可调谐DFB 激光器
基于TDLAS技术的在线多组分气体浓度检测系统

基于TDLAS技术的在线多组分气体浓度检测系统孙灵芳;于洪【摘要】为了提高环境气体监测精度,降低设备维护成本需求,设计了一种多组分气体同时或近同时在线检测系统.该系统基于TDLAS技术采用DFB可调谐激光测量气体浓度,能够实现760 nm O2和2 326 nm CO混合气体同时在线监测.设计发射单元、接收单元等模块,分析TDLAS可调谐激光检测、PID温度控制、锁相检测原理.结合火电厂烟道氧量浓度测试,对系统进行了验证.实验结果表明:与传统的工业气体测量装置相比,该系统能获得更高的精度、更快的响应速度以及良好的稳定性,适应恶劣环境能力强,具有较好的实用性及可行性.%In order to improve the accuracy of detecting the environmental gas in the industry and satisfy the requirement for reducing the equipment cost,a meanwhile online or nearly meanwhile on-line multi-component gas detection system was designed.Based on TDLAS technology,this system adopted the DFB tunable laser to detect the gas concentration.Moreover,it can also realize the online simultaneous detection of the mixed gas of 760 nm O2 and 2 326 nm CO.This paper designed and analyzed the modules such as transmitting unit and Receiving unit.TDLAS tunable laser detection,PID temperature control and principle of phase lock detection were analyzed.The system was verified through the test of flue oxygen concentration in the thermal power plant.According to the experimental result,comparing with the traditional industrial gas measuring device,this system has higher accuracy and faster response speed and goodstability,and has the strong ability to function in the harsh environment as well as the high applicability and feasibility.【期刊名称】《仪表技术与传感器》【年(卷),期】2017(000)003【总页数】5页(P73-77)【关键词】光谱分析;多组分气体;锁相放大;正弦调制;谐波检测【作者】孙灵芳;于洪【作者单位】东北电力大学自动化工程学院,吉林吉林 132012;东北电力大学节能与测控技术研究中心,吉林吉林 132012;东北电力大学自动化工程学院,吉林吉林132012【正文语种】中文【中图分类】TP273可调谐半导体激光吸收光谱技术(tunable diode laser absorption spectroscopy,TDLAS)利用分布反馈激光器(DFB)的窄线宽和波长调谐等特性来实现气体分子“指纹区”吸收谱线的扫描和测量,具有高灵敏度、高分辨率、响应速度快、适应恶劣环境强等优点[1]。
分布反馈布拉格半导体激光器(DFB-LD)

11
7.4 激光切割
二、激光切割分类及其机理
※ 汽化切割:工件在激光作用下快速加热至沸点,部分材料化作蒸汽逸去,部分 材料为喷出物从切割缝底部吹走。这种切割机制所需激光功率密度一般为108W /cm2左右,是无熔化材料的切割方式 ※ 熔化切割: 激光将工件加热至熔化状态,与光束同轴的氩、氦、氮等辅助气流 将熔化材料从切缝中吹掉。熔化切割所需的激光功率密度一般为107W/cm2左右 ※ 氧助熔化切割: 金属被激光迅速加热至燃点以上,与氧发生剧烈的氧化反应 (即燃烧),放出大量的热,又加热下一层金属,金属被继续氧化,并借助气体 压力将氧化物从切缝中吹掉。
五、激光焊的优点
图7-21 深熔焊小孔示意图
7
7.3 激光打孔
一、激光打孔原理
激光打孔机的基本结构包括激光器、加工头、冷却系统、数控装置和操作面盘 (图7-13)。
图7-13
激光打孔机的基本结构示意图
二、激光打孔工艺参数的影响
※ 脉冲宽度对打孔的影响 :脉冲宽度对打孔深度、孔径、孔形的影响较大。窄 脉冲能够得到较深而且较大的孔;宽脉冲不仅使孔深度、孔径变小,而且使孔的 表面粗糙度变大,尺寸精度下降。
