强碱性阴离子交换树脂
阴离子阳离子树脂

阴离子阳离子树脂阴离子阳离子树脂是一种广泛应用于水处理、化学分析、生物技术等领域的重要材料。
阴离子阳离子树脂是指具有阴离子或阳离子交换能力的高分子材料,其主要作用是通过离子交换作用来去除水中的离子污染物,提高水质。
阴离子阳离子树脂的基本原理是离子交换作用。
在水处理中,水中的离子污染物被树脂吸附,而树脂上的阴离子或阳离子则被释放到水中。
通过这种方式,水中的离子污染物得以去除,水质得到提高。
阴离子阳离子树脂的应用非常广泛。
在水处理领域,阴离子阳离子树脂被广泛应用于饮用水、工业用水、污水处理等方面。
在化学分析领域,阴离子阳离子树脂被用于分离和纯化化学物质。
在生物技术领域,阴离子阳离子树脂则被用于蛋白质纯化、DNA纯化等方面。
阴离子阳离子树脂的种类也非常丰富。
常见的阴离子树脂有强碱性树脂和弱碱性树脂两种。
强碱性树脂通常用于去除酸性离子污染物,如硝酸根、氯离子等。
弱碱性树脂则用于去除碱性离子污染物,如钠离子、氢氧根离子等。
常见的阳离子树脂有强酸性树脂和弱酸性树脂两种。
强酸性树脂主要用于去除碱性离子污染物,如钙离子、镁离子等。
弱酸性树脂则用于去除酸性离子污染物,如铁离子、铜离子等。
阴离子阳离子树脂的优点在于其高效、可重复使用、成本低等特点。
与传统的水处理方法相比,阴离子阳离子树脂具有更高的去除效率和更低的成本。
在工业生产中,阴离子阳离子树脂的应用可以大大提高工业生产效率,节省成本,同时保护环境。
阴离子阳离子树脂的应用还面临着一些挑战。
例如,树脂的耐久性和稳定性是一个重要的问题。
在长期使用过程中,树脂可能会受到化学物质的侵蚀,导致其交换能力下降。
此外,树脂的再生和回收也是一个难点。
在树脂的使用过程中,需要对其进行再生和回收,以提高其使用寿命和降低成本。
但是,树脂的再生和回收技术目前还不够成熟。
总之,阴离子阳离子树脂是一种重要的水处理材料,在水处理、化学分析、生物技术等领域都有着广泛的应用。
随着科技的发展,阴离子阳离子树脂的应用前景将会越来越广阔。
离子交换除盐中为什么阳床漏钠阴床必漏硅

离子交换除盐中为什么阳床漏钠阴床必漏硅水的除盐有离子交换、反渗透、蒸馏法、电渗析等,目前使用最多的仍为阴、阳离子交换法,即使用阳离子交换树脂去除水中的阳离子,用阴离子交换树脂去除水中的阴离子,从而达到除盐的目的。
因为钠盐在水中溶解,不会产生沉淀,故往往认为对中、高压锅炉用水在阳离子交换器中出现漏钠影响和危害不大。
但没有认识到或足够的认识到阳床漏钠阴床必漏硅,不能达到除硅的目的。
本文将论述阳床漏钠阴床产生漏硅的原因和过程。
一、强碱ROH阴离子交换树脂的工艺特性水经强酸RH离子交换后,水中的Fe3+、Ca2+ 、Mg2+、Na+、K+等阳离子基本去除了,还剩下的是SO42-、Cl-、HCO3- 、NO3-、HSiO3-等离子,这些阴离子常用强碱ROH 才能去除,其反应式为:ROH+H2SO4=RHSO4+ H2O (1)2 ROH+H2SO4=R2SO4+2H2O (2)ROH+HCl=RCl+H2O (3)ROH+H2CO3=RHCO3+H2O (4)ROH+H2SiO3=RHSiO3+H2O (5)反应式(1)和(2)是同时进行的,代表了ROH与SO42-交换的两种情况。
当树脂主要是ROH存在时,反应式(2)占优势;当水中H2SO4浓度超过树脂上OH-时主要是反应式(1)。
因此,运行刚开始都是ROH型,故是(2)式反应;当树脂从上到下逐渐形成R2SO4型时,再进入的H2SO4,其交换结果转为RHSO4型,反应式为:R2SO4+H2SO4=2RHSO4 (6)从式(1)~(6)可见,水经ROH呈中性。
