高考数学课时达标13

合集下载

高考数学大一轮复习 第二章 函数、导数及其应用 课时达标8 指数与指数函数

高考数学大一轮复习 第二章 函数、导数及其应用 课时达标8 指数与指数函数

1 课时达标 第8讲 指数与指数函数 [解密考纲]本考点主要考查指数的运算、指数函数的图象与性质、简单的复合函数的单调性等,通常以选择题、填空题的形式呈现,分值为5分,题目难度中等或中等偏上. 一、选择题

1.设a=22.5,b=2.50,c=122.5,则a,b,c的大小关系是( C ) A.a>c>b B.c>a>b C.a>b>c D.b>a>c

解析 b=2.50=1,c=122.5=2-2.5, 则2-2.5<1<22.5,即c2.已知函数f(x)=2x-2,则函数y=|f(x)|的图象可能是( B )

解析 |f(x)|=|2x-2|= 2x-2,x≥1,2-2x,x<1, 易知函数y=|f(x)|的图象的分段点是x=1, 且过点(1,0),(0,1),-1,32. 又|f(x)|≥0,所以B项正确.故选B. 3.已知f(x)=3x-b(2≤x≤4,b为常数)的图象经过点(2,1),则f(x)的值域为( C ) A.[9,81] B.[3,9] C.[1,9] D.[1,+∞) 解析 由f(x)过定点(2,1)可知b=2,因为f(x)=3x-2在[2,4]上是增函数,f(x)min=f(2)=1,f(x)max=f(4)=9,可知C项正确.故选C.

4.(2017·北京卷)已知函数f(x)=3x-13x,则f(x)( B ) A.是偶函数,且在R上是增函数 B.是奇函数,且在R上是增函数 C.是偶函数,且在R上是减函数 D.是奇函数,且在R上是减函数

解析 由f(-x)=13x-3x=-f(x),知f(x)为奇函数,因为y=13x在R上是减函数, 2

所以y=-13x在R上增函数,又y=3x在R上是增函数,所以函数f(x)=3x-13x在R上是增函数.故选B. 5.当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是( C ) A.(-2,1) B.(-4,3) C.(-1,2) D.(-3,4)

2019-2020年高考数学一轮复习第三章三角函数解三角形课时达标19同角三角函数的基本关系与诱导公式

2019-2020年高考数学一轮复习第三章三角函数解三角形课时达标19同角三角函数的基本关系与诱导公式

2019-2020年高考数学一轮复习第三章三角函数解三角形课时达标19同角三角函数的基本关系与诱导公式[解密考纲]本考点主要考查三角函数的概念、同角三角函数的基本关系式与诱导公式,通常以选择题、填空题的形式呈现,安排在比较靠前的位置.一、选择题1.(xx·四川成都外国语学校月考)已知tan(α-π)=34,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则sin ⎝⎛⎭⎪⎫α+π2=( B )A .45 B .-45C .35D .-35解析 tan(α-π)=34⇒tan α=34.又α∈⎝ ⎛⎭⎪⎫π2,3π2,所以α为第三象限的角,所以sin ⎝⎛⎭⎪⎫α+π2=cos α=-45,故选B .2.cos 350°-2sin 160°-=( D )A .- 3B .-32C .32D . 3解析 原式=----+=cos 10°----=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°= 3.3.已知sin α+cos α=2,则tan α+cos αsin α的值为( D )A .-1B .-2C .12D .2解析 ∵sin α+cos α=2,∴(sin α+cos α)2=2, ∴sin αcos α=12,∴tan α+cos αsin α=1sin αcos α=2.4.(xx·湖北黄冈调考)若A ,B 是锐角三角形ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( B )A .第一象限B .第二象限C .第三象限D .第四象限解析 ∵△ABC 是锐角三角形,则A +B >π2,∴π2>A >π2-B >0,π2>B >π2-A >0, ∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,sin B >sin ⎝ ⎛⎭⎪⎫π2-A =cos A ,∴cos B -sin A <0,sin B -cos A >0,∴点P 在第二象限,故选B .5.(xx·安徽模拟)设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎪⎫23π6=( A ) A .12 B .32C .0D .-12解析 f ⎝⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 17π6+sin 11π6=f ⎝ ⎛⎭⎪⎫5π6+sin 17π6+sin 11π6+sin 5π6=sin 176π+sin 116π+sin 56π=12-12+12=12.6.已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是( C )A .355B .377C .31010D .13解析 由已知得-2tan α+3sin β+5=0,tan α-6sin β=1, 解得tan α=3,故sin α=31010.二、填空题7.已知tan α=-12,π2<α<π,则sin α= 5.解析 ∵α为第二象限角,tan α=-12,∴设α终边上一点P (x ,y ),其中x =-2,y =1,则r =5,∴sin α=55. 8.(xx·浙江绍兴模拟)若f (cos x )=cos 2x ,则f (sin 15°)= -32 . 解析 f (sin 15°)=f (cos 75°)=cos 150°=cos(180°-30°)=-32. 9.函数y =sin x cos x1+cos x +sin x的最大值为2. 解析 设t =cos x +sin x ,则t ∈[-2,-1)∪(-1,2].于是y =t 2-121+t =t -12,当t =2时,y 取最大值2-12.三、解答题10.已知cos ⎝ ⎛⎭⎪⎫π4-α=1213,α∈⎝ ⎛⎭⎪⎫0,π4,求cos 2αsin ⎝ ⎛⎭⎪⎫π4+α的值.解析cos 2αsin ⎝ ⎛⎭⎪⎫π4+α=α-sin αα+sin α22α+sin α=2(cos α-sin α)=2sin ⎝⎛⎭⎪⎫π4-α.∵α∈⎝ ⎛⎭⎪⎫0,π4,∴π4-α∈⎝ ⎛⎭⎪⎫0,π4,又cos ⎝ ⎛⎭⎪⎫π4-α=1213,∴sin ⎝ ⎛⎭⎪⎫π4-α=513,∴cos 2αsin ⎝ ⎛⎭⎪⎫π4+α=1013. 11.已知sin 2α+sin αcos α-2cos 2α=45,求tan α的值.解析 由已知得sin 2α+sin αcos α-2cos 2αsin 2α+cos 2α=45, 所以tan 2α+tan α-2tan 2α+1=45,整理得,tan 2α+5tan α-14=0, 解得tan α=2或tan α=-7. 12.已知sin(3π+α)=lg1310,cos(π-α)>0.(1)求cos α+1sin α的值;(2)求sin 2⎝ ⎛⎭⎪⎫π2+α-cos 2⎝ ⎛⎭⎪⎫32π+α的值.解析 (1)因为sin(3π+α)=sin(π+α)=-sin α, lg1310=lg 10-13=-13,所以-sin α=-13,即sin α=13.又因为cos(π-α)=-cos α>0,即cos α<0,所以cos α=-1-sin 2α=-223.则cos α+1sin α=-223+113=3-2 2.(2)sin 2⎝ ⎛⎭⎪⎫π2+α-cos 2⎝ ⎛⎭⎪⎫32π+α=cos 2α-sin 2α=⎝ ⎛⎭⎪⎫-2232-⎝ ⎛⎭⎪⎫132=79.2019-2020年高考数学一轮复习第三章三角函数解三角形课时达标20三角函数的图象与性质[解密考纲]本考点考查三角函数的图象以及图象的平移、伸缩变换,三角函数的单调性、奇偶性、周期性、最值与值域等.一般以选择题、填空题的形式呈现,以解答题出现时,排在解答题靠前位置,难度中等.一、选择题 1.函数y =cos x -32的定义域为( C ) A .⎣⎢⎡⎦⎥⎤-π6,π6B .{|x k π-π6≤x ≤k π+π6,k ∈ZC .{|x 2k π-π6≤x ≤2k π+π6,k ∈ZD .R解析 ∵cos x -32≥0,得cos x ≥32, ∴2k π-π6≤x ≤2k π+π6,k ∈Z .2.(xx·浙江温州模拟)为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( A )A .向右平移π12个单位B .向右平移π4个单位C .向左平移 π12个单位D .向左平移π4个单位解析 因为y =sin 3x +cos 3x =2cos ⎝ ⎛⎭⎪⎫3x -π4,所以将y =2cos 3x 的图象向右平移π12个单位后可得到y =2cos ⎝⎛⎭⎪⎫3x -π4的图象.3.(xx·辽宁营口模拟)将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数( B )A .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递减B .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递增C .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递减D .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递增 解析 由题可得平移后的函数为y =3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π2+π3=3sin ⎝ ⎛⎭⎪⎫2x -2π3,令2k π-π2≤2x -2π3≤2k π+π2,解得k π+π12≤x ≤k π+7π12,故该函数在⎣⎢⎡⎦⎥⎤k π+π12,k π+7π12(k∈Z )上单调递增,当k =0时,选项B 满足条件,故选B .4.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( D )A .1B .12 C .22D .32解析 观察图象可知,A =1,T =π,∴ω=2,f (x )=sin(2x +φ).将⎝ ⎛⎭⎪⎫-π6,0代入上式得sin ⎝ ⎛⎭⎪⎫-π3+φ=0.由|φ|<π2,得φ=π3,则f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. 函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),∴x 1+x 22=π12, ∴x 1+x 2=π6,∴f (x 1+x 2)=sin ⎝⎛⎭⎪⎫2×π6+π3=32,故选D .5.(xx·河南郑州模拟)如果函数y =3sin(2x +φ)的图象关于直线x =π6对称,则|φ|的最小值为( A )A .π6B .π4C .π3D .π2解析 由题意,得sin ⎝ ⎛⎭⎪⎫2×π6+φ=±1.所以π3+φ=π2+k π,即φ=π6+k π(k ∈Z ),故|φ|min =π6.6.(xx·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π,若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( A )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析 由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z ),① 由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k ′π(k ′∈Z ), ②由①②得ω=-23+43(k ′-2k ),又最小正周期T =2πω>2π,所以0<ω<1,所以ω=23,又|φ|<π,将ω=23代入①得φ=π12,A 项符合.二、填空题7.(xx·天津模拟)函数f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π4,x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是 2 .解析 因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以-π4≤2x -π4≤3π4.根据正弦曲线,得当2x -π4=-π4时,sin ⎝⎛⎭⎪⎫2x -π4取得最小值为-22.故f (x )=-sin ⎝⎛⎭⎪⎫2x -π4的最大值为22. 8.函数f (x )=sin(x +2φ)-2sin φcos (x +φ)的最大值为 1 . 解析 f (x )=sin [(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ-cos(x +φ)sin φ=sin(x +φ-φ)=sin x , 因为x ∈R ,所以f (x )的最大值为1.9.把函数f (x )=3sin x cos x +cos 2x -12图象上各点向右平移φ(φ>0)个单位,得到函数g (x )=sin 2x 的图象,则φ的最小值为!!!π12###. 解析 把函数f (x )=3sin x cos x +cos 2x -12=32sin 2x +12cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π6图象上各点向右平移φ(φ>0)个单位,得到函数g (x )=sin ⎣⎢⎡⎦⎥⎤2(x -φ)+π6=sin ⎝⎛⎭⎪⎫2x -2φ+π6=sin 2x 的图象,则φ的最小值为π12.三、解答题10.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2ωx +π4(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的单调性.解析 (1)因为f (x )=2sin ⎝ ⎛⎭⎪⎫2ωx +π4的最小正周期为π,且ω>0.从而有2π2ω=π,故ω=1.(2)因为f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2<2x +π4≤5π4,即π8<x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎢⎡⎦⎥⎤0,π8上单调递增,在区间⎝⎛⎦⎥⎤π8,π2上单调递减.11.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调递增区间.解析 (1)令2×π8+φ=k π+π2,k ∈Z ,所以φ=k π+π4,又-π<φ<0,所以k =-1,则φ=-3π4.(2)由(1)得,f (x )=sin ⎝ ⎛⎭⎪⎫2x -3π4, 令-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z .可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π8+k π,5π8+k π,k ∈Z .12.已知函数f (x )=sin(ωx +φ)(0<ω<1,0≤φ≤π)是R 上的偶函数,其图象关于点M ⎝⎛⎭⎪⎫3π4,0对称.(1)求ω,φ的值; (2)求f (x )的单调递增区间;(3)若x ∈⎣⎢⎡⎦⎥⎤-3π4,π2,求f (x )的最大值与最小值,解析 (1)因为f (x )=sin(ωx +φ)是R 上的偶函数,所以φ=π2+k π,k ∈Z ,且0≤φ≤π,则φ=π2,即f (x )=cos ωx .因为图象关于点M ⎝ ⎛⎭⎪⎫34π,0对称, 所以ω×34π=π2+m π,m ∈Z ,ω=23+4m3,又0<ω<1,所以ω=23.(2)由(1)得f (x )=cos 23x ,由-π+2k π≤23x ≤2k π,且 k ∈Z 得,3k π-3π2≤x ≤3k π,k ∈Z ,所以函数的递增区间是⎣⎢⎡⎦⎥⎤3k π-3π2,3k π,k ∈Z .(3)因为x ∈⎣⎢⎡⎦⎥⎤-3π4,π2,所以23x ∈⎣⎢⎡⎦⎥⎤-π2,π3,当23x =0时,即x =0,函数f (x )的最大值为1, 当23x =-π2时,即x =-3π4,函数f (x )的最小值为0.。