和损伤,于是又提出了图9-2所示的DFB-LD结构
15
9.1.1 半导体激光器
2. 作为通信光源的半导体激光器 (3)分布布拉格反射半导体激光器 考虑到布拉格光栅反射性好的特点,将光栅置于激光器谐振腔的两侧或一侧, 增益区没有光栅,光栅只相当于一个反射率随波长变化的反射镜,这样就构成 了 DBR-LD 。其中,三电极 DBR-LD 是最典型的基于 DBR-LD 的单模波长可调谐半导 体激光器,其原理性结构如图9-3。
图9-5 光纤激光器原理示意图
L波段宽调谐范围的取样光栅分布布拉格反射激光器设计

第41卷第10期2020年10月发光学报CHINESE JOURNAL OF LUMINESCENCEVol.41No.10Oct.,2020文章编号:1000-7032(2020)10-1279-08L 波段宽调谐范围的取样光栅分布布拉格反射激光器设计徐长达1,2,陈伟1*,班德超1,2,孙文惠1(1.中国科学院半导体研究所固态光电信息技术实验室,北京100083;2.中国科学院大学材料科学与光电技术学院,北京100049)摘要:L 波段取样光栅分布布拉格反射(SG-DBR)激光器在高速光通信与无源光网络中具有广泛的应用前景。
本文以InGaAsP 作为无源波导区材料,从理论上分析了实现L 波段宽调谐SG-DBR激光器所需的关键参数,包括前后取样光栅的反射峰间隔、取样周期、占空比等。
同时采用传输矩阵模型,讨论了取样对数与前、后取样光栅反射特性的关系。
最后得到了一组优化的SG-DBR激光器参数,其对应的调谐范围达到47.6nm 。
关键词:L 波段;传输矩阵法;SG-DBR激光器;宽调谐范围中图分类号:TN248.4文献标识码:ADOI :10.37188/CJL.20200201Design of Sampled Grating Distributed BraggReflector Laser with Wide Tuning Range in L-bandXU Chang-da 1,2,CHEN Wei 1*,BAN De-chao 1,2,SUN Wen-hui 1(1.Laboratory of Solid State Optoelectronic Information Technology ,Institute of Semiconductors ,Chinese Academy of Sciences ,Beijing 100083,China ;2.College of Materials Science and Opto-Electronic Technology ,University of Chinese Academy of Sciences ,Beijing 100049,China )*Corresponding Author ,E-mail :wchen @semi.ac.cnAbstract :L-band SG-DBRlasers have wide application prospects in high-speed optical communica-tion and passive optical networks.In this paper ,using InGaAsP as the passive waveguide region ma-terial ,the key parameters which are necessary to realize the wide-tuned SG-DBRlaser in L-band are theoretically analyzed ,including the reflection peak interval ,number of sample period and duty ratio of the sampled grating.At the same time ,the relationship between the sampling logarithm and the reflection characteristics of the front sampling grating (FSG )and rear sampling grating (RSG )is dis-cussed by using the transmission matrix model.Finally ,a set of optimized SG-DBRlaser parameters were obtained ,and the corresponding tuning range reached 47.6nm.Key words :L-band ;transmission matrix method ;SG-DBRlaser ;wide tuning range收稿日期:2020-07-11;修订日期:2020-08-10基金项目:国家重点研发计划;中国科学院青年创新促进会资助项目Supported by National Key R&D Program of China ;Youth Innovation Promotion Association of The Chinese Academy of Sci-ences1引言为了进一步提高通信容量,波分复用技术不断从C 波段延伸到L 波段,随着信道数的增加,固定波长激光器的备份压力也不断增大,而可调谐激光器通过覆盖相邻的信道波长,可以减少固定波长激光器的备份数量,被认为是波分复用光系统中的理想光源。