但为什么在离子交换除盐中,水要先经过阳离子交换后再进入阴离子交换呢?水不经过阳床行吗?现在我们来论述一下这方面问题。
1、强碱树脂的选择性树脂的选择性也称交换势,亲和力,结合力等,其选择性的次序为:SO42->NO3->Cl->OH->F->HCO3- >HSiO3-可见SO42、NO3-、Cl-的选择性都大OH-,吸着能力强;而F-、HCO3-、、HSiO3-是弱酸阴离子,选择性小于OH-,吸着能力差,从交换势可见:(1)强酸阴离子SO42-、NO3-、Cl-能顺利的交换ROH上的OH-离子而被去除,而且按选择性的大小,后来的NO3-交换RCl上的Cl-,后来的SO42-又交换RNO3上的NO3-(当然也交换Cl-),随着交换的进行,逐渐形成R2SO4在最上层,第二层为RNO3(如果水中无硝酸,则该层没有),第三层为RCl(如图1)图1 阴离子交换次序(2)弱酸阴离子HCO3-、HSiO3-,一是选择性小于OH-离子;二是水中的含量相对来说又少;三是H2CO3、H2SiO3必须要在较强的碱性条件下才能离解为H++ HCO3-和H++HSiO3-。
DLT771-2001火电厂水处理用离子交换树脂选用导则

DLT771-2001火电厂水处理用离子交换树脂选用导则ICS27.100F24备案号:9371-2001中华人民共和国电力行业标准DL/ T 771—2001火电厂水处理用离子交换树脂选用导则Guide for selecting ion exchange resins used in water treatment of thermal power plant2001-10-08发布2002-02-01实施中华人民共和国国家经济贸易委员会发布前言本标准是根据电力工业部1996年电力行业标准制定、修订计划项目(技综[1996]40号文第22项)的安排制定的。
近20年来,由于火电机组的容量和参数不断提高,对热力系统水汽品质的要求也不断提高,这促使了离子交换水处理的工艺过程和设备种类日益复杂化和多样化。
同时,可供选择的国产和进口离子交换树脂的品种、牌号也越来越多。
这使得正确选择离子交换树脂常常不是一件简单的事情。
特别是近些年来,随着新建的亚临界压力及以上参数机组的日益增多,凝结水处理系统逐渐被普遍采用。
如何选择凝结水处理用离子交换树脂,更成为普遍关心的问题。
因此,在总结国内外已有经验教训的基础上,制定火电厂水处理用离子交换树脂选用导则,对于合理投资,确保水处理系统正常运行以及避免经济损失,有着重要的现实意义。
本标准的附录A、附录B是标准的附录;本标准的附录C是提示的附录。
本标准由电力行业电厂化学标准化技术委员会提出并归口。
本标准起草单位:武汉水利电力大学。
本标准主要起草人:张澄信、钱勤、李芹、叶春松、姚爱萍本标准由电力行业电厂化学标准化技术委员会负责解释。
目次前言1 范围2 引用标准3 选用离子交换树脂的基本原则4 对树脂类型和牌号的选择5 凝结水处理用树脂的选择6 同种牌号树脂的择优附录A(标准的附录)离子交换树脂转基准型体积收缩率的测定方法附录B(标准的附录)水处理用强酸(碱)性离子交换树脂强渗磨圆球率的测定方法附录C(提示的附录)水处理用强碱性阴离子交换树脂耐热性能的测定方法中华人民共和国电力行业标准火电厂水处理用离子交换树脂选用导则DL/ T 771—2001 Guide for selecting ion exchange resins used in water treatment of thermal power plant1 范围本标准规定了火力发电厂各种水处理设备选用球粒状离子交换树脂(以下简称树脂)时应遵循的原则。
混床再生

