专题因动点产生的直角三角形问题

合集下载

函数中因动点产生的直角三角形问题

函数中因动点产生的直角三角形问题

专题6:函数中因动点产生的直角三角形问题构造直角三角形的方法: 1.要分别考虑以三点为直角顶点的情况 2.再利用相似、勾股定理或者锐角三角函数的相关知识计算,从而求出对应的点坐标.例题、已知:如图一次函数y =12x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =12x 2+bx +c 的图象与一次函数y =12x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.解:(1)将B (0,1),D (1,0)的坐标代入y =12x 2+bx +c 得 1,10.2c b c =⎧⎪⎨++=⎪⎩得解析式y =12x 2-32x +1………………3分 (2)设C (x 0,y 0),则有00200011,13 1.22y x y x x ⎧=+⎪⎨⎪=-+⎩解得004,3.x y =⎧⎨=⎩∴C (4,3).………6分 由图可知:S =S △ACE -S △ABD .又由对称轴为x =32可知E (2,0). ∴S =12AE ·y 0-12AD ×OB =12×4×3-12×3×1=92………………………8分 当P 为直角顶点时,如图:过C 作CF ⊥x 轴于F .∵Rt△BOP ∽Rt△PFC ,∴BO OP PF CF =.即143a a =-. 整理得a 2-4a +3=0.解得a =1或a =3∴所求的点P 的坐标为(1,0)或(3,0)综上所述:满足条件的点P 共有二个………………12分(3)设符合条件的点P 存在,令P (a ,0):当P 为直角顶点时,如图:过C 作CF ⊥x 轴于F ,∵Rt △BOP ∽Rt △PFC ,∴CF OP PF BO =,即341a a =-, 整理得a 2-4a+3=0,解得a=1或a=3,∴所求的点P 的坐标为(1,0)或(3,0), 综上所述:满足条件的点P 共有二个。

3、因动点产生的直角三角形问题

3、因动点产生的直角三角形问题

11、直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.O A CBxy2C A BE F MN 图①CABEF MN 图②2、已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(Ⅰ)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图①,求证:222BN AM MN +=;思路点拨:考虑222BN AM MN +=符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM ,连DN ,只需证BN DN =,︒=∠90MDN 就可以了. 请你完成证明过程:(Ⅱ)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.3、如图,已知A、B是线段MN上的两点,4MN,1=MB.以A为中心顺时针旋转点M,以B>=MA,1为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设xAB=.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;(3)探究:△ABC的最大面积? CA B NM3。

1.3因动点产生的的直角三角形问题.doc

1.3因动点产生的的直角三角形问题.doc

因动点产生的的直角三角形问题
24、在平面直角坐标系xOy 中,抛物线234
54122+-++--=m m x m x m y 与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上.
(1)求B 点的坐标;
(2)点P 在线段OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动).
①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;
②若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点、N 点也随之运动).
若P 点运动到t 秒时,两个等腰直角三角形分别有一条
边恰好落在同一条直线上,求此刻t 的值.
24.(本题满分12分,每小题满分各6分)
已知:直角坐标系xoy 中,将直线y kx =沿y 轴向下平移3个单位
长度后恰好经过B (-3,0)及y 轴上的C 点.若抛物线c bx x y ++-=2
与x 轴交于A ,B 两点(点A 在点B 的右侧),且经过点C ,
(1)求直线BC 及抛物线的解析式;
(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,
求点P 的坐标;。