激光器分类

激光器分类可以有两种方法对激光器进行分类。
一种是从激活媒质的物质状态面分类。
这样可分为气体、液体、固体和半导体激光器。
各类激光器各有特色。
气体激光器的单色性强,如氦—氖激光器的单色性比普通光源要高1亿倍,而且气体激光器工作物质种类繁多,因此可产生许多不同频率的激光。
但是,由于气体密度低,激光输出功率相应较小;固体激光器则正好相反,能量高,输出功率大,但工作物质种类较少,而且单色性差;液体激光器的最大特点是激光的波长可以在一定范围内连续变换。
这种激光器特别适合于对激光波长有着严格要求的场合;半导体激光器的特点则是体积小,重量轻,结构简单,但输出的功率较小,单色性也较差。
另一种分类方式是按激活媒质的粒子结构来分类,可以分为原子、离子、分子和自由电子激光器。
氦——氖激光器产生的激光是由氖原子发射的,红宝石激光器产生的激光则是由铬离子发射的。
另外还有二氧化碳分子激光器,它的频率可以连续变化。
而且可以覆盖很宽的频率范围。
各种激光器中激活媒质的方法也不尽相同。
一般来说可分为三种方法:使用高强度的光,从带电源来的电子,以及较少用的第三种方法——核辐射。
光纤通信所用的激光器在光纤通信中,所用的光源有三种:半导体激光器、半导体发光二极管和非半导体激光器。
在实际的光纤通信系统中,通常选用前两种。
而非半导体激光器,如气体激光器、固体激光器等,虽然它们是最早制成的相干光源,但由于其体积太大,不适宜与体积小的光纤配合使用,只用于一些特殊场所。
半导体激光器半导体激光器即为激光二极管,记作LD。
它是前苏联科学家H.Γ.巴索夫于1960年发明的。
半导体激光器的结构通常由P层、N层和形成双异质结的有源层构成。
半导体激光器的发光是利用光的受激辐射原理。
处于粒子数反转分布状态的大多数电子在受到外来入射光子激励时,会同步发射光子,受激辐射的光子和入射光子不仅波长相同,而且相位、方向也相同。
这样由弱的入射光激励而得到了强的发射光,起到了光放大作用。
DFB激光器调研报告(在实际工程中的应用)

分布反馈式半导体激光器在实际工程系统中的应用摘要:DFB (Distributed Feed Back) DFB型光发射机,分布反馈(激光器)半导体激光器因其波长的扩展、高功率激光阵列的出现以及可兼容的激光导光和激光能量参数微机控制的出现而迅速发展、半导体激光器体积小、重量轻、成本低、波长可选择,其应用范围遍及的领域越来越宽广,其的出现带来了巨大的变化,使科技更发达,人们生活更加丰富多彩,应用范围遍及医学、科技、航天交通,通信等各个领域。
自从1962 年世界上第一台半导体激光器(Diode Laser)发明问世以来, 由于其体积小、重量轻、易于调制、效率高以及价格低廉等优点, 被认为是二十世纪人类最伟大的发明之一. 四十几年来半导体激光器逐步应用在激光唱机、光存储器、激光打印机、条形码解读器、光纤电信以及激光光谱学中, 不断扩大应用范围, 进入了一些其它类型激光器难以进入的新的应用领域。
关键字: DFB、工作波长、边模抑制比、阈值电流、输出光功率一、分布反馈式半导体激光器简介1、分布反馈式半导体激光器是以一定的半导体材料做工作物质而产生受激发射作用的器件.其工作原理是,通过一定的激励方式,在半导体物质的能带之间,或者半导体物质的能带与杂质能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用.半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式.电注入式半导体激光器,一般是由GaAS,InAS,Insb等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射.光泵式半导体激光器,一般用N型或P型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励.在半导体激光器件中,目前性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器。
1310nm1550nmDFB激光器

1310nm/1550nmDFB激光器
1310nm/1550nm尾纤型DFB激光器,采用同轴封装并耦合尾纤的方式进行输出,输出功率可达2.5mW。
具有低工作
电流,高效率,高稳定性的特点。
与我公司提供的配套驱动电路一起使用,可以获得高稳定性激光光源 。
图片仅
供参考,尺寸以实物为准,我公司(深圳市飞博源光电)热忱为您提供,具体性能指标见每支设备参数.特 点
·低工作电流·高稳定性
·高效率·同轴封装
·内置监视器
性能指标