简要说明:混床把阴、阳离子交换树脂放在同一个交换器中,并且在运行前将它们混合均匀。
这样,混床可以看作是由许多阴、阳树脂交错排列而组成的多级式复床。
而且经H型交换所产生的H+和经OH型交换所产生的OH-都不能累积起来,基本上消除了逆交换的影响,交换反应进行得十分彻底,出水水质很高。
详细介绍:混床说明:混床把阴、阳离子交换树脂放在同一个交换器中,并且在运行前将它们混合均匀。
这样,混床可以看作是由许多阴、阳树脂交错排列而组成的多级式复床。
而且经H型交换所产生的H+和经OH型交换所产生的OH-都不能累积起来,基本上消除了逆交换的影响,交换反应进行得十分彻底,出水水质很高。
混床的再生方式为“先碱后酸”过程。
即先用再生碱液从混床的底部逆流注入,碱液首先对混床的原混合的阴阳树脂进行分层,接着对阴树脂进行“悬浮动态”再生,同时活化下部分的阳树脂,另外,阴树脂层上部若积有沉积物,也会借助再生的过程而反冲洗掉。
碱再生结束后,再用水由上而下进行冲洗直至中性。
第二步用再生酸液由底部注入由中排孔排出,阳树脂即可进行再生,酸液再生结束后,再用水由上而下注入,通过底排冲洗直至中性。
最后用压缩空气混合阴阳树脂,再生过程结束一、注意事项1. 仪表显示水质低于要求水时就要起动再生系统,以保证混床出水在合格的范围内,当发现不合格时应及时进行再生处理,同时启动备用离子交换系统。
2. 混床的出水电阻率应为≥15-18MΩ.cm,PH=5-7二、再生操作混合床是一个交换柱内即有强酸性阳离子交换树脂,同时也有强碱性阴离子交换树脂,是在混合均匀的情况下使经过处理的水顺流通过,而得到纯度较高纯水的方法。
(树脂在柱内的高度为交换柱的有效高度的2/3,在此2/3的树脂层内,其中有1/3为强酸性阳离子交换树脂在下部,强碱阴离子交换树脂为2/3在上部。
)阴阳树脂的比例为2/1(体积比)。
在阴阳树脂交界处略向下一些有一进酸管,用以阳树脂再生进酸时,控制酸的界面在阴阳树脂截面处之下。
离子交换树脂的基本参数和使用方法

离子交换树脂的基本参数和使用方法离子交换树脂的基本参数:离子交换树脂的离子交换容量离子交换树脂进行离子交换反应的性能,表现在它的“离子交换容量”,即每克干树脂或每毫升湿树脂所能交换的离子的毫克当量数,meq/g(干)或 meq/mL(湿);当离子为一价时,毫克当量数即是毫克分子数(对二价或多价离子,前者为后者乘离子价数)。
它又有“总交换容量”、“工作交换容量”和“再生交换容量”等三种表示方式。
1-总交换容量:表示每单位数量(重量或体积)树脂能进行离子交换反应的化学基团的总量。
2-工作交换容量:表示树脂在某一定条件下的离子交换能力,它与树脂种类和总交换容量,以及具体工作条件如溶液的组成、流速、温度等因素有关。
3-再生交换容量:表示在一定的再生剂量条件下所取得的再生树脂的交换容量表明树脂中原有化学基团再生复原的程度。
通常,再生交换容量为总交换容量的50~90%(一般控制70~80%),而工作交换容量为再生交换容量的30~90%(对再生树脂而言),后一比率亦称为树脂的利用率。
在实际使用中,离子交换树脂的交换容量包括了吸附容量,但后者所占的比例因树脂结构不同而异。
现仍未能分别进行计算,在具体设计中,需凭经验数据进行修正,并在实际运行时复核之。
离子树脂交换容量的测定一般以无机离子进行。
这些离子尺寸较小,能自由扩散到树脂体内,与它内部的全部交换基团起反应。
而在实际应用时,溶液中常含有高分子有机物,它们的尺寸较大,难以进入树脂的显微孔中,因而实际的交换容量会低于用无机离子测出的数值。
这种情况与树脂的类型、孔的结构尺寸及所处理的物质有关。
离子交换树脂的吸附选择性离子交换树脂分为阴阳两种类型,阳离子交换树脂又分为强酸性和弱酸性,阴离子交换树脂分为强碱性和弱碱性。