2022届高考数学(理)大一轮复习教师用书:第六章第二节等差数列及其前n项和 Word版含解析

2022届高考数学(理)大一轮复习教师用书:第六章第二节等差数列及其前n项和 Word版含解析

其次节等差数列及其前n项和突破点(一)等差数列的性质及基本量的计算基础联通抓主干学问的“源”与“流”1.等差数列的有关概念(1)定义:假如一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n+1-a n=d(n∈N*,d为常数).(2)等差中项:数列a,A,b成等差数列的充要条件是A=a+b2,其中A叫做a,b的等差中项.2.等差数列的有关公式(1)通项公式:a n=a1+(n-1)d.(2)前n项和公式:S n=na1+n(n-1)2d=n(a1+a n)2.3.等差数列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若{a n}为等差数列,且k+l=m+n(k,l,m,n∈N*),则a k+a l=a m+a n .(3)若{a n}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.(4)若{a n}是等差数列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差数列.(5)若数列{a n},{b n}是公差分别为d1,d2的等差数列,则数列{pa n},{a n+p},{pa n+qb n}都是等差数列(p,q都是常数),且公差分别为pd1,d1,pd1+qd2.考点贯穿抓高考命题的“形”与“神”等差数列的基本运算[例1](1)(2022·东北师大附中摸底考试)在等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为() A.1 B.2C.3 D.4(2)(2022·惠州调研)已知等差数列{a n}的前n项和为S n,若S3=6,a1=4,则公差d等于()A.1 B.53C.-2 D.3[解析](1)∵a1+a5=2a3=10,∴a3=5,则公差d=a4-a3=2,故选B.(2)由S3=3(a1+a3)2=6,且a1=4,得a3=0,则d=a3-a13-1=-2,故选C.[答案](1)B(2)C[方法技巧]1.等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a1和公差d,然后由通项公式或前n项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n项和公式,共涉及五个量a1,a n,d,n,S n,知其中三个就能求另外两个,体现了方程的思想.2.等差数列设项技巧若奇数个数成等差数列且和为定值时,可设中间三项为a-d,a,a+d;若偶数个数成等差数列且和为定值时,可设中间两项为a-d,a+d,其余各项再依据等差数列的定义进行对称设元.等差数列的性质[例2](1)在等差数列{a n}396n n S11=()A.18 B.99C.198 D.297(2)已知{a n},{b n}都是等差数列,若a1+b10=9,a3+b8=15,则a5+b6=________.[解析](1)由于a3+a9=27-a6,2a6=a3+a9,所以3a6=27,所以a6=9,所以S11=112(a1+a11)=11a6=99.(2)由于{a n},{b n}都是等差数列,本节主要包括3个学问点:1.等差数列的性质及基本量的计算;2.等差数列前n项和及性质的应用;3.等差数列的判定与证明.所以2a 3=a 1+a 5,2b 8=b 10+b 6, 所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6), 即2×15=9+(a 5+b 6), 解得a 5+b 6=21. [答案] (1)B (2)211.[考点一]《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱 D.43钱 解析:选D 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52,解得⎩⎨⎧a 1=43,d =-16,即甲得43钱,故选D.2.[考点一]设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5 B .6 C .7 D .8解析:选D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8. 3.[考点二]已知数列{a n }为等差数列,且a 1+a 7+a 13=π,则cos(a 2+a 12)的值为( ) A.32 B .-32 C.12 D .-12解析:选D 在等差数列{a n }中,由于a 1+a 7+a 13=π,所以a 7=π3,所以a 2+a 12=2π3,所以cos(a 2+a 12)=-12.故选D.4.[考点一]设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9, 解得⎩⎪⎨⎪⎧a 1=3,d =-1.所以S 16=16×3+16×152×(-1)=-72.答案:-725.[考点二]设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最终6项的和为180,S n =324(n >6),求数列{a n }的项数及a 9+a 10.解:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36,又S n =n (a 1+a n )2=324,∴18n =324,∴n =18. ∵a 1+a n =36,n =18, ∴a 1+a18=36,从而a 9+a 10=a 1+a 18=36.突破点(二) 等差数列前n 项和及性质的应用等差数列前n 项和的性质(1)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d . (2)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1).(3)当项数为偶数2n 时,S 偶-S 奇=nd ;项数为奇数2n -1时,S 奇-S 偶=a 中,S 奇∶S 偶=n ∶(n -1). (4){a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(5)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.等差数列前n 项和的性质[例1] 已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________. [解析] 法一:设数列{}a n 的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d=5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D . 所以5+2D =10,所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. [答案] 20等差数列前n 项和的最值[例2] 等差数列{a n }的首项a 1>0,设其前n 项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值? [解] 设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一:S n =na 1+n (n -1)2d=na 1+n (n -1)2·⎝⎛⎭⎫-18a 1 =-116a 1(n 2-17n )=-116a 1⎝⎛⎭⎫n -1722+28964a 1, 由于a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值.法二:设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)·⎝⎛⎭⎫-18a 1≥0,a 1+n ·⎝⎛⎭⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值. 法三:由于S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n ,设f (x )=d2x 2+⎝⎛⎭⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线, 由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示),由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.[方法技巧]求等差数列前n 项和S n 最值的三种方法 (1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方结合图象借助求二次函数最值的方法求解. (2)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .(3)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则: ①若p +q 为偶数,则当n =p +q2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.力量练通 抓应用体验的“得”与“失”1.[考点二]在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15 B .S 16 C .S 15或S 16 D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.[考点二]设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7解析:选D 由(n +1)S n <nS n +1得(n +1)n (a 1+a n )2<n (n +1)(a 1+a n +1)2,整理得a n <a n +1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7.3.[考点一]已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.解析:∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=20×2-10=30,∴S 30=60.答案:604.[考点一]已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是________.解析:由等差数列前n 项和的性质知,a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1,故当n =1,2,3,5,11时,a nb n 为整数,故使得a nb n 为整数的正整数n 的个数是5.答案:55.[考点一]一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧ S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:5突破点(三) 等差数列的判定与证明基础联通 抓主干学问的“源”与“流” 等差数列的判定与证明方法方法 解读适合题型定义法 对于数列{a n },a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列解答题中的证明问题等差中项法 2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{a n }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题中的判定问题前n 项和公式法 验证S n =An 2+Bn (A ,B 是常数)对任意的正整数n 都成立⇔{a n }是等差数列考点贯穿 抓高考命题的“形”与“神”等差数列的判定与证明[典例] 已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,推断{a n }是否为等差数列,并说明你的理由.[解] 由于a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n=2+(n -1)×2=2n ,故S n =12n .所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列.1.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列 C .公差为6的等差数列 D .公差为9的等差数列解析:选C 令b n =a 2n -1+2a 2n ,则b n +1=a 2n +1+2a 2n +2,故b n +1-b n =a 2n +1+2a 2n +2-(a 2n -1+2a 2n )=(a 2n +1-a 2n -1)+2(a 2n +2-a 2n )=2d +4d =6d =6×1=6.即{a 2n -1+2a 2n }是公差为6的等差数列.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1,∴a n +1=2-1a n .∴b n +1-b n =1a n +1-1-1a n -1=12-1a n -1-1a n -1=a n -1a n -1=1,∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.3.已知公差大于零的等差数列{}a n 的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求数列{a n }的通项公式; (2)若数列{}b n 满足b n =S nn +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)∵数列{}a n 为等差数列,∴a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13,∴⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴数列{a n }的通项公式为a n =4n -3. (2)由(1)知a 1=1,d =4, ∴S n =na 1+n (n -1)2×d =2n 2-n ,∴b n =S nn +c =2n 2-n n +c,∴b 1=11+c ,b 2=62+c ,b 3=153+c ,其中c ≠0.∵数列{}b n 是等差数列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0, ∴c =-12或c =0(舍去),故c =-12.即存在一个非零实数c =-12,使数列{b n }为等差数列.[全国卷5年真题集中演练——明规律] 1.(2022·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97解析:选C ∵{a n }是等差数列,设其公差为d ,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. 2.(2021·新课标全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172 B.192C .10D .12 解析:选B ∵数列{a n }的公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.3.(2021·新课标全国卷Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( ) A .3B .4C .5D .6解析:选C 由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以等差数列的公差为d =a m +1-a m =3-2=1,由⎩⎪⎨⎪⎧a m =a 1+(m -1)d =2,S m =a 1m +12m (m -1)d =0,得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m (m -1)=0,解得⎩⎪⎨⎪⎧a 1=-2,m =5,选C. 4.(2021·新课标全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎨⎧S 10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,则nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得微小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49<6S 6,所以当n =7时,nS n 取最小值,最小值为-49.答案:-495.(2022·全国甲卷)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设数列{a n }的公差为d ,由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)由于b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.6.(2022·新课标全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1.令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,则a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考 [练基础小题——强化运算力量]1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.2.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37B .36C .20D .19解析:选A a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,即m =37.3.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D.12解析:选B 由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0. 4.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( ) A .9 B .8 C .7D .6解析:选D 设等差数列{a n }的公差为d .由于a 3+a 7=-6,所以a 5=-3,d =2,则S n =n 2-12n ,故当n 等于6时S n 取得最小值.5.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________.解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38,解得n =10.答案:10[练常考题点——检验高考力量] 一、选择题1.(2021·黄冈质检)在等差数列{a n }中,假如a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2021·东北三校联考)已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,由于a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=72[(b 2-d )+(b 2+5d )]=-112,又a 1=3,则a 8=-109.3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84解析:选B 由a 3+a 5+a 11+a 17=4,得2(a 4+a 14)=4,即a 4+a 14=2,则a 1+a 17=2,故S 17=17(a 1+a 17)2=17.4.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零.又∵a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉利数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉利数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,由于b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.由于对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14.所以数列{b n }的通项公式为b n=2n -1.6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( )A .310B .212C .180D .121解析:选D 设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,由于a 1=1,所以22a 1+d =a 1+3a 1+3d ,化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2,所以S n +10a 2n =(n +10)2(2n -1)2=⎝ ⎛⎭⎪⎫n +102n -12=⎣⎢⎢⎡⎦⎥⎥⎤12(2n -1)+2122n -12=14⎝⎛⎭⎪⎫1+212n -12≤121.即S n +10a 2n 的最大值为121. 二、填空题7.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差d 是________.解析:由S 33-S 22=1得a 1+a 2+a 33-a 1+a 22=a 1+d -2a 1+d 2=d 2=1,所以d =2.答案:28.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13等于________.解析:由于S 17=a 1+a 172×17=17a 9=51,所以a 9=3.依据等差数列的性质知a 5+a 13=a 7+a 11,所以a 5-a 7+a 9-a 11+a 13=a 9=3.答案:39.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11等于________.解析:S 11=11(a 1+a 11)2=11a 6,设公差为d ,由a 9=12a 12+6得a 6+3d =12(a 6+6d )+6,解得a 6=12,所以S 11=11×12=132.答案:13210.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 三、解答题11.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式.解:(1)证明:∵b n =1a n ,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2a n +1a n ,∴b n +1-b n =2a n +1a n-1a n=2.又∵b 1=1a 1=1,∴数列{b n }是以1为首项,2为公差的等差数列.(2)由(1)知数列{b n }的通项公式为b n =1+(n -1)×2=2n -1,又b n =1a n ,∴a n =1b n =12n -1.∴数列{a n }的通项公式为a n =12n -1. 12.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值.解:∵2a n +1=a n +a n +2,∴a n +1-a n =a n +2-a n +1,故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎪⎨⎪⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4.故a n =4n -2,则b n =12a n -30=2n -31,令⎩⎪⎨⎪⎧ b n ≤0,b n +1≥0,即⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0,解得292≤n ≤312,∵n ∈N *,∴n =15,即数列{b n }的前15项均为负值,∴T 15最小.∵数列{b n }的首项是-29,公差为2,∴T 15=15(-29+2×15-31)2=-225,∴数列{b n }的前n 项和T n 的最小值为-225.。

高中数学正弦定理和余弦定理

高中数学正弦定理和余弦定理
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
正弦定理和余弦定理 结 束
利用余弦定理解三角形 利用余弦定理可以解决的两类问题
(1)已知两边及夹角,先求第三边,再求其余两个角.
(2)已知三边,求三个内角.
[例 2] (1)在△ABC 中,已知 a-b=4,a+c=2b,且最大角
为 120°,则这个三角形的最大边等于
[例 1] (1)在△ABC 中,内角 A,B,C 的对边分别为 a,b,
c.若 asin Bcos C+csin Bcos A=12b,且 a>b,则 B=
()
A.π6
B.π3
C.23π
D.56π
[解析] 利用正弦定理的变形,得 a=2Rsin A,b=2Rsin B,
c=2Rsin C,代入 asin Bcos C+csin Bcos A=12b 中,得 2Rsin A·sin
cos B= a2+c2-b2 ____2_a_c____;
=csin B,asin C=csin A;
sin
a+b+c A+sin B+sin
C=2R
cos C= a2+b2-c2
____2_a_b_____
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
正弦定理和余弦定理 结 束
考点贯通
= 23×13+12×232=
3+2 6
2 .
由正弦定理sina A=sinc C得
c=sina
Asin
C=
3× 3
3+2 6
2=1+2
3
6 .
2
突 破 点 一 突 破 点 二 突 破 点 三 课时达标二) 利用正、余弦定理判断三角形的形状

3.2同角三角函数基本关系诱导公式(48张)

3.2同角三角函数基本关系诱导公式(48张)

(3)f(x)=cosπ-sinx·-sinx6·sπi-n xπ2+x
= cos
x-sisni2nxπ2+x=-sicno2sx2x=-tan2x,
所以f-241π=-tan2-241π=-tan2-5π-π4
=-tan2-π4=-tan2π4=-1.
返回目录
板块一
板块二
板块三
【例4】 (1)已知cos α是方程3x2-x-2=0的根,且α是第
(3)学会观察两角之间的关系,看看它们的和或差是否为π2 的整数倍.
返回目录
板块一
板块二
板块三
【例3】
(1)计算:2sin -361π +cos
12π+tan
7π 4

__________.
(2)(2016·全国卷Ⅰ)已知θ是第四象限角,且sin θ+π4 =
35,则tanθ-π4=__________.
tan(α+2kπ)=tan α,其中k∈Z.
返回目录
板块一
板块二
板块三
公式二:sin(π+α)=_-__s_in__α_,cos(π+α)=-___c_o_s_α_, tan(π+α)=___ta_n__α___. 公式三:sin(-α)=_-__s_i_n__α_,cos(-α)=__c_o_s_α__, tan(-α)=_-__t_a_n_α__. 公式四:sin(π-α)=sin α,cos(π-α)=_-__c_o_s_α_,
返回目录
板块一
板块二
板块三
解析 (1)错误.sin 120°=sin(180°-60°)=sin 60°= 23, cos 120°=cos(180°-60°)=-cos 60°=-12.
(2)错误.在tan α=csoins αα中α≠kπ+π2,k∈Z. (3)错误.对于正、余弦的诱导公式角α可以为任意角,