典型最大单位波长(1310)130713101313nm 波长(1550)1547 15501553 nm 阈值电流10mA 工作电流30mA 工作电压 1.5V 出纤光功率 2.5mW 背光监控电流0.050.3mA 工作频率DC 2.5GHZ 边模抑制比30dB 工作温度-20-70℃储藏温度-40-85℃。
DFB蝶形封装激光器
DFB 蝶形封装激光器1,描述分布式反馈特定波长激光器, 波长1550±2nm,输出光功率≥10mw,内置 光隔离器, 带制冷的14脚蝶形外壳,直径为900um 紧套管,长度为1m 的 单模尾纤,连接器FC/APC2,性能规格2.1,极限值参数符号最小最大单位激光器反向电压 V RLMAX — 2.0 V 正向电流 I FLMAX — 150 mA 工作温度范围 T O -20 70 ℃ 贮藏温度范围 T stg -40 85 ℃ 光电二极管反向电压 V RPDMAX — 10 V 光电二极管正向电流 I FPDMAX — 2 mA 热敏电阻温度 — — 100 ℃ 制冷器工作电流——1.9A2.2,电特性 参数符号测试条件最小典型最大单位峰值光功率 P P — 10 — — mW 阈值电流 I TH CW — 14 25 mA 驱动电流 — P O =10mW — 100 — mA 激光器正向电压 V LF P O =10mW— 1.4 2.0 V 激光器工作温度 T LD — 22 — 30 ℃ 监视器反向压 V RMON — 3 5 10 V 监视器电流 I RMON P O =10mW 0.01 — 2 mA 监视器暗电流 I D I F =0mA,V R MON =5V— 0.01 0.1 µA 输入阻抗 Z IN — — 25 — Ω 热敏电阻电流 I TC — 10 — 100 µA 热敏电阻阻抗 R TH T L =25℃ 9.5 — 10.5 k Ω 制冷器电流I TECT L =25℃, T around =70℃ ——1.2A制冷器电压 V TEC T L =25℃, T around =70℃— — 3.5 V2.3,光学特性参数符号测试条件最小典型最大单位中心波长λCCWT L=15~35℃1548 1550 1552 nm线宽LW CW 5mW — 3 —MHz 带宽(@-3dB) BW 5mW,-3dB 2.5 ——GHz 杂讯比RIN 5mW,50MHz-2.5GHz —-140 —dB/Hz 边模抑制比SMSR CW 35 42 —dB 光隔离度—0℃~70℃30 ——dB 波长飘移—25 years ——±0.1 nm 温度波长系数dλ/d T ——0.09 —nm/℃动态谱宽△λ 2.5GHz, @-20dB —0.32 —nm2.4,光纤和连接器参数符号描述最小典型最大单位尾纤长度L 单模光纤 1.00 — 1.10 m连接器类型—FC/APC ————3,封装尺寸引脚定义01引脚定义02编号Pin No. 针脚定义/Pin Function1 热敏电阻/ Thermistor2 热敏电阻/ Thermistor3 激光器直流负极/Laser DC bias cathode (-)4 光电二极管正极/ PD monitor anode (-)15 光电二极管负极/ PD monitor cathode (+)26 制冷器正极/ Thermoelectric cooler (+)7 制冷器负极/ Thermoelectric cooler (-)8 无/ NC9 无/ NC10 无/ NC11 激光器正极,接外壳/Laser anode (+),Case12 激光器射频负极/ Laser RF cathode(-)13 激光器正极,接外壳/Laser anode (+),Case14 无/ NC。
光纤dfb激光器 跳模问题
光纤dfb激光器跳模问题
光纤DFB激光器跳模问题是指激光器在工作过程中频繁地从一
个纵模态跃迁到另一个纵模态,导致输出光功率的不稳定性和频率
的不确定性。
这个问题可能会严重影响激光器的性能和稳定性,因
此需要认真对待。
首先,光纤DFB激光器跳模问题的原因可能有多种。
其中一个
可能的原因是激光器内部的光学反馈机制不稳定,导致在一定条件
下激光器会频繁地切换纵模态。
另外,温度变化、电流波动、光学
器件的老化等因素也可能会导致跳模问题的出现。
为了解决光纤DFB激光器跳模问题,可以采取多种方法。
首先,可以优化激光器的工作环境,尽量减小温度和电流的波动,以及减
少外部光学干扰。
其次,可以对激光器的光学反馈机制进行优化和
调整,以提高其稳定性和抗干扰能力。
另外,定期对激光器进行维
护和保养,及时更换老化的光学器件,也是解决跳模问题的有效途径。
此外,还可以通过使用数字信号处理技术对激光器的输出信号
进行实时监测和调整,以抑制跳模现象的发生。
另外,加强对激光
器工作原理的深入研究,不断改进激光器的设计和制造工艺,也是从根本上解决跳模问题的重要途径。
总的来说,光纤DFB激光器跳模问题是一个复杂的技术难题,需要综合运用光学、电子、材料等多个学科的知识来解决。
只有通过不断的努力和创新,才能更好地解决这一问题,提高光纤DFB激光器的稳定性和性能。
