别是不要进行超过12个小时的超长充电。通常,手机说明书上介绍的充电方法,就是适合该手机的标准充电方法。 此外,锂电池的手机或充电器在电池充满后都会自动停充,并不存在镍电充电器所谓的持续10几小时的“涓流”充电。也就是说,如果你的锂电池在充满后,放在充电器上也是白充。而我们谁都无法保证电池的充放电保护电路的特性永不变化和质量的万无一失,所以你的电池将长期处在危险的边缘徘徊。这也是我们反对长充电的另一个理由。此外在对某些手机上,充电超过一定的时间后,如果不去取下充电器,这时系统不仅不停止充电,还将开始放电-充电循环。也许这种做法的厂商自有其目的,但显然对电池和手机/充电器的寿命而言是不利的。同时,长充电需要很长的时间,往往需要在夜间进行,而以我国电网的情况看,许多地方夜间的电压都比较高,而且波动较大。前面已经说过,锂电池是很娇贵的,它比镍电在充放电方面耐波动的能力差得多,于是这又带来附加的危险。 此外,不可忽视的另外一个方面就是锂电池同样也不适合过放电,过放电对锂电池同样也很不利。这就引出下面的问题。 2、正常使用中应该何时开始充电 在我们的论坛上,经常可以见到这种说法,因为充放电的次数是有限的,所以应该将手机电池的电尽可能用光再充电。但是我找到一个关于锂离子电池充放电循环的实验表,关于循环寿命的数据列出如下: 循环寿命(10%DOD):>1000次 循环寿命(100%DOD):>200次 其中DOD是放电深度的英文缩写。从表中可见,可充电次数和放电深度有关,10%DOD 时的循环寿命要比100%DOD的要长很多。当然如果折合到实际充电的相对总容量:10%*1000=100,100%*200=200,后者的完全充放电还是要比较好一些,但前面网友的那个说法要做一些修正:在正常情况下,你应该有保留地按照电池剩余电量用完再充的原则充电,但假如你的电池在你预计第2天不可能坚持整个白天的时候,就应该及时开始充电,当然你如果愿意背着充电器到办公室又当别论。 而你需要充电以应付预计即将到来的会导致通讯繁忙的重要事件的时候,即使在电池尚有很多余电时,那么你也只管提前充电,因为你并没有真正损失“1”次充电循环寿命,也就是“0.x”次而已,而且往往这个x会很小。 电池剩余电量用完再充的原则并不是要你走向极端。和长充电一样流传甚广的一个说

锂电池保护板原理

锂电池保护板原理 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。 锂电池的保护功能通常由保护电路板和PTC等电流器件协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,及时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。 普通锂电池保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件FUSE、PTC、NTC、ID、存储器等。其中控制IC,在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关关断,保护电芯的安全。 在保护板正常的情况下,Vdd为高电平,Vss,VM为低电平,DO、CO为高电平,当Vdd,Vss,VM任何一项参数变换时,DO或CO端的电平将发生变化。 1、过充电检出电压:在通常状态下,Vdd逐渐提升至CO端由高电平变为低电平时VDD-VSS 间电压。 2、过充电解除电压:在充电状态下,Vdd逐渐降低至CO端由低电平变为高电平时 VDD-VSS间电压。 3、过放电检出电压:通常状态下,Vdd逐渐降低至D O端由高电平变为低电平时VDD- VSS 间电压。 4、过放电解除电压:在过放电状态下,Vdd逐渐上升到DO端由低电平变为高电平时VDD-VSS间电压。 5、过电流1检出电压:在通常状态下,VM逐渐升至DO由高电平变为低电平时VM-VSS 间电压。

6、过电流2检出电压:在通常状态下,VM从OV起以1ms以上4ms以下的速度升到DO 端由高电平变为低电平时VM-VSS间电压。 7、负载短路检出电压:在通常状态下,VM以OV起以1μS以上50μS以下的速度升至DO 端由高电平变为低电平时VM-VSS间电压。 8、充电器检出电压:在过放电状态下,VM以OV逐渐下降至DO由低电平变为变为高电平时VM-VSS间电压。 9、通常工作时消耗电流:在通常状态下,流以VDD端子的电流(IDD)即为通常工作时消耗电流。 10、过放电消耗电流:在放电状态下,流经VDD端子的电流(IDD)即为过流放电消耗电流。

手机锂离子电池与电芯的基本知识(doc 16页)

手机锂离子电池与电芯的基本知识(doc 16页)

第一节锂离子电池的基本知识 一般而言,锂离子电池有三部分构成: 1.锂离子电芯 2.保护电路(PCM) 3.外壳即胶壳 电池的分类 从锂离子电池与手机配合情况来看,一般分为外置电池和内置电池,这种叫法很容易理解,外置电池就是直接装在手上背面,如: MOTOROLA 191,SAMSUNG 系列等;而内置电池就是装入手机后,还另有一个外壳把其扣在手机电池内, 如:MOTOROLA 998,8088,NOKIA的大部分机型 1.外置电池 外置电池的封装形式有超声波焊接和卡扣两种:

包标的电池就很多了,如前两年很浒的MOTO998 ,8088了. 第二节锂离子电芯的基本知识 锂离子电芯是一种新型的电池能源,它不含金属锂,在充放电过程中,只有锂离子在正负极间往来运动,电极和电解质不参与反应。锂离子电芯的能量容量密度可以达到300Wh/L,重量容量密度可以达到125Wh/L。 一、电芯原理 锂离子电芯的反应机理是随着充放电的进行,锂离子在正负极之间嵌入脱出,往返穿梭电芯内部而没有金属锂的存在,因此锂离子电芯更加安全稳定。其反应示意图及基本反应式如下所示: 二、电芯的构造 电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用纳米碳。 根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。通过研究发现当X>0.5时Li1-XCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X 值,一般充电电压不大于4.2V那么X小于0.5 ,这时Li1-XCoO2的晶型仍是稳定的。负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li 留在负极C6中,心以保证下次充放电Li的正常嵌入,否则电芯的压倒很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现。所

锂电池保护芯片原理

锂电池保护原理 锂电池保护板是对串联锂电池组的充放电保护;在充满电时能保证各单体电池之间的电压差异小于设定值(一般±20mV),实现电池组各单体电池的均充,有效地改善了串联充电方式下的充电效果;同时检测电池组中各个单体电池的过压、欠压、过流、短路、过温状态,保护并延长电池使用寿命;欠压保护使每一单节电池在放电使用时避免电池因过放电而损坏。 成品锂电池组成主要有两大部分,锂电池芯和保护板,锂电池芯主要由正极板、隔膜、负极板、电解液组成;正极板、隔膜、负极板缠绕或层叠,包装,灌注电解液,封装后即制成电芯,锂电池保护板的作用很多人都不知道,锂电池保护板,顾名思义就是保护锂电池用的,锂电池保护板的作用是保护电池不过放、不过充、不过流,还有就是输出短路保护。 01锂电池保护板组成

1、控制ic, 2、开关管,另外还加一些微容和微阻而组成。控制ic 作用是对电池的保护,如达到保护条件就控制mos进行断开或闭合(如电池达到过充、过放、短路、过流、等保护条件),其中mos管的作用就是开关作用,由控制ic开控制。锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。锂电池的保护功能通常由保护电路板和PTC协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流。 02保护板的工作原理 1、过充保护及过充保护恢复 当电池被充电使电压超过设定值VC(4.25-4.35V,具体过充保护电压取决于IC)后,VD1翻转使Cout变为低电平,T1截止,充电停止.当电池电压回落至VCR(3.8-4.1V,具体过充保护恢复电压取决于IC)时,Cout变为高电平,T1导通充电继续,VCR 必须小于VC一个定值,以防止频繁跳变。 2、过放保护及过放保护恢复 当电池电压因放电而降低至设定值VD(2.3-2.5V,具体过充保护电压取决于IC)时,VD2翻转,以短时间延时后,使Dout变为低电平,T2截止,放电停止,当电池被置于充电时,内部或门被翻转而使T2再次导通为下次放电作好准备。 3、过流、短路保护 当电路充放回路电流超过设定值或被短路时,短路检测电路动作,使MOS管关断,电流截止。

锂电池保护板工作原理资料

锂电池保护板工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理:

当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关

锂离子电池的过充电和过放电产生的问题

针对锂离子电池过充电、过放电问题过充电:锂离子电池过充时,电池电压随极化增大而迅速上升,会引起正极活性物质结构的不可逆变化及电解液的分解,产生大量气体,放出大量的热,使电池温度和内压急剧增加,存在爆炸、燃烧等隐患。 过放电:电池放完内部储存的电量,电压达到一定值后,继续放电就会造成过放电,电池过放电可能会给电池带来灾难性的后果,特别是大电流过放,或反复过放对电池影响更大。一般而言,过放电会使电池内压升高,正负极活性物质可逆性受到破坏,电解液分解,负极锂沉积,电阻增大,即使充电也只能部分恢复,容量也会有明显衰减。 解决措施: 1、改变正极材料:目前钴酸锂正极活性材料在小电芯方面是很成熟的体 系,但是充满电后,仍旧有大量的锂离子留在正极,当过充时,残留在正极的锂离子将会涌向负极,在负极上形成枝晶(使其晶面的半高宽变大,导致某一方向的晶粒尺寸变小,晶体结构的改变导致碳材料出现裂纹,进而破坏负极表面的 SEI 膜并促进 SEI 膜的修复,SEI 膜的过度生长消耗活性锂,因此造成了电池的不可逆容量衰减。如图1所示)这是采用钴酸锂材料的电池过充时必然的结果。甚至在正常充放电过程中,也有可能会有的产生多余的锂离子游离到负极形成枝晶(由于石墨的嵌脱锂电位较低,接近锂的还原电位,因此在某些条件下负极容易出现锂沉积,锂沉积会消耗活性锂,产生不可逆容量损失)。因此寻求高能量密度、高安全、环保和价格便宜的电极材料是动力电池发展的关键。目前国家选择的安全正极材料有锰酸锂、磷酸铁锂等。 (锰酸锂LiMnO 4 分子结构上面可以保证在满电状态,正极的锂离子已经完全嵌入到负极炭孔中,从根本上避免了枝晶的产生。同时锰酸锂稳固的结构使其氧化性能远远低于钻酸锂,分解温度超过钴酸锂10O℃,即使由于外力发生内部短路、外部短路、过充电时,也完全能够避免了由于析出金属锂引发燃烧、爆炸的危险。 磷酸铁锂(LiFePO 4)及其充电(脱锂)后形成FePO 4 的热稳定性非常好,其在 210~410℃的温度范围内所放出的热量仅为210J/g:而普遍使用的LiCoO2的充电态