高考数学第68讲参数方程

高考数学第68讲参数方程

第68讲 参数方程1.参数方程一般地,在平面直角坐标系中,如果曲线上__任意一点__的坐标x ,y 都是某个变数t的函数:⎩⎪⎨⎪⎧ x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点M (x ,y )都在这条曲线上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )就叫做这条曲线的参数方程,变数t 叫做参变数,简称__参数__,相对于参数方程而言,直接给出点的坐标间关系的方程叫做__普通方程__.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =__x 0+t cos α__,y =__y 0+t sin α__(t 为参数).(2)圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =__x 0+r cos θ__,y =__y 0+r sin θ__(θ为参数).(3)①椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =__a cos φ__,y =__b sin φ__(φ为参数).②椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =__b cos φ__,y =__a sin φ__(φ为参数).1.思维辨析(在括号内打“√”或打“×”).(1)参数方程⎩⎪⎨⎪⎧x =t +1,y =2-t (t ≥1)表示直线.( × )(2)参数方程⎩⎪⎨⎪⎧x =cos θ+m ,y =sin θ-m ,当m 为参数时表示直线,当θ为参数时表示的曲线为圆.( √ )(3)直线⎩⎪⎨⎪⎧x =-2+t cos 30°,y =1+t sin 150° (t 为参数)的倾斜角α为30°.( √ ) (4)参数方程⎩⎪⎨⎪⎧x =2cos θ,y =5sin θ⎝⎛⎭⎫θ为参数,且θ∈⎣⎡⎦⎤0,π2表示的曲线为椭圆.( × )解析 (1)∵t ≥1,∴x =t +1≥2,y =2-t ≤1,故参数方程表示的曲线是直线的一部分. (2)当m 为参数时,x +y =cos θ+cos θ表示直线,当θ为参数时,(x -m )2+(y +m )2=1表示圆.(3)方程可化为⎩⎪⎨⎪⎧x =-2+t cos 30°,y =1+t cos 30°,表示直线其倾斜角为30°.(4)∵θ∈⎣⎡⎦⎤0,π2,∴x ≥0,y ≥0,方程不表示椭圆. 2.参数方程⎩⎪⎨⎪⎧x =2t 21+t 2,y =4-2t21+t2(t 为参数)化为普通方程为__3x +y -4=0(x ∈[0,2))__.解析 ∵x =2t 21+t 2,y =4-2t 21+t 2=4(1+t 2)-6t 21+t 2=4-3×2t 21+t 2=4-3x ,又x =2t 21+t 2=2(1+t 2)-21+t 2=2-21+t 2∈[0,2), ∴x ∈[0,2),∴所求的普通方程为3x +y -4=0(x ∈[0,2)).3.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θ,y =5sin θ⎝⎛⎭⎫θ为参数,0≤θ≤π2和⎩⎨⎧x =1-22t ,y =-22t (t 为参数),则曲线C 1与C 2的交点坐标为__(2,1)__.解析 由C 1得x 2+y 2=5,且⎩⎨⎧0≤x ≤5,0≤y ≤5,①由C 2得x =1+y ,②∴由①②联立⎩⎪⎨⎪⎧ x 2+y 2=5,x =1+y ,解得⎩⎪⎨⎪⎧ x =2,y =1或⎩⎪⎨⎪⎧x =-1,y =-2(舍). 4.直线⎩⎪⎨⎪⎧x =4+at ,y =bt (t 为参数)与圆⎩⎨⎧x =2+3cos θ,y =3sin θ(θ为参数)相切,则切线的倾斜角为__π3或2π3__.解析 直线的普通方程为bx -ay -4b =0,圆的普通方程为(x -2)2+y 2=3,因为直线与圆相切,则圆心(2,0)到直线的距离为3,从而有3=|2b -a ·0-4b |a 2+b 2,即3a 2+3b 2=4b 2,所以b =±3a ,而直线的倾斜角α的正切值tan α=ba ,所以tan α=±3,因此切线的倾斜角为π3或2π3. 5.在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧ x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a = 32.解析 将曲线C 1与C 2的方程化为普通方程求解.∵⎩⎪⎨⎪⎧ x =t +1,y =1-2t ,消去参数t 得2x +y -3=0, 又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1.根据题意可知C 1与x 轴交点在C 2上, 则在方程2x +y -3=0中,令y =0得x =32.将⎝⎛⎭⎫32,0代入x 2a 2+y 29=1,得94a 2=1,又a >0,∴a =32.一 参数方程与普通方程的互化将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要出现增解. 【例1】 将下列参数方程化为普通方程.(1)⎩⎨⎧x =1t,y =1tt 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数). 解析 (1)⎝⎛⎭⎫1t 2+⎝⎛⎭⎫1t t 2-12=1,∴x 2+y 2=1.∵t 2-1≥0,∴t ≥1或t ≤-1.又x =1t ,∴x ≠0.当t ≥1时,0<x ≤1,当t ≤-1时,-1≤x <0,∴所求普通方程为x 2+y 2=1,其中⎩⎪⎨⎪⎧ 0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)∵y =-1+cos 2θ=-1+1-2sin 2θ=-2sin 2θ,sin 2θ=x -2, ∴y =-2x +4,∴2x +y -4=0.∵0≤sin 2 θ≤1,∴2≤x ≤3, ∴所求的普通方程为2x +y -4=0(2≤x ≤3).二 直线与圆的参数方程及应用直线与圆的参数方程中的参数是可以具有几何意义的,如果能正确应用它,可以使问题的解决事半功倍,也可以把直线和圆的方程都普通化,再行解决.【例2】 已知曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)及曲线C 2:⎩⎨⎧x =22t -2,y =22t(t 为参数).(1)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C ′1,C ′2,写出C ′1,C ′2的参数方程.C ′1与C ′2公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由.解析 (1)C 1是圆,C 2是直线,C 1的普通方程为x 2+y 2=1, 圆心C 1(0,0),半径r =1.C 2的普通方程为x -y +2=0. 因为圆心到直线x -y +2=0的距离为1, 所以C 1与C 2只有一个公共点. (2)压缩后的参数方程分别为C ′1:⎩⎪⎨⎪⎧x =cos θ,y =12sin θ(θ为参数),C ′2:⎩⎨⎧x =22t -2,y =24t(t 为参数).化为普通方程为C ′1:x 2+4y 2=1,C ′2:y =12x +22,联立消元得2x 2+22x +1=0,其Δ=(22)2-4×2×1=0,故压缩后C ′1与C ′2仍然只有一个公共点,和C 1与C 2公共点个数相同.三 参数方程与极坐标方程的综合问题涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.【例3】 在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =-4+22t (t为参数),l 与C 分别交于点M ,N .(1)写出C 的直角坐标方程和l 的普通方程; (2)若||PM ,||MN ,||PN 成等比数列,求a 的值. 解析 (1)曲线C 的直角坐标方程为y 2=2ax (a >0); 直线l 的普通方程为x -y -2=0.(2)将直线l 的参数方程与C 的直角坐标方程联立并整理, 得t 2-2(4+a )2t +8(4+a )=0,(*)Δ=8a (4+a )>0,设点M ,N 分别对应参数t 1,t 2,则t 1,t 2恰为上述方程的两根,则|PM |=|t 1|,|PN |=|t 2|,|MN |=|t 1-t 2|.由题设得(t 1-t 2)2=|t 1t 2|,即(t 1+t 2)2-4t 1t 2=|t 1t 2|. 由(*)得t 1+t 2=2(4+a )2,t 1t 2=8(4+a )>0,则有(4+a )2-5(4+a )=0,得a =1或a =-4.因为a >0, 所以a =1.1.将下列参数方程化为普通方程.(1)⎩⎨⎧x =3k1+k 2,y =6k21+k2(k 为参数);(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数).解析 (1)两式相除,得k =y 2x ,将其代入x =3k1+k 2得x =3·y 2x 1+⎝⎛⎭⎫y 2x 2,化简得所求的普通方程是4x 2+y 2-6y =0(y ≠6). (2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ) 得y 2=2-x .又x =1-sin 2θ∈[0,2], 得所求的普通方程y 2=2-x ,x ∈[0,2].2.设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数). (1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围.解析 (1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1),所以,当直线l 经过圆C 的圆心时,直线l 的斜率为k =52.(2)由圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ得圆C 的圆心是C (1,-1),半径为2.当α≠90°时,设k =tan α,则直线l 的普通方程为y -4=k (x -3),即kx -y +4-3k =0. 当直线l 与圆C 交于两个不同的点时,圆心到直线的距离小于圆的半径,即|5-2k |k 2+1<2,解得k >2120,即直线l 的斜率的取值范围为⎝⎛⎭⎫2120,+∞. 3.(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解析 (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0,由⎩⎪⎨⎪⎧x +4y -3=0,x29+y 2=1,解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎨⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝⎛⎭⎫-2125,2425. (2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d max =a +917=17,所以a =8; 当a <-4时,d max =-a +117=17,所以a =-16. 综上,a =8或a =-16.4.已知P (x ,y )是圆x 2+y 2-2y =0上的动点. (1)求2x +y 的取值范围;(2)若x +y +c ≥0恒成立,求实数c 的取值范围. 解析 方程x 2+y 2-2y =0变形为x 2+(y -1)2=1.其参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数).(1)2x +y =2cos θ+sin θ+1=5sin (θ+φ)+1, 其中φ由sin φ=25,cos φ=15确定, ∴1-5≤2x +y ≤1+ 5. (2)若x +y +c ≥0恒成立,即c ≥-(cos θ+sin θ+1)对一切θ∈R 恒成立. ∵-(cos θ+sin θ+1)的最大值是2-1, ∴当且仅当c ≥2-1时,x +y +c ≥0恒成立.易错点 不清楚直线的参数方程中参数的几何意义错因分析:只有直线的参数方程中的参数具有几何意义,否则会导致解题错误.因此,需要牢记直线的点斜式参数方程.【例1】 已知直线l 过点P (2,0),斜率为43,直线l 和抛物线y 2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求:(1)点P ,M 两点间的距离||PM ; (2)点M 的坐标; (3)线段AB 的长.解析 (1)∵直线l 过点P (2,0),斜率为43,设直线的倾斜角为α,tan α=43,sin α=45,cos α=35,∴直线l 的参数方程为⎩⎨⎧x =2+35t ,y =45t(t 为参数).(*)∵直线l 与抛物线相交,将直线的参数方程代入抛物线方程y 2=2x 中,整理得8t 2-15t -50=0,且Δ=152+4×8×50>0,设这个一元二次方程的两个根为t 1,t 2, 由根与系数的关系,得t 1+t 2=158,t 1t 2=-254,由M 为线段AB 的中点,根据t 的几何意义, 得||PM =⎪⎪⎪⎪t 1+t 22=1516.(2)将t 中=t 1+t 22=1516代入(*)式,得M 点的坐标为⎝⎛⎭⎫4116,34.(3)||AB =||t 2-t 1=(t 1+t 2)2-4t 1t 2=5738. 【跟踪训练1】 (2018·河北衡水中学质检)在平面直角坐标系xOy 中,斜率为1的直线l 过定点P (-2,-4),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线C 的极坐标方程为ρsin 2θ-4cos θ=0.(1)求曲线C 的直角坐标方程以及直线l 的参数方程; (2)两曲线相交于M ,N 两点,求|PM |+|PN |的值. 解析 (1)由ρsin 2θ-4cos θ=0得ρ2sin 2θ-4ρcos θ=0, ∴曲线C 的直角坐标方程为y 2=4x ,直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =-4+22t (t 为参数).(2)将直线l 的参数方程代入y 2=4x ,得t 2-122t +48=0, 设M ,N 对应的参数分别为t 1,t 2,则t 1+t 2=122,t 1·t 2=48,∴|PM |+|PN |=|t 1|+|t 2|=t 1+t 2=12 2.课时达标 第68讲[解密考纲]高考中,主要涉及曲线的极坐标方程、曲线的参数方程、极坐标方程与直角坐标方程的互化、参数方程与普通方程的互化,两种不同方式的方程的互化是考查的热点,常以解答题的形式出现.1.已知曲线C 1:⎩⎪⎨⎪⎧ x =-4+cos t ,y =3+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t (t 为参数)距离的最小值.解析 (1)C 1:(x +4)2+(y -3)2=1,C 2:x 264+y 29=1.C 1是圆心为(-4,3),半径为1的圆.C 2是中心为坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.(2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M ⎝⎛⎭⎫-2+4cos θ,2+32sin θ. C 3为直线x -2y -7=0,M 到C 3的距离 d =55|4cos θ-3sin θ-13|=55|5cos(θ+φ)-13|≥855. 从而当cos θ=45,sin θ=-35时,d 取得最小值855.2.已知直线l :⎩⎨⎧x =5+32t ,y =3+12t (t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 解析 (1)ρ=2cos θ等价于ρ2=2ρcos θ,① 将ρ2=x 2+y 2,ρcos θ=x 代入①,得曲线C 的直角坐标方程为x 2+y 2-2x =0.②(2)将⎩⎨⎧x =5+32t ,y =3+12t 代入②,得t 2+53t +18=0,设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义即知|MA |·|MB |=|t 1t 2|=18.3.在极坐标系中,圆C 的圆心为C ⎝⎛⎭⎫2,π3,半径为2.以极点为原点,极轴为x 轴的正半轴,取相同的长度单位建立平面直角坐标系,直线l 的参数方程为⎩⎨⎧x =1-32t ,y =3+12t (t 为参数).(1)求圆C 的极坐标方程;(2)设l 与圆的交点为A ,B ,l 与x 轴的交点为P ,求|P A |+|PB |.解析 (1)在直角坐标系中,圆心为C (1,3),所以圆C 的方程为(x -1)2+(y -3)2=4,即x 2+y 2-2x -23y =0,化为极坐标方程得ρ2-2ρcos θ-23ρsin θ=0, 即ρ=4sin ⎝⎛⎭⎫θ+π6. (2)把⎩⎨⎧x =1-32t ,y =3+12t 代入x 2+y 2-2x -23y =0,得t 2=4,所以点A ,B 对应的参数分别为t 1=2,t 2=-2.令3+12t =0得点P 对应的参数为t 0=-2 3.所以|P A |+|PB |=|t 1-t 0|+|t 2-t 0|=|2+23|+|-2+23|=2+23+(-2+23)=4 3.4.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =cos α,y =m +sin α(α为参数),直线l 的参数方程为⎩⎨⎧x =1+55t ,y =4+255t (t 为参数).(1)求曲线C 与直线l 的普通方程;(2)若直线l 与曲线C 相交于P ,Q 两点,且|PQ |=455,求实数m 的值.解析 (1)由⎩⎪⎨⎪⎧ x =cos α,y =m +sin α得⎩⎪⎨⎪⎧x =cos α, ①y -m =sin α, ② ①2+②2得曲线C 的普通方程为x 2+(y -m )2=1.由x =1+55t ,得55t =x -1,代入y =4+255t ,得y =4+2(x -1), 所以直线l 的普通方程为y =2x +2.(2)圆心(0,m )到直线l 的距离为d =|-m +2|5, 所以⎝⎛⎭⎪⎫|-m +2|52+⎝⎛⎭⎫2552=1,解得m =3或m =1. 5.(2016·全国卷Ⅲ)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求||PQ 的最小值及此时P 的直角坐标.解析 (1)C 1的普通方程为x 23+y 2=1, C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 6.(2017·江苏卷)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t 2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.解析 直线l 的普通方程为x -2y +8=0.因为点P 在曲线C 上,设P (2s 2,22s ),从而点P 到直线l 的距离d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45. 当s =2时,d min =455. 因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 的距离取得最小值455.。