(完整版)分布式反馈激光器
DFB分布式反馈激光器091041A 谢伟超DFB( Distributed Feedback Laser),即分布式反馈激光器,其不同之处是内置了布拉格光栅(Bragg Grating),属于侧面发射的半导体激光器。
DFB激光器将布拉格光栅集成到激光器内部的有源层中(也就是增益介质中),在谐振腔内即形成选模结构,可以实现完全单模工作。
目前,DFB激光器主要以半导体材料为介质,包括锑化镓(GaSb)、砷化镓(GaAs)、磷化铟(InP)、硫化锌(ZnS)等。
DFB激光器最大特点是具有非常好的单色性(即光谱纯度),它的线宽普遍可以做到1MHz以内,以及具有非常高的边摸抑制比(SMSR),目前可高达40-50dB以上。
设计和制作在高速调制下仍能保持单纵模工作的激光器是十分重要的,这类激光器统称动态单模半导体激光器。
实现动态单纵模工作的最有效的方法之一,就是在半导体激光器内部建立一个布拉格光栅,靠光栅的反馈来实现纵模选择。
这种结构还能够在更宽的工作温度和工作电流范围内抑制模式跳变,实现动态单模。
分布反馈半导体激光器(DFB-LD),在DFB-LD中,光栅分布在整个谐振腔中,所以称为分布反馈。
因为采用了内部布拉格光栅选择波长,所以DFB-LD的谐振腔损耗有明显的波长依存性,这一点决定了它在单色性和稳定性方面优于一般的F-P腔激光器。
结构及工作机理DFB激光器的激光振荡不是靠F—P腔来实现,而是依靠沿纵向等间隔分布的光栅所形成的光耦合,如图2—81所示。
图中光栅的周期为A,称为栅距。
当电流注入激光器后,有源区内电子——空穴复合,辐射出能量相应的光子,这些光子将受到有源层表面每一条光栅的反射。
在DFB激光器的分布反馈中,此时的反射是布拉格发射,光栅的栅条间入射光和反射光的方向恰好相反。
满足上式的那些特定波长的光才会受到强烈反射,从而实现动态单纵模工作。
式也称为分布反馈条件(一般m取1)。
DFB-LD的光栅是完全均匀对称的,使得其发光出现了两个主模同时振荡的现象。
直接调制DFB激光器诱导的啁啾特性研究
第一章绪论在光纤通信的发展进程中,激光器技术一直扮演着重要的作用,自十九世纪六十年代世界上第一台激光器研制成功以来,激光器已经得到了长足的发展与进步。
作为非常关键的技术,激光器的研究得到了广大学者和研究机构的重视,它给整个光纤通信技术的发展带来了革命性的变革,另外,它保有着非常强大的生命力和发展势头,在科技、军事和医学等方面得到广泛的使用,为推动社会进步做出了巨大的贡献。
1.1 激光器的发展十九世纪初,著名的物理学家普朗克提出了能量量子化的设论,基于此假设又提出了黑体辐射公式,在理论方面阐释了黑体辐射分布规律。
十年后,波尔对原子能量量子化提出了假设,提出了利用一系列不连续的能级表征原子内部状态的理论。
随后,爱因斯坦博士在以上理论基础上,又针对普朗克公式进行了分析推导,站在光子量子理论角度,定义了受激辐射理论,指出光子与原子相互作用时,原子可以在光子的辐射场的作用下发生跃迁,同时辐射出一个不同频率的光子。
这一理论的提出奠定了激光技术的基础。
到五十年代,美国Charles博士和前苏联Nikolai博士在爱因斯坦受激辐射理论基础上,利用物质原子的受激辐射来对电磁波进行放大,研制成功了世界上首台微波量子振荡器,微波量子振荡器一经问世,就得到了全世界学者的广泛关注,并成功将其推行至光通信领域,提出了利用开放式光学谐振腔来试验激光器,打造了激光器原型机。
六十年代,美国学者Theodore H. Maiman 结合前人在激光技术方面的成就和基础上,研制成功了世界上第一台激光器——红宝石固体激光器。
其输出功率达到几瓦,且在单色性、方向性和相干性方面有非常优良的性能,相对于普通光源来讲,以上特性有着本质的区别,一经演示便引起了科学界非常强烈的反响,得到了全世界的广泛关注。
1.2 光纤激光器在1961年,Snitzer博士利用特制的微量元素掺杂光纤作为增益介质,成功地研制出了世界上第一台光纤激光器。
此激光器集成了光纤的体积小、结构简单、具有很好的柔韧性和散射性以及无需冷却系统等特点带来的强大优势,在很多指标上已经是远远超过普通的固体激光器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OPEAK OptoElectronics Technology Co., Ltd. Laser center 437, No.6, Keyanxi Road, Nankai District, Tianjin City, 300192 Peoples Republic of China Tel: +8622-87899303/87898266 Fax: +8622-87898266
Laser Safety The module contains class 3B laser source per CDRH, 21CFR 1040.10 Laser Safety requirements. The module is Class IIIb laser products per IEC 60825-1:1993.