二次函数中因动点产生的直角三角形压轴题问题

二次函数中因动点产生的直角三角形压轴题问题

求 k 应满足的条件以及 x 的取值范围;
(3)设二次函数的图象的顶点为 Q,当△ABQ 是以 AB 为斜边的直角三角形时,求 k
的值.
考点剖析 本题考查了反比例函数性质、二次函数性质、待定系数法、勾股定理、数
形结合思想等,是一道难度较大的综合题.将“△ABQ 是直角三角形”这一条件与反比例
函数图象的中心对称性结合是解 题的关键.
解 (1)易得 y=- 2 ; x
(2)在反比例函数 y= k 中,如果 y 随 x 增大而增大,那么 k<0. x
当 k<0 时,抛物线的开口向下,在对称轴左侧,y 随 x 增大而增大,
因为抛物线 [来源:Z*xx* k. Com]
y=k(x2+x+1)=k(x+)2- 5 k 的对称轴是直线 x=- 1 .
解题思路 (1)直接设 y=0,解一元二次方程即可得答案;(2)△ACB 的面积可以说是 已知的,然后由“△ACD 的面积等于△ACB 的面积”,可求出点 D 的坐标,注意点 D 可 能在 AC 的上方,也可能在其下方,要分类讨论;(3)条件“以 A、B、M 为顶点所作的直
角三角形有且只有三个”隐含的意义就是只能是这三个顶点分别为直角三角形的直角顶
二次函数中因动点产生的直角三角形压轴题问题
动点问题是近年来中考的一个热点问题,解这类题目要“以静制动”,即把动态问题, 变为静态问题来解.一般方法是,首先根据题意,理清题目中两个变量 x、y 的变化情况, 并找出相关常量;第 二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相 关的量用一个自变量的表达式表达出来;第三,确定自变量的取值范围,画出相应的图象.
其实就是一个已知条件,通过两者间的关系建立模型,进而求解.

中考复习专题一 动点类问题专题(二)

中考复习专题一 动点类问题专题(二)

中考复习专题一:动点问题 3、因动点产生的直角三角形问题 例1、如图,在Rt△ABC中,∠ACB=90°,AB=13,CD//AB,点E为射线CD上一动点(不与点C重合),

联结AE交边BC于F,∠BAE的平分线交BC于点G. (1)当CE=3时,求S△CEF∶S△CAF的值; (2)设CE=x,AE=y,当CG=2GB时,求y与x之间的函数关系式; (3)当AC=5时,联结EG,若△AEG为直角三角形,求BG的长.

例2、抛物线233384yxx与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.

(1)求点A、B的坐标; (2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标; (3)若直线l过点E(4, 0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有....三个时,

求直线l的解析式. 例3在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).

(1)当k=-2时,求反比例函数的解析式; (2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围; (3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.

例4已知A、B是线段MN上的两点,4MN,1MA,1MB.以A为中心顺时针旋转点M,以B为中心

逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设xAB. (1)求x的取值范围; (2)若△ABC为直角三角形,求x的值; (3)探究:△ABC的最大面积? 4、因动点产生的平行四边形问题 例1在平面直角坐标系中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A、B两点(点A在点B的左侧),

经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC. (1)直接写出点A的坐标,并求直线l的函数表达式(其中k、b用含a的式子表示);