高考数学江苏专版三维二轮专题复习教学案:专题八-二项式定理与数学归纳法(理科)-含答案

江苏新高考本部分内容在高考中基本年年都考,并以压轴题形式考查. ,主要考查组合计数;考复合函数求导和数学归纳法;考查计数原理为主,又涉及到数学归纳法;考查组合数及其性质等基础知识,考查考生的运算求解能力和推理论证能力;考查概率分布与期望及组合数的性质,既考查运算能力,又考查思维能力.近年高考对组合数的性质要求较高,常与数列、函数、不等式、数学归纳法等知识交汇考查.第1课时计数原理与二项式定理(能力课)[常考题型突破]计数原理的应用[例1]{1,2,3,…,3n}的子集中所有“好集”的个数为f(n).(1)求f(1),f(2)的值;(2)求f(n)的表达式.[解](1)①当n=1时,集合{1,2,3}中的一元好集有{3},共1个;二元好集有{1,2},共1个;三元好集有{1,2,3},共1个,所以f(1)=1+1+1=3.②当n=2时,集合{1,2,3,4,5,6}中一元好集有{3},{6},共2个;二元好集有{1,2},{1,5},{2,4},{3,6},{4,5},共5个;三元好集有{1,2,3},{1,2,6},{1,3,5},{1,5,6},{4,2,3},{4,2,6},{4,3,5},{4,5,6},共8个;四元好集有{3,4,5,6},{2,3,4,6},{1,3,5,6},{1,2,3,6},{1,2,4,5},共5个;五元好集有{1,2,4,5,6},{1,2,3,4,5}共2个,还有一个全集.故f(2)=1+(2+5)×2+8=23.(2)首先考虑f(n+1)与f(n)的关系.集合{1,2,3,…,3n,3n+1,3n+2,3n+3}在集合{1,2,3,…,3n}中加入3个元素3n+1,3n +2,3n+3.故f(n+1)的组成有以下几部分:①原来的f(n)个集合;②含有元素3n +1的“好集”是{1,2,3,…,3n }中各元素之和被3除余2的集合, 含有元素是3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合, 含有元素是3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合. 合计是23n ;③含有元素是3n +1与3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合,含有元素是3n +2与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合,含有元素是3n +1与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余2的集合.合计是23n ;④含有元素是3n +1,3n +2,3n +3的“好集”是{1,2,3,…,3n }中“好集”与它的并,再加上{3n +1,3n +2,3n +3}.所以f (n +1)=2f (n )+2×23n +1. 两边同除以2n +1, 得f (n +1)2n +1-f (n )2n =4n +12n +1. 所以f (n )2n =4n -1+4n -2+…+4+12n +12n -1+…+122+32=4n -13+1-12n (n ≥2).又f (1)21也符合上式, 所以f (n )=2n (4n -1)3+2n-1.[方法归纳](1)深化对两个计数原理的认识,培养“全局分类”和“局部分步”的意识,并在操作中确保:①分类不重不漏;②分步要使各步具有连续性和性. 解决计数应用题的基本思想是“化归”,即由实际问题建立组合模型,再由组合数公式来计算其结果,从而解决实际问题.(2)本题是有关数论问题,其难度较大,求解关键是得出f (n +1)与f (n )的关系,求解中用到归纳法和分类讨论思想.(·苏北三市三模)已知集合U ={1,2,…,n }(n ∈N *,n ≥2),对于集合U 的两个非空子集A ,B ,若A ∩B =∅,则称(A ,B )为集合U 的一组“互斥子集”.记集合U 的所有“互斥子集”的组数为f (n )(视(A ,B )与(B ,A )为同一组“互斥子集”).(1)写出f (2),f (3),f (4)的值; (2)求f (n ).解:(1)f (2)=1,f (3)=6,f (4)=25.(2)法一:设集合A 中有k 个元素,k =1,2,3,…,n -1. 则与集合A 互斥的非空子集有2n -k -1个. 于是f (n )=12∑k =1n -1C k n (2n -k -1)=12(∑k =1n -1C k n 2n -k -∑k =1n -1C kn ).因为∑k =1n -1C k n 2n -k =∑k =0nC k n 2n -k -C 0n 2n -C n n 20=(2+1)n -2n -1=3n -2n-1,∑k =1n -1C k n =∑k =0n C k n -C 0n -C n n =2n -2, 所以f (n )=12[(3n -2n -1)-(2n -2)]=12(3n -2n +1+1).法二:任意一个元素只能在集合A ,B ,C =∁U (A ∪B )之一中, 则这n 个元素在集合A ,B ,C 中,共有3n 种, 其中A 为空集的种数为2n ,B 为空集的种数为2n , 所以A ,B 均为非空子集的种数为3n -2×2n +1. 又(A ,B )与(B ,A )为同一组“互斥子集”, 所以f (n )=12(3n -2n +1+1).二项式定理的应用[例2] (·--(1)求(1+x )2n-1的展开式中含x n 的项的系数,并化简:C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n ;(2)证明:(C 1n )2+2(C 2n )2+…+n (C n n )2=n C n 2n -1.[解] (1)(1+x )2n-1的展开式中含x n 的项的系数为C n 2n -1,由(1+x )n -1(1+x )n =(C 0n -1+C 1n -1x +…+C n -1n -1x n -1)·(C 0n +C 1n x +…+C n nx n ), 可知(1+x )n -1(1+x )n 的展开式中含x n 的项的系数为C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n . 所以C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n =C n 2n -1.(2)证明:当k ∈N *时,k C k n =k ×n !k !(n -k )!=n !(k -1)!(n -k )!=n ×(n -1)!(k -1)!(n -k )!=n C k -1n -1.所以(C 1n )2+2(C 2n )2+…+n (C n n )2=∑k =1n[k (C k n )2]=∑k =1n (k C k n C k n )=∑k =1n (n C k -1n -1C kn )=n ∑k =1n(C k -1n -1C k n )=n ∑k =1n(C n -k n -1C kn ).由(1)知C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n =C n 2n -1,即∑k =1n(C n -k n -1C k n )=C n 2n -1,所以(C 1n )2+2(C 2n )2+…+n (C n n )2=n C n 2n -1.[方法归纳]二项式定理中的应用主要是构造一个生成相应二项式系数的函数,通过研究函数关系证明恒等式、不等式和整除性问题.将二项式定理(a +b )n =C\o\al(0,n )a n +C\o\al(1,n )a n -1b +…+C\o\al(r ,n )a n -r b r +…+C\o\al(n ,n )b n 中的a ,b 进行特殊化就会得到很多有用的有关组合数的相关和的结果,这是研究有关组合数的和的问题的常用方法.还可以利用求函数值的思想进行赋值求解.(·南京、盐城一模)设n ∈N *,n ≥3,k ∈N *.(1)求值:①k C k n -n C k -1n -1;②k 2C k n -n (n -1)C k -2n -2-n C k -1n -1(k ≥2);(2)化简:12C 0n +22C 1n +32C 2n +…+(k +1)2C k n +…+(n +1)2C n n . 解:(1)①k C k n -n C k -1n -1=k ×n !k !(n -k )!-n ×(n -1)!(k -1)!(n -k )!=n !(k -1)!(n -k )!-n !(k -1)!(n -k )!=0.②k 2C k n -n (n -1)C k -2n -2-n C k -1n -1=k 2×n !k !(n -k )!-n (n -1)×(n -2)!(k -2)!(n -k )!-n ×(n -1)!(k -1)!(n -k )!=k ×n !(k -1)!(n -k )!-n !(k -2)!(n -k )!-n !(k -1)!(n -k )!=n !(k -2)!(n -k )!⎝⎛⎭⎫k k -1-1-1k -1=0.(2)法一:由(1)可知,当k ≥2时,(k +1)2C k n =(k 2+2k +1)C k n =k 2C kn +2k C k n +C k n =[n (n -1)C k -2n -2+n C k -1n -1]+2n C k -1n -1+C k n =n (n -1)C k -2n -2+3n C k -1n -1+C k n .故12C 0n +22C 1n +32C 2n +…+(k +1)2C k n +…+(n +1)2C n n =(12C 0n +22C 1n )+n (n -1)(C 0n -2+C 1n -2+…+C n -2n -2)+3n (C 1n -1+C 2n -1+…+C n -1n -1)+(C 2n +C 3n +…+C n n)=(1+4n )+n (n -1)2n -2+3n (2n -1-1)+(2n -1-n )=2n -2(n 2+5n +4).法二:当n ≥3时,由二项式定理,有(1+x )n =1+C 1n x +C 2n x 2+…+C k n x k +…+C n n x n , 两边同乘以x ,得(1+x )n x =x +C 1n x 2+C 2n x 3+…+C k n x k +1+…+C n n xn +1, 两边对x 求导,得(1+x )n +n (1+x )n -1x =1+2C 1n x +3C 2n x 2+…+(k +1)C k n x k +…+(n +1)C n n x n,两边再同乘以x ,得(1+x )n x +n (1+x )n -1x 2=x +2C 1n x 2+3C 2n x 3+…+(k +1)C k n xk +1+…+(n +1)C n n xn +1, 两边再对x 求导,得(1+x )n +n (1+x )n -1x +n (n -1)(1+x )n -2x 2+2n (1+x )n -1x =1+22C 1n x +32C 2n x 2+…+(k +1)2C k n x k +…+(n +1)2C n n x n.令x =1,得2n +n ·2n -1+n (n -1)2n -2+2n 2n -1=1+22C 1n +32C 2n +…+(k +1)2C kn +…+(n+1)2C n n ,即12C 0n +22C 1n +32C 2n +…+(k +1)2C k n +…+(n +1)2C n n =2n -2(n 2+5n +4).组合数的性质应用[例3] (·苏北四市调研)在杨辉三角形中,从第3行开始,除1以外,其他每一个数值是它上面的两个数值之和,这个三角形数阵开头几行如图所示.(1)在杨辉三角形中是否存在某一行,且该行中三个相邻的数之比为3∶4∶5?若存在,试求出是第几行;若不存在,请说明理由;(2)已知n ,r 为正整数,且n ≥r +3.求证:任何四个相邻的组合数C r n ,C r +1n ,C r +2n ,C r +3n不能构成等差数列.[解] (1)杨辉三角形的第n 行由二项式系数C k n , k =0,1,2,…,n 组成.如果第n 行中有C k -1nC k n =k n -k +1=34,C k nC k +1n=k +1n -k =45, 那么3n -7k =-3,4n -9k =5, 解得k =27,n =62.即第62行有三个相邻的数C 2662,C 2762,C 2862的比为3∶4∶5. (2)证明:若有n ,r (n ≥r +3),使得C r n ,C r +1n ,C r +2n ,C r +3n 成等差数列,则2C r +1n =C r n +C r +2n ,2C r +2n =C r +1n +C r +3n ,即2n !(r +1)!(n -r -1)!=n !r !(n -r )!+n !(r +2)!(n -r -2)!,2n !(r +2)!(n -r -2)!=n !(r +1)!(n -r -1)!+n !(r +3)!(n -r -3)!.所以有2(r +1)(n -r -1)=1(n -r -1)(n -r )+1(r +1)(r +2),2(r +2)(n -r -2)=1(n -r -2)(n -r -1)+1(r +2)(r +3),化简整理得,n 2-(4r +5)n +4r (r +2)+2=0, n 2-(4r +9)n +4(r +1)(r +3)+2=0. 两式相减得,n =2r +3,于是C r 2r +3,C r +12r +3,C r +22r +3,C r +32r +3成等差数列.而由二项式系数的性质可知C r 2r +3=C r +32r +3<C r +12r +3=C r +22r +3,这与等差数列的性质矛盾,从而要证明的结论成立.[方法归纳](1)对于组合数问题,需要熟记并能灵活运用以下两个组合数公式:C k n =C n -k n ,C k n +1=C k n+C k -1n .(2)对于二项式定理问题,需掌握赋值法和二项式系数的性质,并能将二项式系数与二项展开式系数区别开来.设(1-x )n =a 0+a 1x +a 2x 2+…+a n x n ,n ∈N *,n ≥2. (1)若n =11,求|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|的值;(2)设b k =k +1n -k a k +1(k ∈N ,k ≤n -1),S m =b 0+b 1+b 2+…+b m (m ∈N ,m ≤n -1),求⎪⎪⎪⎪S m C m n -1的值.解:(1)因为a k =(-1)k C k n ,当n =11时,|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|=C 611+C 711+C 811+C 911+C 1011+C 1111=12(C 011+C 111+…+C 1011+C 1111)=210=1 024. (2)b k =k +1n -k a k +1=(-1)k +1k +1n -k C k +1n =(-1)k +1C k n , 当1≤k ≤n -1时, b k =(-1)k +1C k n =(-1)k+1()C k n -1+C k -1n -1=(-1)k +1C k -1n -1+(-1)k +1C k n -1 =(-1)k -1C k -1n -1-(-1)k C k n -1.当m =0时,⎪⎪⎪⎪S m C m n -1=⎪⎪⎪⎪b 0C 0n -1=1.当1≤m ≤n -1时,S m =-1+∑k =1m[(-1)k -1C k -1n -1-(-1)k C k n -1]=-1+1-(-1)m C m n -1=-(-1)m C m n -1, 所以⎪⎪⎪⎪S mC m n -1=1.综上,⎪⎪⎪⎪S mC m n -1=1.[课时达标训练]1.设集合A ,B 是非空集合M 的两个不同子集,满足:A 不是B 的子集,且B 也不是A 的子集.(1)若M ={a 1,a 2,a 3,a 4},直接写出所有不同的有序集合对(A ,B )的个数; (2)若M ={a 1,a 2,a 3,…,a n },求所有不同的有序集合对(A ,B )的个数. 解:(1)110.(2)集合M 有2n 个子集,不同的有序集合对(A ,B )有2n (2n -1)个. 当A ⊆B ,并设B 中含有k (1≤k ≤n ,k ∈N *)个元素,则满足A ⊆B 的有序集合对(A ,B )有∑k =1nC k n (2k-1)=∑k =0nC k n 2k -∑k =0nC k n =3n -2n个. 同理,满足B ⊆A 的有序集合对(A ,B )有3n -2n 个.