TLS-DFB-xxx 型可调谐激光器模块是为光纤无源器件测试、光 谱分析检验、光纤传感等应用设计的低成本可调谐分布反馈式 (DFB)半导体激光模块。模块工作在连续发光(CW)模式下, 通过电位器可实现激光器工作温度与驱动的电流的模拟调节, 可实现输出光功率与输出光波长的精密调节。模块内置高精度 温度控制电路与自动功率 APC(或恒流源 ACC)驱动电路,波 长锁定线路(依据激光器规格可选配) ,使得模块具有高波长稳 定性与功率稳定性。内置静电(ESD)防护、过流/过压保护等 完善的安全使用设计,严格的工艺控制与测试流程保证了产品 可长期可靠运行。
OPEAK
可调谐 DFB 激光器
TLS-DFBxxx 系列
产品特点
分布反馈(DFB)式半导体激光器 输出波长模拟连续调谐 输出光功率可调 窄光谱线宽 优异的光功率稳定性与波长稳定性 结构尺寸紧凑
应用领域
气体吸收检测 光纤无源器件测试 光谱分析检验 光纤传感系统
性能指标
中心波长 最高输出功率 光功率调节范围 功率稳定性 光谱线宽(FWHM) 波长稳定性 波长调谐范围 边模抑制比(SMSR) 相对强度噪声(RIN) 输出端隔离度 工作温度 存储温度 相对湿度 电源功耗 外形尺寸 电源 电气接口 光纤类型 接头类型 尾纤类型
ESD Protection The laser diodes and photodiodes in the module can be easily destroyed by electrostatic discharge. Use wrist straps, grounded work surfaces, and anti-static techniques when operating this module. When not in use, the module shall be kept in a static-free environment.
TEL: +8622-87899303/9773
FAX: +8622-87898266
OPEAK
外形尺寸
引脚定义
序号
1 2 3 4 5
引脚功能描述
VCC VCC GND GND 驱动电流监控
序号
6 7 8 驱动电流监控 波长温度调节(可选) 驱动电流调节(可选)
Product specifications and descriptions in this document subject to change without notice. Copyright to OPEAK Co., Ltd. August 2008
特性曲线
Product specifications and descriptions in this document subject to change without notice. Copyright to OPEAK Co., Ltd.
August 2008
OPEAK
参数指标 符号 λC Po PT PSS PSL BW λS λT SMSR RIN ISO TOP TS RH PS L×W×H 112 x 70 x 15 DC 5 V +/- 5% & GND Mini DB-10型 (Male) SMF or PMF (慢轴对准) 标准配置FC/APC型或其它 900um松套管 长度1m 最小值 1260 3 0 +/-1 30 30 0 -40 5 典型值 2 15 35 35 最大值 1620 20 100 0.05 0.1 10 30 +/-2 -120 +55 +85 95 4.5 单位 nm mW % dB dB MHz pm nm dB dB/Hz dB ℃ ℃ % W mm P = Po TA = 25 °C 20MHz-1GHz TA = 25 °C 测试条件 TA = 25 °C P = PT x Po 1hr @ 23℃ 8hrs@ 23℃ TA = 25 °C -