手机锂电池保护板

手机锂电池保护板?手机锂电池的构成及构成 一手机锂电池的组成及组成 手机锂电池主要由塑胶壳高低盖、锂电芯、袒护线路板(PCB)和可回复安全丝(polyswitch)组成。有的厂家还配置了NTC、鉴识电阻、震动马达或充电电路等元件。 各部门成效如下: (1)锂电芯:提供可充放电源。 (2)袒护线路板(PCB):防止电池过充过放短路。 (3)可回复安全丝(PTC):正热敏电阻起到高温袒护作用同时又是袒护线路板生效后的二重袒护。保护。 (4)可回复安全丝(NTC):负热敏电阻,感应电池外部温度起到高温袒护作用。 (5)鉴识电阻:鉴识原装电池非原装电池不能应用 其中电芯是极度紧急的,而机芯也有几个级别,有A级电芯,B级电芯。 二。手机锂电池的充放电准确形式 手机锂电池充电准确形式而今手机用的是锂离子电池,你看护板。所以,不生计回忆效应题目,也不必要激活,第一次充电不必要像镍电那样冲12小时以上,只必要充4小时左右,离子电池的寿命只与充电次数有相关,锂离子电池不妨充电1000次左右。待机时间与应用情形有相关。但是,我不知道电池保护板。卖手机的却说后面三次充电时间要抵达12小时。终于何如回事? 电池是手机电能的起原,也就是手机的动力,没有电池的供电,手机也就是一块废铁,一块高容量高机能的电池,不只不妨给手机长时间的续航才力,而且也不妨袒护手机的电路,使得手机能够长时间高效率的作事,反之则很有可能会使手机浮现意想不到的毁坏。而对我们玩家来说,电池保护板。电池的机能在出厂的岁月,就一经被定性,其电量的大小,机能的好坏,都是由电池自己来决策了,在这一方面我们无法人为的革新,学习手机锂电池的构成及构成。不过这并不是说,我们在拿到电池后,就对它一点不能做了。手机应用的都是锂离子的充电电池,应用内存储电量的用完,必要再次充电方可补充电源。你不要小看充电这一环节,一个好的充电器和准确充电形式,不妨连结电池长时间的待机时间,更不妨耽误电池的应用寿命。更远一步说,还不妨对手机起到袒护作用。关于如何充电的形式,看着发动机保护板。经常在论坛里会有玩家问到,经过一段时间来的自己现实应用和参考,我总结出上面的几点: 1、如何为新电池充电 在应用锂电池中应注意的是,电池放置一段时间后则进入休眠形态,此时容量低于一般值,应用时间亦随之收缩。但锂电池很便利激活,只须经过3-5次一般的充放电循环就可激活电池,回复一般容量。由于锂电池自己的特性,决策了它险些没有回忆效应。 对待锂电池的“激活”题目,众多的说法是:看看笔记本电池保护板。充电时间必然要越过12小时,屡屡做三次,以便激活电池。这种“前三次充电要充12 小时以上”的说法,昭彰是从镍电池(如镍镉和镍氢)延续上去的说法。手机。所以这种说法,不妨说一开首就是误传。锂电池和镍电池的充放电特性有极度大的区别,而且不妨极度明确的通知群众,我所查阅过的全部正经的正式技术资料

锂电池过充电-过放-短路保护电路详解

该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状 4. 电池可弯曲变形:高分子电池最大可弯曲900左右 5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。

7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为(20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响? 在所有的环境因素中,温度对电池的充放电性能影响最大,在电极/电解液界面上的电化学反应与环境温度有关,电极/电解液界面被视为电池的心脏。如果温度下降,电极的反应率也下降,假设电池电压保持恒定,放电电流降低,电池的功率输出也会下降。如果温度上升则相反,即电池输出功率会上升,温度也影响电解液的传送

相关文档
最新文档