故满足条件的有序集合对(A ,B )的个数为2n (2n -1)-2(3n -2n )=4n +2n -2×3n . 2.(·南京、盐城二模)现有n (n +1)2(n ≥2,n ∈N *)个给定的不同的数随机排成一个下图所示的三角形数阵:******………………………………**…………**…………第1行…………第2行…………第3行…………第n 行设M k 是第k 行中的最大数,其中1≤k ≤n ,k ∈N *.记M 1<M 2<…<M n 的概率为p n . (1)求p 2的值; (2)证明:p n >C 2n +1(n +1)!.解:(1)由题意知p 2=2A 22A 33=23,即p 2的值为23.(2)证明:先排第n 行,则最大数在第n 行的概率为n n (n +1)2=2n +1;去掉第n 行已经排好的n 个数,则余下的n (n +1)2-n =n (n -1)2个数中最大数在第n -1行的概率为n -1n (n -1)2=2n;…故p n =2n +1×2n×…×23=2n -1(n +1)×n ×…×3=2n(n +1)!.由于2n =(1+1)n =C 0n +C 1n +C 2n +…+C n n ≥C 0n +C 1n +C 2n >C 1n +C 2n =C 2n +1,故2n (n +1)!>C 2n +2(n +1)!,即p n >C 2n +1(n +1)!. 3.记1,2,…,n 满足下列性质T 的排列a 1,a 2,…,a n 的个数为f (n )(n ≥2,n ∈N *).性质T :排列a 1,a 2,…,a n 中有且只有一个a i >a i +1(i ∈{1,2,…,n -1}).(1)求f (3); (2)求f (n ).解:(1)当n =3时,1,2,3的所有排列有(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),其中满足仅存在一个i ∈{1,2,3},使得a i >a i +1的排列有(1,3,2),(2,1,3),(2,3,1),(3,1,2),所以f (3)=4.(2)在1,2,…,n 的所有排列(a 1,a 2,…,a n )中,若a i =n (1≤i ≤n -1),从n -1个数1,2,3,…,n -1中选i -1个数按从小到大的顺序排列为a 1,a 2,…,a i -1,其余按从小到大的顺序排列在余下位置,于是满足题意的排列个数为C i -1n -1.若a n =n ,则满足题意的排列个数为f (n -1). 综上,f (n )=f (n -1)+∑i =1n -1C i -1n -1=f (n -1)+2n -1-1.从而f (n )=23(1-2n -3)1-2-(n -3)+f (3)=2n -n -1.4.(·江苏高考)(1)求7C 36-4C 47的值;(2)设m ,n ∈N *,n ≥m ,求证:(m +1)C m m +(m +2)·C m m +1+(m +3)C m m +2+…+n C mn -1+(n +1)C m n =(m +1)C m +2n +2.解:(1)7C 36-4C 47=7×6×5×43×2×1-4×7×6×5×44×3×2×1=0. (2)证明:当n =m 时,结论显然成立.当n >m 时,(k +1)C mk =(k +1)·k !m !·(k -m )!=(m +1)·(k +1)!(m +1)!·[(k +1)-(m +1)]!=(m +1)C m +1k +1,k =m +1,m +2,…,n . 又因为C m +1k +1+C m +2k +1=C m +2k +2,所以(k +1)C m k =(m +1)(C m +2k +2-C m +2k +1),k =m +1,m +2,…,n .因此,(m +1)C m m +(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C m n =(m +1)C m m +[(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C mn ]=(m +1)C m +2m +2+(m +1)[(C m +2m +3-C m +2m +2)+(C m +2m +4-C m +2m +3)+…+(C m +2n +2-C m +2n +1)] =(m +1)C m +2n +2.5.设a n 是满足下述条件的自然数的个数:各数位上的数字之和为n (n ∈N *),且每个数位上的数字只能是1或2.(1)求a 1,a 2,a 3,a 4的值; (2)求证:a 5n -1(n ∈N *)是5的倍数.解:(1)当n =1时,只有自然数1满足题设条件,所以a 1=1; 当n =2时,有11,2两个自然数满足题设条件,所以a 2=2; 当n =3时,有111,21,12三个自然数满足题设条件,所以a 3=3; 当n =4时,有1 111,112,121,211,22五个自然数满足题设条件,所以a 4=5. 综上所述,a 1=1,a 2=2,a 3=3,a 4=5.(2)证明:设自然数X 的各位数字之和为n +2,由题设可知,X 的首位为1或2两种情形.当X 的首位为1时,则其余各位数字之和为n +1.故首位为1,各位数字之和为n +2的自然数的个数为a n +1; 当X 的首位为2时,则其余各位数字之和为n .故首位为2,各位数字之和为n +2的自然数的个数为a n .所以各位数字之和为n +2的自然数的个数为a n +1+a n ,即a n +2=a n +1+a n . 下面用数学归纳法证明a 5n -1是5的倍数.①当n =1时,a 4=5,所以a 4是5的倍数,命题成立; ②假设n =k (k ≥1,n ∈N *)时,命题成立,即a 5k -1是5的倍数. 则a 5k +4=a 5k +3+a 5k +2 =2a 5k +2+a 5k +1 =2(a 5k +1+a 5k )+a 5k +1 =3a 5k +1+2a 5k =3(a 5k +a 5k -1)+2a 5k=5a 5k +3a 5k -1.因为5a 5k +3a 5k -1是5的倍数,即a 5k +4是5的倍数.所以n =k +1时,命题成立. 由①②可知,a 5n -1(n ∈N *)是5的倍数.6.(·常州期末)对一个量用两种方法分别算一次,由结果相同构造等式,这种方法称为“算两次”的思想方法.利用这种方法,结合二项式定理,可以得到很多有趣的组合恒等式.如:考察恒等式(1+x )2n =(1+x )n (1+x )n (n ∈N *),左边x n 的系数为C n 2n ,而右边(1+x )n(1+x )n =(C 0n +C 1n x +…+C n n x n )(C 0n +C 1n x +…+C n n x n ),x n 的系数为C 0n C n n + C 1n C n -1n +…+C n n C 0n =(C 0n )2+(C 1n )2+(C 2n )2+…+(C n n )2,因此可得到组合恒等式C n 2n =(C 0n )2+(C 1n )2+(C 2n )2+…+(C n n )2.(1)根据恒等式(1+x )m +n =(1+x )m (1+x )n (m ,n ∈N *),两边x k (其中k ∈N ,k ≤m ,k ≤n )的系数相同,直接写出一个恒等式;(2)利用算两次的思想方法或其他方法证明:第2课时数学归纳法(能力课)[常考题型突破]用数学归纳法证明等式[例1] (·苏锡常镇一模)设|θ|<π2,n 为正整数,数列{a n }的通项公式a n =sin n π2tan n θ,其前n 项和为S n .(1)求证:当n 为偶数时,a n =0;当n 为奇数时,a n =(-1)n -12tan nθ;(2)求证:对任何正整数n ,S 2n =12sin 2θ·[1+(-1)n +1tan 2n θ].[证明] (1)因为a n =sin n π2tan n θ.当n 为偶数时,设n =2k ,k ∈N *,a n =a 2k =sin 2k π2tan 2k θ=sin k π·tan 2k θ=0,a n =0.当n 为奇数时,设n =2k -1,k ∈N *,a n =a 2k -1=sin (2k -1)π2tan n θ=sin ⎝⎛⎭⎫k π-π2·tan nθ. 当k =2m ,m ∈N *时,a n =a 2k -1=sin ⎝⎛⎭⎫2m π-π2·tan n θ=sin ⎝⎛⎭⎫-π2·tan n θ=-tan nθ, 此时n -12=2m -1,a n =a 2k -1=-tan n θ=(-1)2m -1tan n θ=(-1)n -12tan n θ.当k =2m -1,m ∈N *时,a n =a 2k -1=sin ⎝⎛⎭⎫2m π-3π2·tan n θ=sin ⎝⎛⎭⎫-3π2·tan n θ=tan nθ, 此时n -12=2m -2,a n =a 2k -1=tan n θ=(-1)2m -2·tan n θ=(-1)n -12tan n θ.综上,当n 为偶数时,a n =0;当n 为奇数时,a n =(-1)n -12tan nθ.(2)当n =1时,由(1)得,S 2=a 1+a 2=tan θ, 等式右边=12sin 2θ(1+tan 2θ)=sin θ·cos θ·1cos 2θ=tan θ.故n =1时,命题成立,假设n =k (k ∈N *,k ≥1)时命题成立,即S 2k =12sin 2θ·[1+(-1)k +1tan 2k θ].当n =k +1时,由(1)得:S 2(k +1)=S 2k +a 2k +1+a 2k +2=S 2k +a 2k +1=12sin 2θ·[]1+(-1)k +1tan 2k θ+(-1)k tan 2k +1θ=12sin 2θ·1+(-1)k +1tan 2k θ+(-1)k ·2sin 2θtan 2k +1θ=12sin 2θ·1+(-1)k +2·tan 2k +2θ·-1tan 2θ +2sin 2θtan θ=12sin 2θ·1+(-1)k +2·tan 2k +2θ·⎝⎛⎭⎫-cos 2θsin 2θ+1sin 2θ =12sin 2θ·[1+(-1)k +2·tan 2k +2θ ]. 即当n =k +1时命题成立.综上所述,对任何正整数n ,S 2n =12sin 2θ·[1+(-1)n +1tan 2n θ].[方法归纳](1)用数学归纳法证明等式问题是常见题型,其关键点在于弄清等式两边的构成规律,等式两边各有多少项,以及初始值n 0的值.(2)由n =k 到n =k +1时,除考虑等式两边变化的项外还要充分利用n =k 时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.(·扬州期末)已知F n (x )=(-1)0C 0n ,f 0(x )+(-1)1C 1n f 1(x )+…+(-1)n C n n f n (x )(n ∈N *,x >0),其中f i (x )(i ∈{0,1,2,…,n })是关于x 的函数. (1)若f i (x )=x i (i ∈N),求F 2(1),F 2 017(2)的值; (2)若f i (x )=xx +i (i ∈N),求证:F n (x )=n !(x +1)(x +2)·…·(x +n )(n ∈N *). 解:(1)因为f i (x )=x i (i ∈N),所以F n (x )=(-1)0C 0n x 0+(-1)1C 1n x 1+…+(-1)n C n n x n =(1-x )n ,所以F 2(1)=0, F 2 017(2)=(1-2)2 017=-1.(2)证明:因为f i (x )=xx +i(x >0,i ∈N), 所以F n (x )=(-1)0C 0n f 0(x )+(-1)1C 1n f 1(x )+…+(-1)n C n n f n (x )=∑i =0n⎣⎡⎦⎤(-1)i C i n x x +i (n ∈N *). ①当n =1时,F n (x )=∑i =0n =1⎣⎡⎦⎤(-1)i C i 1x x +i =1-x x +1=1x +1,所以n =1时结论成立.②假设n =k (k ∈N *)时结论成立, 即F k (x )=∑i =0k ⎣⎡⎦⎤(-1)i C i k xx +i=k !(x +1)(x +2)·…·(x +k ),则n =k +1时,F k +1(x )=∑i =0k +1 ⎣⎡⎦⎤(-1)i C i k +1x x +i=1+∑i =1k⎣⎡⎦⎤(-1)i C i k +1x x +i +(-1)k +1C k +1k +1x x +k +1 =1+∑i =1k ⎣⎡⎦⎤(-1)i (C i k +C i -1k )x x +i +(-1)k +1·C k +1k +1x x +k +1 =∑i =0k⎣⎡⎦⎤(-1)i C i k x x +i +∑i =1k +1 ⎣⎡⎦⎤(-1)i C i -1k x x +i =F k (x )-∑i =1k +1 ⎣⎡⎦⎤(-1)i -1C i -1k x x +i=F k (x )-∑i =0k ⎣⎡⎦⎤(-1)i C i k xx +i +1=F k (x )-∑i =0k⎣⎢⎡⎦⎥⎤(-1)i C ikx +1x +i +1·x x +1=F k (x )-x x +1F k (x +1)=k !(x +1)(x +2)·…·(x +k )-k !(x +2)(x +3)…(x +1+k )·xx +1=(x +1+k )·k !-x ·k !(x +1)(x +2)…(x +k )(x +1+k )=(k +1)!(x +1)(x +2)(x +3)…(x +1+k ),所以n =k +1时,结论也成立. 综合①②可知,F n (x )=n !(x +1)(x +2)…(x +n )(n ∈N *).用数学归纳法证明不等式[例2] (·南京模拟)已知数列{a n }满足a n =3n -2,函数f (n )=1a 1+1a 2+…+1a n,g (n )=f (n 2)-f (n -1),n ∈N *.(1) 求证:g (2)>13;(2) 求证:当n ≥3时,g (n )>13.[证明] (1)由题意知,a n =3n -2,g (n )=1a n +1a n +1+1a n +2+…+1a n 2,当n =2时,g (2)=1a 2+1a 3+1a 4=14+17+110=69140>13.故结论成立.(2)用数学归纳法证明: ①当n =3时,g (3)=1a 3+1a 4+1a 5+…+1a 9=17+110+113+116+119+122+125=17+⎝⎛⎭⎫110+113+116+⎝⎛⎭⎫119+122+125>18+⎝⎛⎭⎫116+116+116+⎝⎛⎭⎫132+132+132=18+316+332>18+316+116>13, 所以当n =3时,结论成立.②假设当n =k (k ≥3,k ∈N *)时,结论成立, 即g (k )>13,则当n =k +1时,g (k +1)=g (k )+1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+2k +13(k +1)2-2-13k -2 =13+(2k +1)(3k -2)-[3(k +1)2-2][3(k +1)2-2](3k -2)=13+3k 2-7k -3[3(k +1)2-2](3k -2), 由k ≥3可知,3k 2-7k -3>0,即g (k +1)>13.所以当n =k +1时,结论也成立. 综合①②可得,当n ≥3时,g (n )>13.[方法归纳](1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k (k ∈N *)成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等证明.设实数a 1,a 2,…,a n 满足a 1+a 2+…+a n =0,且|a 1|+|a 2|+…+|a n |≤1(n ∈N *且n ≥2),令b n =a n n (n ∈N *).求证:|b 1+b 2+…+b n |≤12-12n(n ∈N *).证明:(1)当n =2时,a 1=-a 2, 所以|a 1|+|a 2|=2|a 1|≤1,即|a 1|≤12,所以|b 1+b 2|=⎪⎪⎪⎪a 1+a 22=|a 1|2≤14=12-12×2, 即当n =2时,结论成立.(2)假设当n =k (k ∈N *且k ≥2)时,结论成立,即当a 1+a 2+…+a k =0,且|a 1|+|a 2|+…+|a k |≤1时,有|b 1+b 2+…+b k |≤12-12k .则当n =k +1时,由a 1+a 2+…+a k +a k +1=0, 且|a 1|+|a 2|+…+|a k +1|≤1,可得2|a k +1|=|a 1+a 2+…+a k |+|a k +1|≤|a 1|+|a 2|+…+|a k +1|≤1, 所以|a k +1|≤12.