因动点产生的直角三角形问题

因动点产生的直角三角形问题

因动点产生的直角三角形问题例1 2012年广州市中考第24题如图1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.图1思路点拨1.根据同底等高的三角形面积相等,平行线间的距离处处相等,可以知道符合条件的点D 有两个.2.当直线l 与以AB 为直径的圆相交时,符合∠AMB =90°的点M 有2个;当直线l 与圆相切时,符合∠AMB =90°的点M 只有1个.3.灵活应用相似比解题比较简便.满分解答(1)由23333(4)(2)848y x x x x =--+=-+-,得抛物线与x 轴的交点坐标为A (-4, 0)、B (2, 0).对称轴是直线x =-1.(2)△ACD 与△ACB 有公共的底边AC ,当△ACD 的面积等于△ACB 的面积时,点B 、D 到直线AC 的距离相等.过点B 作AC 的平行线交抛物线的对称轴于点D ,在AC 的另一侧有对应的点D ′. 设抛物线的对称轴与x 轴的交点为G ,与AC 交于点H .由BD //AC ,得∠DBG =∠CAO .所以34DG CO BG AO ==.所以3944DG BG ==,点D 的坐标为9(1,)4-.因为AC //BD ,AG =BG ,所以HG =DG .而D ′H =DH ,所以D ′G =3DG 274=.所以D ′的坐标为27(1,)4.图2 图3(3)过点A 、B 分别作x 轴的垂线,这两条垂线与直线l 总是有交点的,即2个点M . 以AB 为直径的⊙G 如果与直线l 相交,那么就有2个点M ;如果圆与直线l 相切,就只有1个点M 了.联结GM ,那么GM ⊥l .在Rt △EGM 中,GM =3,GE =5,所以EM =4.在Rt △EM 1A 中,AE =8,113tan 4M A M EA AE ∠==,所以M 1A =6. 所以点M 1的坐标为(-4, 6),过M 1、E 的直线l 为334y x =-+.根据对称性,直线l 还可以是334y x =+.考点伸展第(3)题中的直线l 恰好经过点C ,因此可以过点C 、E 求直线l 的解析式. 在Rt △EGM 中,GM =3,GE =5,所以EM =4. 在Rt △ECO 中,CO =3,EO =4,所以CE =5.因此三角形△EGM ≌△ECO ,∠GEM =∠CEO .所以直线CM 过点C .例2 2012年杭州市中考第22题在平面直角坐标系中,反比例函数与二次函数y =k (x 2+x -1)的图象交于点A (1,k )和点B(-1,-k ).(1)当k =-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y 随x 增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.思路点拨1.由点A (1,k )或点B (-1,-k )的坐标可以知道,反比例函数的解析式就是ky x=.题目中的k 都是一致的.2.由点A (1,k )或点B (-1,-k )的坐标还可以知道,A 、B 关于原点O 对称,以AB 为直径的圆的圆心就是O .3.根据直径所对的圆周角是直角,当Q 落在⊙O 上是,△ABQ 是以AB 为直径的直角三角形.满分解答(1)因为反比例函数的图象过点A (1,k ),所以反比例函数的解析式是k y x=. 当k =-2时,反比例函数的解析式是2y x=-.(2)在反比例函数ky x=中,如果y 随x 增大而增大,那么k <0.当k <0时,抛物线的开口向下,在对称轴左侧,y 随x 增大而增大.抛物线y =k (x 2+x +1)=215()24k x k +-的对称轴是直线12x =-. 图1所以当k <0且12x <-时,反比例函数与二次函数都是y 随x 增大而增大.(3)抛物线的顶点Q 的坐标是15(,)24k --,A 、B 关于原点O 中心对称,当OQ =OA =OB 时,△ABQ 是以AB 为直径的直角三角形.由OQ 2=OA 2,得222215()()124k k -+-=+.解得1233k =(如图2),2233k =-(如图3).图2 图3考点伸展如图4,已知经过原点O 的两条直线AB 与CD 分别与双曲线ky x=(k >0)交于A 、B 和C 、D ,那么AB 与CD 互相平分,所以四边形ACBD 是平行四边形.问平行四边形ABCD 能否成为矩形?能否成为正方形?如图5,当A 、C 关于直线y =x 对称时,AB 与CD 互相平分且相等,四边形ABCD 是矩形.因为A 、C 可以无限接近坐标系但是不能落在坐标轴上,所以OA 与OC 无法垂直,因此四边形ABCD 不能成为正方形.图4 图5例3 2011年沈阳市中考第25题如图1,已知抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.①当线段34PQ AB=时,求tan∠CED的值;②当以C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.