离子交换树脂对溶液中的不同离子有不同的亲和力,对它们的吸附有选择性。
各种离子受树脂交换吸附作用的强弱程度有一般的规律,但不同的树脂可能略有差异。
主要规律如下:1-对阳离子的吸附:高价离子通常被优先吸附,而低价离子的吸附较弱。
铁,铜,锌的离子交换方法

铁,铜,锌的离子交换方法
对于铁、铜、锌的离子交换方法,需要采用不同的离子交换树脂。
以下是具体的步骤:
1. 铁的离子交换:可以选择强酸性阳离子交换树脂,这种树脂可以将废水中的铁离子吸附在树脂上,从而实现去除。
2. 铜的离子交换:可以采用弱酸性阳离子交换树脂来处理含铜电镀废水。
这种树脂对铜离子的吸附效果较好,可以将铜离子从废水中去除。
3. 锌的离子交换:可以选择强碱性阴离子交换树脂,这种树脂可以将废水中的锌离子吸附在树脂上,从而实现去除。
在离子交换过程中,需要对废水进行预处理,以防止悬浮物、油脂等杂质堵塞离子交换树脂。
预处理方法可以根据废水的具体情况选择,如过滤、沉淀等。
具体的操作步骤如下:
1. 选择适当粒度的离子交换树脂,将其装入离子交换柱中。
2. 用纯水浸泡树脂,使其充分膨胀。
3. 让废水通过离子交换柱,使树脂与废水中的铁、铜、锌离子进行交换。
4. 当树脂达到饱和状态时,用纯水清洗树脂,以去除剩余的铁、铜、锌离子。
通过以上步骤,就可以实现铁、铜、锌的离子交换,从而净化废水。
离子交换树脂的理化性能及使用指南
离子交换树脂的理化性能及使用指南WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】一、离子交换树脂的物理性能1.外观离子交换树脂的外观包括:颗粒的形状、颜色、完整性以及树脂中的异样颗粒和杂质等。
目前各种产品标准外观指标见表4-1。
表4-1 水处理用离子交换树脂外观2.水溶性浸出物将新树脂样品浸泡在水中,经过一定时间以后,可以在水中发现从树脂中浸出许多水溶性杂质,最明显的是聚苯乙烯系强酸性阳离子交换树脂。
一般只要有几天时间,浸泡树脂的水就呈棕色,时间越长颜色越深。
水的颜色一般是由生产中残留的低聚物和化工原料形成。
浸出物的性质一般表现如下:1)阴离子交换树脂的浸出物呈阳离子性质,其中主要有胺类和钠。
水溶性浸出物2)强酸性阳离子交换树脂的浸出物为低分子磺酸盐,这已为色谱法测定(浸出物的氧化物是硫酸根)所证明。
低分子硫酸盐可溶于水中,不断从阳树脂中释放出来,它会污染阴树脂,因此必须控制浸出物的含量。
食品工业、核工业等对树脂的水溶性浸出物有一定的限制。
随着人们对水质的不断提高,对一般工业所使用的树脂的水溶性浸出物允许量也会有所限制。
近年来,人们愈来愈重视强酸性阳离子交换树脂水溶性浸出物的危害,并要求对其进行定量测定。
因此,在新树脂投入使用初期,最好先进行1至2周期的试运行,尽量清洗树脂中的水溶性浸出物,在使用一段时间后,可取出阳树脂,进行水溶性浸出物的测定,以了解对阴树脂的污染状况。
3.含水量指单位质量树脂所含的非游离水分的多少,一般用百分数表示。
一定离子型的离子交换树脂颗粒内的含水量是树脂产品固有的性质之一。
它用单位质量的、经一定方法除去外部水分后的湿树脂颗粒内所含水分的百分数来表示。
离子交换树脂的含水量与树脂的类别、结构、酸碱性、交联度、交换容量、离子型态等因素有关。
树脂在使用中如果发生链的断裂、孔结构的变化、交换容量的下降等现象,其含水量也会随之发生变化。
如何鉴别离子交换树脂
如何鉴别离子交换树脂?如何鉴别离子交换树脂?在树脂的使用中,有时需判别某种树脂属于何种类型,下面是一种简易可行的鉴别方法。
第一步。
软化水设备,锅炉软化水设备①取树脂试样2mL,置于30mL试管中,吸去树脂上的附着水。