又a 1+a 2+…+a k -1+(a k +a k +1)=0,且|a 1|+|a 2|+…+|a k -1|+|a k +a k +1|≤|a 1|+|a 2|+…+|a k +1|≤1,由假设可得⎪⎪⎪⎪b 1+b 2+…+b k -1+a k +a k +1k ≤12-12k ,所以|b 1+b 2+…+b k +b k +1| =⎪⎪⎪⎪⎪⎪b 1+b 2+…+b k -1+a k k +a k +1k +1=⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫b 1+b 2+…+b k -1+a k +a k +1k +⎝ ⎛⎭⎪⎫a k +1k +1-a k +1k ≤12-12k +⎪⎪⎪⎪⎪⎪a k +1k +1-a k +1k =12-12k +⎝⎛⎭⎫1k -1k +1|a k +1|≤12-12k +⎝⎛⎭⎫1k -1k +1×12 =12-12(k +1), 即当n =k +1时,结论成立. 综合(1)(2)可知,结论成立.归纳、猜想、证明[例3] (·n n n k C k n (x -k )n +…+(-1)n C nn (x -n )n ,其中x ∈R ,n ∈N *,k ∈N ,k ≤n .(1)试求f 1(x ),f 2(x ),f 3(x )的值;(2)试猜测f n (x )关于n 的表达式,并证明你的结论.[解] (1)f 1(x )=C 01x -C 11(x -1)=x -x +1=1;f 2(x )=C 02x 2-C 12(x -1)2+C 22(x -2)2=x 2-2(x 2-2x +1)+(x 2-4x +4)=2; f 3(x )=C 03x 3-C 13(x -1)3+C 23(x -2)3-C 33(x -3)3=x 3-3(x -1)3+3(x -2)3-(x -3)3=6. (2)猜测:f n (x )=n !. 而k Ckn=k ·n !k !(n -k )!=n !(k -1)!(n -k )!,n Ck -1n -1=n ·(n -1)!(k -1)!(n -k )!=n !(k -1)!(n -k )!,所以k C k n =n C k -1n -1.用数学归纳法证明结论成立.①当n =1时,f 1(x )=1,所以结论成立.②假设当n =k 时,结论成立,即f k (x )=C 0k x k -C 1k (x -1)k +…+(-1)k C k k (x -k )k =k !. 则当n =k +1时,f k +1(x )=C 0k +1x k +1-C 1k +1(x -1)k +1+…+(-1)k +1C k +1k +1(x -k -1)k +1 =C 0k +1x k +1-C 1k +1(x -1)k (x -1)+…+(-1)k C k k +1(x -k )k (x -k )+(-1)k +1C k +1k +1(x -k -1)k +1 =x [C 0k +1x k -C 1k +1(x -1)k +…+(-1)k C k k +1(x -k )k ]+[C 1k +1(x -1)k -2C 2k +1(x -2)k …+(-1)k +1k C k k +1(x -k )k ]+(-1)k +1C k +1k +1(x -k -1)k +1 =x [C 0k x k -(C 1k +C 0k )(x -1)k +…+(-1)k (C k k +C k -1k )(x -k )k ]+(k +1)[(x -1)k -C 1k (x -2)k …+(-1)k +1C k -1k (x -k )k ]+(-1)k +1C k +1k +1(x -k -1)k (x -k -1)=x[C0k x k-C1k(x-1)k+…+(-1)k C k k(x-k)k]-x[C0k(x-1)k+…+(-1)k-1C k-1(x-k)k]+(kk+1)[(x-1)k-C1k(x-2)k…+(-1)k+1C k-1(x-k)k]+x(-1)k+1C k k(x-k-1)k-(k+1)(-1)k+1(x-kk-1)k=x[C0k x k-C1k(x-1)k+…+(-1)k C k k(x-k)k]-x[C0k(x-1)k+…+(-1)k-1C k-1(x-k)k+(-k(x-k)k+(-1)k(x-k-1)k C k k(x-k-1)k]+(k+1)[C0k(x-1)k-C1k(x-2)k+…+(-1)k-1C k-1k1)k].(*)由归纳假设知(*)式等于x·k!-x·k!+(k+1)·k!=(k+1)!.所以当n=k+1时,结论也成立.综合①②,f n(x)=n!成立.[方法归纳]利用数学归纳法可以探索与正整数n有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.解“归纳—猜想—证明”题的关键是准确计算出前若干具体项,这是归纳、猜想的基础.否则将会做大量无用功.(·盐城模拟)记f(n)=(3n+2)(C22+C23+C24+…+C2n)(n≥2,n∈N*).(1)求f(2),f(3),f(4)的值;(2)当n≥2,n∈N*时,试猜想所有f(n)的最大公约数,并证明.解:(1)因为f(n)=(3n+2)(C22+C23+C24+…+C2n)=(3n+2)C3n+1,所以f(2)=8,f(3)=44,f(4)=140.(2)证明:由(1)中结论可猜想所有f(n)的最大公约数为4.下面用数学归纳法证明所有的f(n)都能被4整除即可.①当n=2时,f(2)=8能被4整除,结论成立;②假设n=k (k≥2,k∈N*)时,结论成立,即f(k)=(3k+2)C3k+1能被4整除,则当n=k+1时,f(k+1)=(3k+5)C3k+2=(3k+2)C3k+2+3C3k+2=(3k+2)(C3k+1+C2k+1)+(k+2)C2k+1=(3k+2)C3k+1+(3k+2)C2k+1+(k+2)C2k+1=(3k+2)C3k+1+4(k+1)C2k+1,此式也能被4整除,即n=k+1时结论也成立.综上所述,所有f(n)的最大公约数为4.[课时达标训练]1.(·南通三模)已知函数f 0(x )=cx +dax +b(a ≠0,bc -ad ≠0).设f n (x )为f n -1(x )的导数,n ∈N *.(1)求f 1(x ),f 2(x );(2)猜想f n (x )的表达式,并证明你的结论. 解:(1)f 1(x )=f 0′(x )=⎝ ⎛⎭⎪⎫cx +d ax +b ′=bc -ad (ax +b )2,f 2(x )=f 1′(x )=⎣⎢⎡⎦⎥⎤bc -ad (ax +b )2′=-2a (bc -ad )(ax +b )3. (2)猜想f n (x )=(-1)n -1·a n -1·(bc -ad )·n !(ax +b )n +1,n ∈N *. 证明:①当n =1时,由(1)知结论成立, ②假设当n =k (k ∈N *且k ≥1)时结论成立, 即有f k (x )=(-1)k -1·a k -1·(bc -ad )·k !(ax +b )k +1. 当n =k +1时,f k +1(x )=f k ′(x )=⎣⎢⎡⎦⎥⎤(-1)k -1·a k -1·(bc -ad )·k !(ax +b )k +1′ =(-1)k -1·a k -1·(bc -ad )·k ![(ax +b )-(k +1)]′=(-1)k ·a k ·(bc -ad )·(k +1)!(ax +b )k +2. 所以当n =k +1时结论成立.由①②得,对一切n ∈N *结论都成立.2.(·镇江模拟)证明:对一切正整数n,5n +2·3n -1+1都能被8整除. 证明:(1)当n =1时,原式等于8能被8整除, (2)假设当n =k (k ≥1,k ∈N *)时,结论成立, 则5k +2·3k -1+1能被8整除. 设5k +2·3k -1+1=8m ,m ∈N *, 当n =k +1时,5k +1+2·3k +1 =5(5k +2·3k -1+1)-4·3k -1-4 =5(5k +2·3k -1+1)-4(3k -1+1), 而当k ≥1,k ∈N *时,3k -1+1显然为偶数,设为2t ,t ∈N *,故5k +1+2·3k +1=5(5k +2·3k -1+1)-4(3k -1+1)=40m -8t (m ,t ∈N *),也能被8整除, 故当n =k +1时结论也成立;由(1)(2)可知对一切正整数n,5n +2·3n -1+1都能被8整除.3.已知S n =1+12+13+…+1n (n ≥2,n ∈N *),求证:S 2n >1+n2(n ≥2,n ∈N *).证明:(1)当n =2时,S 2n =S 4=1+12+13+14=2512>1+22,即n =2时命题成立;(2)假设当n =k (k ≥2,k ∈N *)时命题成立,即S 2k =1+12+13+…+12k >1+k2,则当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k +1>1+k 2+12k +1+12k +2+…+12k +1>1+k2+2k 2k +2k =1+k 2+12=1+k +12, 故当n =k +1时,命题成立.由(1)和(2)可知,对n ≥2,n ∈N *不等式S 2n >1+n2都成立.4.(·南京三模)已知数列{a n }共有3n (n ∈N *)项,记f (n )=a 1+a 2+…+a 3n .对任意的k ∈N *,1≤k ≤3n ,都有a k ∈{0,1},且对于给定的正整数p (p ≥2),f (n )是p 的整数倍.把满足上述条件的数列{a n }的个数记为T n .(1)当p =2时,求T 2的值;(2)当p =3时,求证:T n =13[8n +2(-1)n ].解:(1)由题意,当n =2时,数列{a n }共有6项.要使得f (2)是2的整数倍,则这6项中,只能有0项、2项、4项、6项取1,故T 2=C 06+C 26+C 46+C 66=25=32. (2)证明:T n =C 03n +C 33n +C 63n +…+C 3n 3n .当1≤k ≤n ,k ∈N *时,C 3k 3n +3=C 3k 3n +2+C 3k -13n +2=C 3k -13n +1+C 3k 3n +1+C 3k -13n +1+C 3k -23n +1 =2C 3k -13n +1+C 3k 3n +1+C 3k -23n +1=2(C 3k -13n +C 3k -23n )+C 3k -13n +C 3k 3n +C 3k -33n +C 3k -23n =3(C 3k -13n +C 3k -23n )+C 3k 3n +C 3k -33n ,于是T n +1=C 03n +3+C 33n +3+C 63n +3+…+C 3n +33n +3=C 03n +3+C 3n +33n +3+3(C 13n +C 23n +C 43n +C 53n +…+C 3n -23n +C 3n -13n )+T n -C 03n +T n -C 3n 3n=2T n +3(23n -T n ) =3×8n -T n .下面用数学归纳法证明T n =13[8n +2(-1)n ].当n =1时,T 1=C 03+C 33=2=13[81+2(-1)1],即n =1时,命题成立.假设n =k (k ≥1,k ∈N *) 时,命题成立, 即T k =13[8k +2(-1)k ].则当n =k +1时,T k +1=3×8k -T k =3×8k -13[8k +2(-1)k ]=13[9×8k -8k -2(-1)k ] =13[8k +1+2(-1)k +1], 即n =k +1时,命题也成立. 于是当n ∈N *,有T n =13[8n +2(-1)n ].5.(·扬州考前调研)在数列{a n }中,a n =cos π3×2n -2(n ∈N *). (1)试将a n +1表示为a n 的函数关系式;(2)若数列{b n }满足b n =1-2n ·n !(n ∈N *),猜想a n 与b n 的大小关系,并证明你的结论.解:(1)a n =cos π3×2n -2=cos 2π3×2n -1=2⎝⎛⎭⎫cos π3×2n -12-1,∴a n =2a 2n +1-1,∴a n +1=±a n +12, 又n ∈N *,n +1≥2,a n +1>0,∴a n +1=a n +12. (2)当n =1时,a 1=-12,b 1=1-2=-1,∴a 1>b 1;当n =2时,a 2=12,b 2=1-12=12,∴a 2=b 2;当n =3时,a 3=32,b 3=1-19=89,∴a 3<b 3. 猜想:当n ≥3时,a n <b n , 下面用数学归纳法证明:①当n =3时,由上知,a 3<b 3,结论成立.②假设n =k ,k ≥3,n ∈N *时,a k <b k 成立,即a k <1-2k ·k !,则当n =k +1,a k +1=a k +12< 2-2k ·k !2=1-1k ·k !,b k +1=1-2(k +1)·(k +1)!. 要证a k +1<b k +1, 即证⎝⎛⎭⎪⎫1-1k ·k !2<⎣⎡⎦⎤1-2(k +1)·(k +1)!2, 即证1-1k ·k !<1-4(k +1)·(k +1)!+⎣⎡⎦⎤2(k +1)·(k +1)!2, 即证1k ·k !-4(k +1)·(k +1)!+⎣⎡⎦⎤2(k +1)·(k +1)!2>0, 即证(k -1)2k (k +1)·(k +1)!+⎣⎡⎦⎤2(k +1)·(k +1)!2>0,显然成立. ∴n =k +1时,结论也成立.综合①②可知:当n ≥3时,a n <b n 成立.综上可得:当n =1时,a 1<b 1;当n =2时,a 2=b 2; 当n ≥3,n ∈N *时,a n <b n .6.(·南通二调)设n ≥2,n ∈N *.有序数组(a 1,a 2,…,a n )经m 次变换后得到数组(b m,1,b m,2…,b m ,n ),其中b 1,i =a i +a i +1,b m ,i =b m -1,i +b m -1,i +1(i =1,2,…,n ),a n +1=a 1,b m -1,n +1=b m -1,1(m ≥2).例如:有序数组(1,2,3)经1次变换后得到数组(1+2,2+3,3+1),即(3,5,4);经第2次变换后得到数组(8,9,7).(1)若a i =i (i =1,2,…,n ),求b 3,5的值;(2)求证:b m ,i =∑j =0ma i +j C j m ,其中i =1,2,…,n .(注:当i +j =kn +t 时,k ∈N *,t =1,2,…,n ,则a i +j =a t )解:(1)当n =2,3,4时,b 3,5值不存在; 当n =5时,依题意,有序数组为(1,2,3,4,5). 经1次变换为:(3,5,7,9,6), 经2次变换为:(8,12,16,15,9), 经3次变换为:(20,28,31,24,17), 所以b 3,5=17;当n =6时,同理得b 3,5=28; 当n =7时,同理得b 3,5=45; 当n ≥8时,n ∈N *时,依题意,有序数组为(1,2,3,4,5,6,7,8,…,n ). 经1次变换为:(3,5,7,9,11,13,15,…,n +1),21 / 21 经2次变换为:(8,12,16,20,24,28,…,n +4), 经3次变换为:(20,28,36,44,52,…,n +12), 所以b 3,5=52.(2)证明:下面用数学归纳法证明对m ∈N *,b m ,i =∑j =0m a i +j C j m,其中i =1,2,…,n . ①当m =1时,b 1,i =a i +a i +1=∑j =01a i +j C j 1,其中i =1,2,…,n ,结论成立; ②假设m =k (k ∈N *)时,b k ,i =∑j =0k a i +j C j k ,其中i =1,2,…,n .则m =k +1时,b k +1,i =b k ,i +b k ,i +1=∑j =0k a i +j C j k +∑j =0k a i +j +1C j k=∑j =0k a i +j C j k +∑j =1k +1a i +j C j -1k=a i C 0k +∑j =1k a i +j (C j k +C j -1k )+a i +k +1C k k=a i C 0k +1+∑j =1k a i +j C j k +1+a i +k +1C k +1k +1=∑j =0k +1a i +j C j k +1,所以结论对m =k +1时也成立.由①②知,m ∈N *,b m ,i =∑j =0ma i +j C j m ,其中i =1,2,…,n .。