图1思路点拨1.第(1)、(2)题用待定系数法求解析式,它们的结果直接影响后续的解题.2.第(3)题的关键是求点E的坐标,反复用到数形结合,注意y轴负半轴上的点的纵坐标的符号与线段长的关系.3.根据C、D的坐标,可以知道直角三角形CDE是等腰直角三角形,这样写点E的坐标就简单了.满分解答(1)设抛物线的函数表达式为2(1)y x n=-+,代入点C(0,-3),得4n=-.所以抛物线的函数表达式为22(1)423y x x x=--=--.(2)由223(1)(3)y x x x x=--=+-,知A(-1,0),B(3,0).设直线BC的函数表达式为y kx b=+,代入点B(3,0)和点C(0,-3),得30,3.k bb+=⎧⎨=-⎩解得1k=,3b=-.所以直线BC的函数表达式为3y x=-.(3)①因为AB=4,所以334PQ AB==.因为P、Q关于直线x=1对称,所以点P的横坐标为12-.于是得到点P的坐标为17,24⎛⎫--⎪⎝⎭,点F的坐标为70,4⎛⎫-⎪⎝⎭.所以75344FC OC OF=-=-=,522 EC FC==.进而得到51322OE OC EC=-=-=,点E的坐标为10,2⎛⎫-⎪⎝⎭.直线BC:3y x=-与抛物线的对称轴x=1的交点D的坐标为(1,-2).过点D作DH⊥y轴,垂足为H.在Rt△EDH中,DH=1,13222EH OH OE=-=-=,所以tan∠CED23DHEH==.②1(12,2)P--,265 (1,)22P--.图2 图3 图4考点伸展第(3)题②求点P的坐标的步骤是:如图3,图4,先分两种情况求出等腰直角三角形CDE的顶点E的坐标,再求出CE的中点F的坐标,把点F的纵坐标代入抛物线的解析式,解得的x的较小的一个值就是点P 的横坐标.例4 2011年浙江省中考第23题设直线l1:y=k1x+b1与l2:y=k2x+b2,若l1⊥l2,垂足为H,则称直线l1与l2是点H的直角线.(1)已知直线①122y x=-+;②2y x=+;③22y x=+;④24y x=+和点C(0,2),则直线_______和_______是点C的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC的顶点A(3,0)、B(2,7)、C(0,7),P为线段OC上一点,设过B、P两点的直线为l1,过A、P两点的直线为l2,若l1与l2是点P的直角线,求直线l1与l2的解析式.答案:(1)直线①和③是点C 的直角线.(2)当∠APB =90°时,△BCP ∽△POA .那么BC PO CP OA =,即273POPO =-.解得OP =6或OP =1.如图2,当OP =6时,l 1:162y x =+, l 2:y =-2x +6. 如图3,当OP =1时,l 1:y =3x +1, l 2:113y x =-+.图2 图3例5 2010年北京市中考第24题在平面直角坐标系xOy 中,抛物线22153244m my x x m m -=-++-+与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上.(1)求点B 的坐标;(2)点P 在线段OA 上,从点O 出发向点A 运动,过点P 作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当点P 运动时,点C 、D 也随之运动).①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;②若点P 从点O 出发向点A 作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从点A 出发向点O 作匀速运动,速度为每秒2个单位(当点Q 到达点O 时停止运动,点P 也停止运动).过Q 作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当点Q 运动时,点M 、N 也随之运动).若点P 运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.图1思路点拨1.这个题目最大的障碍,莫过于无图了.2.把图形中的始终不变的等量线段罗列出来,用含有t 的式子表示这些线段的长. 3.点C 的坐标始终可以表示为(3t ,2t ),代入抛物线的解析式就可以计算此刻OP 的长. 4.当两个等腰直角三角形有边共线时,会产生新的等腰直角三角形,列关于t 的方程就可以求解了.满分解答(1) 因为抛物线22153244m my x x m m -=-++-+经过原点,所以2320m m -+=. 解得12m =,21m =(舍去).因此21542y x x =-+.所以点B 的坐标为(2,4).(2) ①如图4,设OP 的长为t ,那么PE =2t ,EC =2t ,点C 的坐标为(3t , 2t ).