②加入1mol/L HCI 5mL,摇动1~2min,将树脂上部清液吸去。
重复操作2~3次。
③加纯水清洗,摇动后,将上部清液吸去。
重复操作2~3次。
④加入10%CuS04溶液5mL,摇动1min。
按③充分用纯水清洗。
第二步。
经第一步处理后,如树脂变色(浅绿),加入5 mol/1.NH。
OH溶液2mL,摇动1m_in,用纯水充分清洗后再观察。
如树脂经上述处理后,颜色加深(深蓝色),则为强酸性阳离子交换树脂。
如树脂颜色不变(仍为浅绿),则为弱碱性阴树脂。
第三步。
经第一步处理后,如树脂不变色,可按下述步骤进行:①加入1mol/L NaOH5mL,摇动1min后,用倾泻法充分清洗。
②加入酚酞5滴,摇动lmin,用纯水充分清洗。
③经上述处理后,若树脂呈红色,则为强碱性阴离子交换树脂。
第四步。
经第三步处理后,树脂仍不变色,可按下述步骤进行:①加入lmol/L HCl 5mL,摇动1~2min,矣受屣甜书纯水清洗2~3次。
②加入5滴甲基红,摇动1 min,用纯水充分清洗。
③经上述处理后,若树脂呈桃红色,则为弱酸性阳离子交换树脂。
经处理后,若树脂仍不变色,则无离子交换能力。
离子交换树脂是怎样命名的?软化水设备,锅炉软化水设备离子交换树脂的命名原则如下:①凝胶型离子交换树脂。
凝胶型离子交换树脂的型号由四个数字组成:②大孔型离子交换树脂。
大孔型离子交换树脂的型号。
由三个数字组成:③分类代号及名称。
分类代号及名称见表3—6所示。
④骨架代号及名称。
骨架代号及名称见表3—7所示。
⑤命名举例。
例如,001×7强酸性苯乙烯系阳离子交换树脂(其交联度为7),图解如下:其余离子交换树脂,如101、201、301等可依次类推。
离子交换树脂种类、型号和用途
离子交换树脂种类、型号和用途编号型号用途01 001*7(732)强酸性苯乙烯系阳离子交换树脂。
主要用于硬水软化、脱盐水、纯水与高纯水制备、湿法冶金、稀有元素分离、抗生素提取等。
02 201*7(717)强碱性苯乙烯系阴离子交换树脂。
主要用于纯水、高纯水制备、废水处理、生化制品提取。
03 001*4(734)强酸性苯乙烯系阳离子交换树脂。
主要用于高纯水制备及抗菌素的提炼等。
04 201*4(711)强碱性苯乙烯系I型阴离子交换树脂。
主要用于纯水制备、放射元素提炼、糖液脱色和系列化制品制备等。
05 D001大孔强酸性苯乙烯系阳离子交换树脂。
主要用于高速混库凝结水处理、高纯水处理、二级除盐混床、有机物含量高的水及机反应催化剂等。
06 D201大孔强碱性苯乙烯系阴离子交换树脂。
高要用于高速混床凝结水处理装置、废水处理、重金属回收。
07 D113大孔弱酸性苯丙烯系阳离子交换树脂。
主要用于除去水中的碳酸氢盐、碳酸盐及其它碱性盐类,本品与001*7(732)配套十分明显的除去水中的碱度和硬度。
08 D202大孔II强碱性苯乙烯系阴离子交换树脂。
用于纯水及高纯水制备,适用于含盐量较高的水源及生化物质提炼,糖液脱色。
09 D301大孔弱碱性苯乙烯系阴离子交换树脂。
主要用于高制备,电镀含铬废水处理等。
10 002*7超强性苯乙烯系阳离子交换树脂。
主要用于10吨以下锅炉软化水、温法冶金、稀有元素分离、搞生素提取等。
11 001*10(002SC)强酸性苯乙烯系阳离子交换树脂。
主要配套弱酸树脂用于双层床制备。
12 001*8IR超强均孔双聚苯乙系阳离子树脂。
主要用于软化水、纯水制备、提取赖氨酸、谷氨酸等。
Amberjet 1200Na13 D002催化剂树脂(干氢树脂)(大孔强酸性苯乙烯系阳离子交换树脂)。
主要用于甲醇、异丁烯醚化合成MTBE的反应中。
14 D254(D204)大孔强碱性季铵型阳离子交换树脂。