高中数学 应用题

江苏新高考“在考查基础知识的同时,侧重考查能力”是高考的重要意向,而应用能力的考查又是近二十年来的能力考查重点.江苏卷一直在坚持以建模为主.所以如何由实际问题转化为数学问题的建模过程的探索应是复习的关键.应用题的载体很多,前几年主要考函数建模,以三角、导数、不等式知识解决问题.2013年应用考题是解不等式模型,2014年应用考题可以理解为一次函数模型,也可以理解为条件不等式模型,这样在建模上增添新意,还是有趣的,2015、2016年应用考题都先构造函数,再利用导数求解.2016、2017年应用考题是立体几何模型,2017年应用考题需利用空间中的垂直关系和解三角形的知识求解.[常考题型突破]函数模型的构建及求解[例1](2016·江苏高考)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A1B1C1D1,下部的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?[方法归纳]解函数应用题的四步骤[变式训练]1.(2017·苏锡常镇二模)某科研小组研究发现:一棵水蜜桃树的产量w (单位:百千克)与肥料费用x (单位:百元)满足如下关系:w =4-3x +1,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)2x 百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为L (x )(单位:百元).(1)求利润函数L (x )的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?2.(2017·南通三模)如图,半圆AOB 是某爱国主义教育基地一景点的平面示意图,半径OA 的长为1百米.为了保护景点,基地管理部门从道路l 上选取一点C ,修建参观线路C -D -E -F ,且CD ,DE ,EF 均与半圆相切,四边形CDEF 是等腰梯形.设DE =t 百米,记修建每1百米参观线路的费用为f (t )万元,经测算f (t )=⎩⎨⎧5,0<t ≤13,8-1t ,13<t <2.(1)用t 表示线段EF 的长; (2)求修建该参观线路的最低费用.基本不等式的实际应用[例2] (2017·南京考前模拟)某企业准备投入适当的广告费对产品进行促销,在一年内预计销售Q (万件)与广告费x (万元)之间的函数关系为Q =4x +1x +1(x ≥0).已知生产此产品的年固定投入为4.5万元,每生产1万件此产品仍需再投入32万元,且能全部销售完.若每件销售价定为:“平均每件生产成本的150%”与“年平均每件所占广告费的25%”之和.(1)试将年利润W(万元)表示为年广告费x(万元)的函数;(2)当年广告费投入多少万元时,企业年利润最大?最大利润为多少?[方法归纳]利用基本不等式求解实际应用题的注意点(1)此类型的题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围对应函数的单调性求解.[变式训练](2017·苏州期末)某湿地公园内有一条河,现打算建一座桥(如图1)将河两岸的路连接起来,剖面设计图纸(图2)如下,其中,点A ,E 为x 轴上关于原点对称的两点,曲线段BCD 是桥的主体,C 为桥顶,并且曲线段BCD 在图纸上的图形对应函数的解析式为y =84+x 2(x ∈[-2,2]),曲线段AB ,DE 均为开口向上的抛物线段,且A ,E 分别为两抛物线的顶点.设计时要求:保持两曲线在各衔接处(B ,D )的切线的斜率相等.(1)求曲线段AB 在图纸上对应函数的解析式,并写出定义域;(2)车辆从A 经B 到C 爬坡,定义车辆上桥过程中某点P 所需要的爬坡能力为:M =(该点P 与桥顶间的水平距离)×(设计图纸上该点P 处的切线的斜率)其中M P 的单位:米.若该景区可提供三种类型的观光车:①游客踏乘;②蓄电池动力;③内燃机动力,它们的爬坡能力分别为0.8米,1.5米,2.0米,用已知图纸上一个单位长度表示实际长度1米,试问三种类型的观光车是否都可以顺利过桥?三角函数的实际应用[例3] (2017·江苏高考)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32 cm ,容器Ⅰ的底面对角线AC 的长为107 cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14 cm 和62 cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm.现有一根玻璃棒l ,其长度为40 cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.[方法归纳]解三角形应用题是数学知识在生活中的应用,要想解决好,就要把实际问题抽象概括,建立相应的数学模型,然后求解.解三角形应用题常见的两种情况:实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程组,解方程组得出所要求的解.[变式训练]如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M,N(异于村庄A),要求PM=PN=MN=2(单位:千米).记∠AMN=θ.(1)将AN,AM用含θ的关系式表示出来;(2)如何设计(即AN,AM为多长),使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离AP最大)?[课时达标训练]1.(2017·苏锡常镇一模)某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC(如图),设计要求彩门的面积为S(单位:m2),高为h(单位:m)(S,h为常数),彩门的下底BC 固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.(1)请将l表示成关于α的函数l=f(α);(2)当α为何值时l最小?并求l的最小值.2.如图是某设计师设计的Y型饰品的平面图,其中支架OA,OB,OC两两成120°,OC=1,AB =OB+OC,且OA>OB.现设计师在支架OB上装点普通珠宝,普通珠宝的价值为M,且M与OB长成正比,比例系数为k(k为正常数);在△AOC区域(阴影区域)内镶嵌名贵珠宝,名贵珠宝的价值为N,且N与△AOC的面积成正比,比例系数为43k.设OA=x,OB=y.(1)求y关于x的函数解析式,并写出OA的取值范围;(2)求N-M的最大值及相应的x的值.3.(2017·南京、盐城二模)在一张足够大的纸板上截取一个面积为3 600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.(1)当a=90时,求纸盒侧面积的最大值;(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.4.(2017·南通、泰州一调)如图,某机械厂要将长6 m ,宽2 m 的长方形铁皮ABCD 进行裁剪.已知点F 为AD 的中点,点E 在边BC 上,裁剪时先将四边形CDFE 沿直线EF 翻折到MNFE 处(点C ,D 分别落在直线BC 下方点M ,N 处,FN 交边BC 于点P ),再沿直线PE 裁剪.(1)当∠EFP =π4时,试判断四边形MNPE 的形状,并求其面积;(2)若使裁剪得到的四边形MNPE 面积最大,请给出裁剪方案,并说明理由.5.(2017·南京三模)在一水域上建一个演艺广场.演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图).看台Ⅰ,看台Ⅱ是分别以AB ,AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍;矩形表演台BCDE 中,CD =10米;三角形水域ABC 的面积为4003平方米.设∠BAC =θ.(1)求BC 的长(用含θ的式子表示);(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.6.如图,OA 是南北方向的一条公路,OB 是北偏东45°方向的一条公路,某风景区的一段边界为曲线C .为方便游客观光,拟过曲线C 上某点P 分别修建与公路OA ,OB 垂直的两条道路PM ,PN ,且PM ,PN 的造价分别为5万元/百米、40万元/百米.建立如图所示的平面直角坐标系xOy ,则曲线C 符合函数y =x +42x 2(1≤x ≤9)模型,设PM =x ,修建两条道路PM ,PN 的总造价为f (x )万元.题中所涉及长度单位均为百米.(1)求f (x )的解析式;(2)当x 为多少时,总造价f (x )最低?并求出最低造价.。

高中数学离散型随机变量的分布列、均值与方差


离散型随机变量的分布列、均值与方差 结 束
抓高考命题的“形”与“神” 离散型随机变量均值与方差的计算
1.均值与方差的一般计算步骤 (1)理解X的意义,写出X的所有可能取的值; (2)求X取各个值的概率,写出分布列; (3)根据分布列,由均值的定义求出均值E(X),进一步由公
n
式D(X)= xi-EX2pi=E(X2)-(E(X))2求出D(X).
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[易错提醒] 利用分布列中各概率之和为1可求参数的值,此 时要注意检验,以保证每个概率值均为非负数.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
求离散型随机变量的分布列 [例2] 某商店试销某种商品20天,获得如下数据:
i=1
了随机变量X与其均值E(X)的_平__均__偏__离__程__度__,其算术平方根 DX为随机变量X的标准差. 2.均值与方差的性质 (1)E(aX+b)=_a_E__(X__)+__b__, (2)D(aX+b)=_a_2_D_(_X_)_ (a,b为常数).
突破点一
突破点二
课时达标检测
考点贯通
(2)设X为选出的2人参加义工活动次数之差的绝对值,求 随机变量X的分布列.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[解] (1)由已知,有P(A)=C31CC41+120 C23=13.
所以事件A发生的概率为13.
(2)随机变量X的所有可能取值为0,1,2.
P(X=0)=C23+CC21320+C24=145,
突破点一