主要用于医药工业药物提取及肠粘膜中提取肝素钠。
第六章离子交换分离技术
第六章离子交换分离技术1.离子交换法是应用离子交换剂作为吸附剂通过静电引力吸附在离子交换器上,然后用洗脱剂洗脱下来从而达到分离、浓缩、纯化的目的。
现已广泛应用于生物分离过程在原料液脱色、除臭、目标产物的提取,浓缩和粗分离等方面发挥着重要作用。
2.离子交换法要使用离子交换剂,常用的离子交换剂有两种:使用人工高聚物作载体的离子交换树脂是使用多糖做载体的多糖基离子交换剂3.离子交换树脂是一种不溶于酸、碱和有机溶剂的固态高分子聚合物。
4.离子交换树脂的构成:载体或骨架:功能基团;平衡离子或可交换离子5.离子交换反应是可逆的,符合质量作用定律6.离子交换树脂按照活性离子的分类树脂活性离子带正电荷,可与溶液中的阳离子发生交换,称为阳离子交换树脂树脂活性离子带负电荷,可以溶液中的阴离子发生交换,称为阴离子离子交换树脂7.离子交换树脂分离纯化物质主要通过选择性吸附(进行吸附时具有较强的结合力)和分步洗脱这两个过程来实现8.强酸性阳离子交换树脂洗脱顺序:酸性<中性<碱性9.离子交换树脂的分类方法有4种按树脂骨架的主要成分分:聚苯乙烯型树脂;聚苯烯酸型树脂;多乙烯多氨-环氧氯苯烷树脂;酚-醛型树脂;按骨架的物理结构来分:凝胶型树脂(微孔树脂,呈透明状态,高分子骨架);大网格树脂(大树树脂,填充剂);均孔树脂(等孔树脂);按活性基团分类:阳离子交换树脂,对阳离子具有交换能力强酸性阳离子交换树脂:活性基团为硫酸基团(-SO3H)和次甲酸磺酸基团(-CH2SO3H)。
都是强酸性基团能在溶液中解离出H+。
弱酸性阳离子交换树脂:活性基团由羧基(-COOH)和酚羟基(-OH),交换能力差。
阴离子交换树脂:活性基团为碱性,对阴离子具有交换能力强碱性阴离子交换树脂:活性基团为季铵基团(-NR3OH),能在水中解离出OH-而呈碱性弱碱性阴离子交换树脂:伯氨基(-NH2)仲氨基(-NHR)或叔氨基(-NR2),能在水中解离出OH-,但解离能力较弱,交换能力差以上4种树脂是树脂的基本类型,各种树脂的强弱最好用其活性基团的pK来表示11.大孔型离子交换树脂的特点载体骨架交联度高,有较好的化学和物理稳定性和机械强度孔径大表面积大,表面吸附强孔隙率大,密度小12.离子交换树脂的命名由3位阿拉伯数字组成:第一位数字代表产品的分类,第二位数字代表骨架,第三位数字微顺序号13.离子交换树脂的理化性能:交联度;交换容量;粒度和形状(色谱用50到100目树脂,一般提取纯化用20到60目树脂);滴定曲线(是检验和测定离子交换树脂性能的重要数据);稳定性;膨胀性(膨胀度)14.交换容量(名解):是每克干燥的离子交换树脂或每毫升完全溶胀的离子交换树脂所能吸附的一价离子的毫摩尔数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
强碱性阴离子交换树脂
强碱性阴离子交换树脂,AMBERLITE IRA900Cl是一种具有四基胺官能基的一型强碱大孔性苯乙烯系阴离子交换树脂。
这特性使得它可除去所有的阴离子,包含如二氧化硅的弱解离性离子。
大孔结构包含了大的孔隙,呈现类似海绵的基底。
此特性加上加碱基,使它可除去溶解性的大颗粒有机质分子。
同时,大孔性结构具有较佳的抗机械耗损及抗渗透性冲击能力。
跟坚诺士一起来看下线切割树脂与强碱性阴离子交换树脂,话说的线切割树胶就是在线切割加工中用到的树脂。
好的线切割树脂能增强线切割加工的效率及其性质,线切割树脂对线切割机床的影响还是很大的,在很大程度上也会影响到机床的运行及保养,。
而我们下面一起来目的看下强碱性阴离子交换树脂的强大之处,这个树脂主要是用在工业上面。