高中数学必修二:教师用书 Word文件

1.1空间几何体的结构第一课时棱柱、棱锥、棱台的结构特征空间几何体与多面体[提出问题观察下列图片:问题1:图片(1)(2)(3)中的物体的形状有何特点?提示:由若干个平面多边形围成.问题2:图片(4)(5)(6)(7)的物体的形状与(1)(2)(3)中有何不同?提示:(4)(5)(6)的表面是由平面与曲面围成的,(7)的表面是由曲面围成的.问题3:图片(4)(5)(6)(7)中的几何体是否可以看作平面图形绕某定直线旋转而成?提示:可以.[导入新知]1.空间几何体概念定义空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点旋转体由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体,这条定直线叫做旋转体的轴2.多面体多面体定义图形及表示相关概念棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱如图可记作:棱柱ABCD- A′B′C′D′底面(底):两个互相平行的面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与底面的公共顶点棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥如图可记作:棱锥S-ABCD底面(底):多边形面侧面:有公共顶点的各个三角形面侧棱:相邻侧面的公共边顶点:各侧面的公共顶点棱台用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台如图可记作:棱台ABCD- A′B′C′D′上底面:原棱锥的截面下底面:原棱锥的底面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与上(下)底面的公共顶点1.对于多面体概念的理解,注意以下两个方面:(1)多面体是由平面多边形围成的,围成一个多面体至少要四个面.一个多面体由几个面围成,就称为几面体.(2)多面体是一个“封闭”的几何体,包括其内部的部分.2.棱柱具有以下结构特征和特点:(1)侧棱互相平行且相等,侧面都是平行四边形.(2)两个底面与平行于底面的截面是全等的多边形,如图a所示.(3)过不相邻的两条侧棱的截面是平行四边形,如图b所示.(4)有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱,如图c所示.3.对于棱锥要注意有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,必须强调其余各面是共顶点的三角形,如图d所示.4.棱台中各侧棱延长后必相交于一点,否则不是棱台.棱柱的结构特征[例1](1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.[答案](3)(4)[类题通法]有关棱柱的结构特征问题的解题策略(1)紧扣棱柱的结构特征进行有关概念辨析.①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.[活学活用]下列说法正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.各个侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面均为平行四边形答案:D棱锥、棱台的结构特征[例2](1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由四个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥.其中说法正确的序号是________.[答案](2)(3)(4)[类题通法]判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点下列说法正确的有()①由五个面围成的多面体只能是四棱锥;②仅有两个面互相平行的五面体是棱台;③两个底面平行且相似,其余各面都是梯形的多面体是棱台;④有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个答案:A多面体的平面展开图[例3]如图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.[类题通法]1.解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.3.若是给出表面展开图,则可把上述程序逆推.[活学活用]水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是() A.1B.7C.快D.乐答案:B1.柱、锥、台结构特征判断中的误区[典例]如图所示,下列关于这个几何体的正确说法的序号为________.(1)这是一个六面体;(2)这是一个四棱台;(3)这是一个四棱柱;(4)此几何体可由三棱柱截去一个三棱柱得到;(5)此几何体可由四棱柱截去一个三棱柱得到.[解析](1)正确,因为有六个面,属于六面体的范围;(2)错误,因为侧棱的延长线不能交于一点,所以不正确;(3)正确,如果把几何体放倒就会发现是一个四棱柱;(4)(5)都正确,如图所示.[答案](1)(3)(4)(5)[易错防范]1.解答过程中易忽视侧棱的延长线不能交于一点,直观感觉是棱台,而不注意逻辑推理.2.解答空间几何体概念的判断题时,要注意紧扣定义,切忌只凭图形主观臆断.[成功破障]如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定答案:A[随堂即时演练]1.下列几何体中,棱柱的个数是()A.1B.2C.3D.4答案:D2.下列图形经过折叠可以围成一个棱柱的是()答案:D3.棱锥最少有________个面.答案:44.下列几何体中,________是棱柱,________是棱锥,________是棱台.(仅填相应序号)答案:③⑤①④5.(1)三棱锥、四棱锥、十五棱锥分别有多少条棱,多少个面?(2)有没有一个多棱锥,其棱数是2 016?若有,求出有多少个面;若没有,说明理由.解:(1)三棱锥有6条棱、4个面;四棱锥有8条棱、5个面;十五棱锥有30条棱、16个面.(2)有1 007个面.[课时达标检测]一、选择题1.下列图形中,不是三棱柱的展开图的是()答案:C2.如图所示,在三棱台ABC-A′B′C′中,截去三棱锥A′-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.组合体答案:B3.下列说法正确的是()①棱锥的各个侧面都是三角形;②三棱柱的侧面为三角形;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长都相等.A.①②B.①③C.②③D.②④答案:B4.(广东高考)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10答案:D5.下列命题正确的是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.棱柱中两个互相平行的面一定是棱柱的底面C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点答案:D二、填空题6.面数最少的棱柱为________棱柱,共有________个面围成.答案:三 57.如图,M是棱长为2 cm的正方体ABCD-A 1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.答案:138.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”“不一定”或“一定不”)答案:(1)不一定(2)不一定三、解答题9.如图所示,长方体ABCD -A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:(1)是棱柱,并且是四棱柱,因为长方体相对的两个面是互相平行的四边形(作底面),其余各面都是矩形(作侧面),且相邻侧面的公共边互相平行,符合棱柱的定义.(2)截面BCNM的上方部分是三棱柱BB1M-CC1N,下方部分是四棱柱ABMA1-DCND1.10.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图①所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图②所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的1,有一组对角为直角,余下部分按虚线折成,可成为4一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.第二课时圆柱、圆锥、圆台、球的结构特征简单组合体的结构特征旋转体[提出问题]如图,给出下列实物图.问题1:上述三个实物图抽象出的几何体与多面体有何不同?提示:它们不是由平面多边形围成的.问题2:上述实物图抽象出的几何体中的曲面能否以某平面图形旋转而成?提示:可以.问题3:如何形成上述几何体的曲面?提示:可将半圆、直角梯形、直角三角形绕一边所在直线为轴旋转而成.[导入新知]旋转体结构特征图形表示圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线我们用表示圆柱轴的字母表示圆柱,左图可表示为圆柱OO′圆锥以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥我们用表示圆锥轴的字母表示圆锥,左图可表示为圆锥SO圆台用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台我们用表示圆台轴的字母表示圆台,左图可表示为圆台OO′球以半圆的直径所在直线为旋转轴,半圆面旋转一周所形成的旋转体叫做球体,简称球.半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径球常用球心字母进行表示,左图可表示为球O[化解疑难]1.以直角三角形斜边所在的直线为旋转轴,其余两边旋转成的曲面围成的旋转体不是圆锥.2.球与球面是完全不同的两个概念,球是指球面所围成的空间,而球面只指球的表面部分.3.圆台也可以看作是等腰梯形以其底边的垂直平分线为轴,各边旋转半周形成的曲面所围成的几何体.简单组合体[提出问题]2013年6月13日13时18分,“天宫一号”目标飞行器与“神舟”十号飞船实现自动交会对接.这是“天宫一号”自2011年9月发射入轨以来第五次与神舟飞船成功实现交会对接.下图为“天宫一号”目标飞行器的结构示意图.其主体结构如上面右图所示.问题1:该几何体由几个简单几何体组合而成?提示:4个.问题2:图中标注的①②③④部分分别为什么几何体?提示:①为圆台,②为圆柱,③为圆台,④为圆柱.[导入新知]1.简单组合体的概念由简单几何体组合而成的几何体叫做简单组合体.2.简单组合体的构成形式有两种基本形式:一种是由简单几何体拼接而成的;另一种是由简单几何体截去或挖去一部分而成的.[化解疑难]简单组合体识别的要求(1)准确理解简单几何体(柱、锥、台、球)的结构特征.(2)正确掌握简单组合体构成的两种基本形式.(3)若用分割的方法,则需要根据几何体的结构特征恰当地作出辅助线(或面).旋转体的结构特征[例1]曲面围成的几何体是圆锥;(2)以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)经过圆锥任意两条母线的截面是等腰三角形;(4)圆锥侧面的母线长有可能大于圆锥底面圆直径.其中说法正确的序号是________.[答案](2)(3)(4)[类题通法]1.判断简单旋转体结构特征的方法(1)明确由哪个平面图形旋转而成.(2)明确旋转轴是哪条直线.2.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.(2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.[活学活用]给出下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.答案:(1)(2)简单组合体[例2](1)图①所示几何体是由哪些简单几何体构成的?试画出几何图形,可旋转该图形180°后得到几何体①.(2)图②所示几何体的结构特点是什么?试画出几何图形,可旋转该图形360°得到几何体②.(3)图③所示几何体是由哪些简单几何体构成的?请说明该几何体的面数、棱数、顶点数.[解](1)图①是由圆锥和圆台组合而成.可旋转如下图形180°得到几何体①.(2)图②是由一个圆台,从上而下挖去一个圆锥,且圆锥的顶点恰为圆台底面圆的圆心.可旋转如下图形360°得到几何体②.(3)图③是由一个四棱锥与一个四棱柱组合而成,且四棱锥的底面与四棱柱底面相同.共有9个面,9个顶点,16条棱.[类题通法]1.明确组合体的结构特征,主要弄清它是由哪些简单几何体组成的,必要时也可以指出棱数、面数和顶点数.2.会识别较复杂的图形是学好立体几何的第一步,因此我们应注意观察周围的物体,然后将它们“分拆”成几个简单的几何体,进而培养我们的空间想象能力和识图能力.[活学活用]指出图中的三个几何体分别是由哪些简单几何体组成的.解:(1)几何体由一个圆锥、一个圆柱和一个圆台拼接而成;(2)几何体由一个六棱柱和一个圆柱拼接而成;(3)几何体由一个六棱柱挖去一个圆柱而成.1.旋转体的生成过程[典例]如图,四边形ABCD为直角梯形,试作出绕其各条边所在的直线旋转所得到的几何体.[解题流程][规范解答]以边AD所在直线为旋转轴旋转,形成的几何体是圆台,如图(1)所示.以边AB所在直线为旋转轴旋转,形成的几何体是一个圆锥和一个圆柱拼接而成的几何体,如图(2)所示.以边CD所在直线为旋转轴旋转,形成的几何体是一个圆柱挖掉一个圆锥构成的几何体,如图(3)所示.以边BC所在直线为旋转轴旋转,形成的几何体是由一个圆台挖掉一个圆锥构成的几何体和一个圆锥拼接而成,如图(4)所示.[活学活用]一个有30°角的直角三角板绕其各条边所在直线旋转一周所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解:如图①和②所示,绕其直角边所在直线旋转一周围成的几何体是圆锥.如图③所示,绕其斜边所在直线旋转一周所得几何体是两个同底相对的圆锥.如图④所示,绕其斜边上的高所在的直线为轴旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.[随堂即时演练]1.右图是由哪个平面图形旋转得到的()答案:A2.下列说法中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的平行于轴的截面是等腰三角形C.圆台的所有平行于底面的截面都是圆D.圆锥所有的轴截面都是全等的等腰三角形答案:B3.等腰三角形绕底边上的高所在直线旋转180°,所得几何体是________.答案:圆锥4.如图所示的组合体的结构特征为______________.答案:一个四棱锥和一个四棱柱的组合体5.如图,AB为圆弧BC所在圆的直径,∠BAC=45°.将这个平面图形绕直线AB旋转一周,得到一个组合体,试说明这个组合体的结构特征.解:如图所示,这个组合体是由一个圆锥和一个半球体拼接而成的.[课时达标检测]一、选择题1.下列说法正确的是()A.平行于圆锥某一母线的截面是等腰三角形B.平行于圆台某一母线的截面是等腰梯形C.过圆锥顶点的截面是等腰三角形D.过圆台上底面中心的截面是等腰梯形答案:C2.将一个等腰梯形绕它的较长的底边所在的直线旋转一周,所得的几何体包括() A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆柱、一个圆台D.一个圆柱、两个圆锥答案:D3.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是() A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥答案:D4.下列叙述中正确的个数是()①以直角三角形的一边所在直线为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1C.2 D.3答案:B5.如图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形答案:D二、填空题6.有下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在直线是互相平行的.其中正确的是________(把所有正确说法的序号都填上).答案:②④7.下面这个几何体的结构特征是________________________________________________________________________ ________________________________________________________________________.答案:由一个四棱锥、一个四棱柱拼接,又在四棱柱中挖去了一个圆柱而成8.如图是一个几何体的表面展成的平面图形,则这个几何体是________.答案:圆柱三、解答题9.指出如图①②③所示的图形是由哪些简单几何体构成的.解:分割原图,使它的每一部分都是简单几何体. 图①是由一个三棱柱和一个四棱柱拼接而成的简单组合体. 图②是由一个圆锥和一个四棱柱拼接而成的简单组合体. 图③是由一个半球、一个圆柱和一个圆台拼接而成的简单组合体.10.如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的半径分别为2 cm 和5 cm ,圆台的母线长是12 cm ,求圆锥SO 的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD ,由已知可得上底半径O 1A =2 cm ,下底半径OB =5 cm ,且腰长AB =12 cm.设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO ,可得l -12l =25,所以l =20 cm ,即截得此圆台的圆锥的母线长为20 cm.1.2空间几何体的三视图和直观图1.2.1 & 1.2.2 中心投影与平行投影 空间几何体的三视图中心投影与平行投影[《泰坦尼克号》是一部浪漫的爱情灾难电影,于1997年11月1日开始,在全球上映,票房收入超过18亿美元,并获得了多项奥斯卡奖项.15年之后,《泰坦尼克号》再次被搬上了荧屏,而这次的宣传噱头则是3D.《泰坦尼克号(3D)》让观众在明知下一步剧情发展的情况下,仍然会因为发生在“眼前”的真实爱情悲歌热泪盈眶.从上图中我们可以清楚地看到3D电影是怎么一回事:两个投影机会从不同的方向错开一定距离,把画面中有距离区别的部分投射到荧幕上.而观众所佩戴的3D眼镜也会选择不同的光线进入左右眼,这样你就能看到物体“前于画面”或“后于画面”的视觉假象了.电影的播放实质是利用了小孔成像原理,而太阳光下地面上人的影子是阳光照射到人后留下的影像.放电影和太阳光照射成影像都具备光线、不透明物体和投影面这些相同的条件.问题1:放电影成像与太阳光照射成像原理一样吗?提示:不一样.问题2:放电影成像中的光线有何特点?提示:光是由一点向外散射.问题3:太阳光照人成影像的光线又有何特点?提示:一束平行光线.[导入新知]1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面.2.中心投影与平行投影[化解疑难]平行投影和中心投影都是空间图形的一种画法,但二者又有区别(1)中心投影的投影线交于一点,平行投影的投影线互相平行.(2)平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.三视图[提出问题]如梦似幻!——这是无数来自全世界的游客对国家游泳中心“水立方”的第一印象.同天安门、故宫、长城等北京标志性建筑一样,“水立方”成了游客在北京的必到之地.问题1:“水立方”的外观形状是什么?提示:长方体.问题2:假如你站在“水立方”入口处的正前方或在“水立方”的左侧看“水立方”,你看到的是什么?提示:“水立方”的一个侧面.问题3:若你在“水立方”的正上方观察“水立方”看到的是什么?提示:“水立方”的一个表面.问题4:根据上述三个方向观察到的平面,能否画出“水立方”的形状?提示:可以.[导入新知]三视图概念规律正视图光线从几何体的前面向后面正投影得到的投影图一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图与俯视图宽度一样侧视图光线从几何体的左面向右面正投影得到的投影图俯视图光线从几何体的上面向下面正投影得到的投影图1.每个视图都反映物体两个方向上的尺寸.正视图反映物体的上下和左右尺寸,俯视图反映物体的前后和左右尺寸,侧视图反映物体的前后和上下尺寸.2.画几何体的三视图时,能看见的轮廓线和棱用实线表示,看不见的轮廓线和棱用虚线表示.中心投影与平行投影[例1]①平行投影的投影线互相平行,中心投影的投影线相交于一点;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学知识点高考资料高考历年考试真题
课时达标 第13讲

[解密考纲]本考点主要考查导数的计算和曲线的切线问题,涉及导数的问题,离不开导
数的计算;曲线的切线问题,有时在选择题、填空题中考查,有时会出现在解答题中的第(1)
问.
一、选择题
1.已知函数f(x)=logax(a>0且a≠1),若f′(1)=-1,则a=( B )

A.e B.1e

C.1e2 D.12
解析 因为f′(x)=1xln a,所以f′(1)=1ln a=-1,得ln a=-1,所以a=1e.
2.若f(x)=2xf′(1)+x2,则f′(0)=( D )
A.2 B.0
C.-2 D.-4
解析 f′(x)=2f′(1)+2x,令x=1,则f′(1)=2f′(1)+2,得f′(1)=-2,所以f′(0)
=2f′(1)+0=-4.

3.(2018·河南八市质检)已知函数f(x)=sin x-cos x,且f′(x)=12f(x),则tan 2x的值
是( D )
A.-23 B.-43

C.43 D.34
解析 因为f′(x)=cos x+sin x=12sin x-12cos x,
所以tan x=-3,所以tan 2x=2tan x1-tan2x=-61-9=34,故选D.
4.已知点P在曲线y=4ex+1上,α为曲线在点P处的切线的倾斜角,则α的取值范围
是( B )
A.0,π4 B.3π4,π
C.π2,3π4 D.π4,π2
解析 ∵y=4ex+1,
高中数学知识点高考资料高考历年考试真题
∴y′=-4exex+12=-4exex2+2ex+1=-4ex+1ex+2≥-1,

当且仅当ex=1ex,即x=0时取等号,∴-1≤tan α<0.
又∵0≤α<π,∴3π4≤α<π,故选B.
5.(2018·河南郑州质检)函数f(x)=excos x在点(0,f(0))处的切线方程为( C )
A.x+y+1=0 B.x+y-1=0
C.x-y+1=0 D.x-y-1=0
解析 ∵f′(x)=excos x+ex(-sin x)=ex(cos x-sin x),
∴f′(0)=e0(cos 0-sin 0)=1.
又∵f(0)=1,∴f(x)在点(0,1)处的切线方程为y-1=x,即x-y+1=0,故选C.

6.下面四个图象中,有一个是函数f(x)=13x3+ax2+(a2-1)·x+1(a∈R)的导函数y=f′(x)
的图象,则f(-1)=( D )

A.13 B.-23
C.73 D.-13或53
解析 ∵f′(x)=x2+2ax+a2-1,
∴f′(x)的图象开口向上,则②④排除.

若f′(x)的图象为①,此时a=0,f(-1)=53;
若f′(x)的图象为③,此时a2-1=0,
又对称轴为x=-a,-a>0,∴a=-1,∴f(-1)=-13.
二、填空题
7.已知函数f(x)的图象在点M(1,f(1))处的切线方程是y=12x+3,则f(1)+f′(1)=__4__.

解析 由题意知f′(1)=12,f(1)=12×1+3=72,
∴f(1)+f′(1)=72+12=4.
8.(2018·广东惠州模拟)曲线y=-5ex+3在点(0,-2)处的切线方程为__5x+y+2=0__.
解析 由y=-5ex+3得,y′=-5ex,所以切线的斜率k=y′|x=0=-5,所以切线方
高中数学知识点高考资料高考历年考试真题
程为y+2=-5(x-0),即5x+y+2=0.
9.已知曲线y=x24-3ln x的一条切线的斜率为12,则切点坐标为 3,94-3ln 3 .

解析 ∵y′=x2-3x,∴ x2-3x=12,x>0,解得x=3.
故切点坐标为3,94-3ln 3.
三、解答题
10.(1)已知f(x)=eπx·sin πx,求f′(x)及f′12;

(2)已知f(x)=(x+1+x2)10,求f′1f1.
解析 (1)∵f′(x)=πe
πxsin πx+πeπx
cos πx,

∴f′12=πeπ2sin π2+cos π2=πeπ2.

(2)∵f′(x)=10(x+1+x2)9·1+x1+x2,
∴f′(1)=10(1+2)9·1+12=102(1+2)10=52(1+2)10.
又f(1)=(1+2)10,∴f′1f1=52.
11.已知曲线C:y=x3-6x2-x+6.
(1)求C上斜率最小的切线方程;
(2)证明:C关于斜率最小时切线的切点对称.
解析 (1)y′=3x2-12x-1=3(x-2)2-13.当x=2时,y′最小,即切线斜率的最小值
为-13,切点为(2,-12),切线方程为y+12=-13(x-2),即13x+y-14=0.
(2)证明:设点(x0,y0)∈C,点(x,y)是点(x0,y0)关于切点(2,-12)对称的点,则






x0=4-x,
y0=-24-y.

∵点(x0,y0)∈C,∴-24-y=(4-x)3-6(4-x)2-(4-x)+6,整理得y=x3-6x2-x+6.
∴点(x,y)∈C,于是曲线C关于切点(2,-12)对称.

12.设函数f(x)=ax+1x+b(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围成的三角形的面积
为定值,并求出此定值.
高中数学知识点高考资料高考历年考试真题
解析 (1)f′(x)=a-1x+b2,依题意,f′(2)=0,f(2)=3,

即 2a+12+b=3,a-12+b2=0,解得 a=1,b=-1或 a=94,b=-83.
因为a,b∈Z,所以a=1,b=-1,故f(x)=x+1x-1.
(2)证明:在曲线上任取一点x0,x0+1x0-1,
由f′(x0)=1-1x0-12知,过此点的切线方程为
y-x20-x0+1x0-1=1-1x0-12(x-x0).
令x=1得y=x0+1x0-1,切线与直线x=1的交点为1,x0+1x0-1.
令y=x得x=2x0-1,切线与直线y=x的交点为(2x0-1,2x0-1).
直线x=1与直线y=x的交点为(1,1).从而所围三角形的面积为
12x0+1x0-1-1·|2x0-1-1|=1
2


2

x0-1
·|2x0-2|=2.

所以所围三角形的面积为定值2.

相关文档
最新文档