当点C 落在抛物线上时,2152(3)342t t t =-⨯+⨯.解得229t OP ==. ②如图1,当两条斜边PD 与QM 在同一条直线上时,点P 、Q 重合.此时3t =10.解得103t =. 如图2,当两条直角边PC 与MN 在同一条直线上,△PQN 是等腰直角三角形,PQ =PE .此时1032t t -=.解得2t =.如图3,当两条直角边DC 与QN 在同一条直线上,△PQC 是等腰直角三角形,PQ =PD .此时1034t t -=.解得107t =.图1 图2 图3考点伸展在本题情境下,如果以PD 为直径的圆E 与以QM 为直径的圆F 相切,求t 的值. 如图5,当P 、Q 重合时,两圆内切,103t =. 如图6,当两圆外切时,30202t =-图4 图5 图6例6 2009年嘉兴市中考第24题如图1,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =.(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?图1思路点拨1.根据三角形的两边之和大于第三边,两边之差小于第三边列关于x 的不等式组,可以求得x 的取值范围.2.分类讨论直角三角形ABC ,根据勾股定理列方程,根据根的情况确定直角三角形的存在性.3.把△ABC 的面积S 的问题,转化为S 2的问题.AB 边上的高CD 要根据位置关系分类讨论,分CD 在三角形内部和外部两种情况.满分解答:(1)在△ABC 中,1=AC ,x AB =,x BC -=3,所以⎩⎨⎧>-+->+.31,31x x x x 解得21<<x .(2)①若AC 为斜边,则22)3(1x x -+=,即0432=+-x x ,此方程无实根. ②若AB 为斜边,则1)3(22+-=x x ,解得35=x ,满足21<<x . ③若BC 为斜边,则221)3(x x +=-,解得34=x ,满足21<<x . 因此当35=x 或34=x 时,△ABC 是直角三角形.(3)在△ABC 中,作AB CD ⊥于D ,设h CD =,△ABC 的面积为S ,则xh S 21=. ①如图2,若点D 在线段AB 上,则x h x h =--+-222)3(1.移项,得2221)3(h x h x --=--.两边平方,得22222112)3(h h x x h x -+--=--.整理,得4312-=-x h x .两边平方,得16249)1(222+-=-x x h x .整理,得16248222-+-=x x h x所以462412222-+-==x x h x S 21)23(22+--=x (423x <≤). 当23=x 时(满足423x <≤),2S 取最大值21,从而S 取最大值22.图2 图3②如图3,若点D 在线段MA 上,则x h h x =----2221)3(. 同理可得,462412222-+-==x x h x S 21)23(22+--=x (413x <≤). 易知此时22<S . 综合①②得,△ABC 的最大面积为22. 考点伸展第(3)题解无理方程比较烦琐,迂回一下可以避免烦琐的运算:设a AD =,例如在图2中,由2222BD BC AD AC -=-列方程222)()3(1a x x a ---=-.整理,得xx a 43-=.所以 21a -22216248431x x x x x -+-=⎪⎭⎫⎝⎛--=. 因此462)1(412222-+-=-=x x a x S .例 7 2008年河南省中考第23题如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.图1思路点拨1.第(1)题说明△ABC 是等腰三角形,暗示了两个动点M 、N 同时出发,同时到达终点.2.不论M 在AO 上还是在OB 上,用含有t 的式子表示OM 边上的高都是相同的,用含有t 的式子表示OM 要分类讨论.3.将S =4代入对应的函数解析式,解关于t 的方程.4.分类讨论△MON 为直角三角形,不存在∠ONM =90°的可能.满分解答:(1)直线434+-=x y 与x 轴的交点为B (3,0)、与y 轴的交点C (0,4).Rt△BOC 中,OB =3,OC =4,所以BC =5.点A 的坐标是(-2,0),所以BA =5.因此BC =BA ,所以△ABC 是等腰三角形.(2)①如图2,图3,过点N 作NH ⊥AB ,垂足为H .在Rt △BNH 中,BN =t ,4sin 5B =,所以45NH t =. 如图2,当M 在AO 上时,OM =2-t ,此时211424(2)22555S OM NH t t t t =⋅⋅=-⨯=-+.定义域为0<t ≤2.如图3,当M 在OB 上时,OM =t -2,此时211424(2)22555S OM NH t t t t =⋅⋅=-⨯=-. 定义域为2<t ≤5.图2 图3②把S =4代入22455S t t =-,得224455t t -=.解得1211t =+,2211t =-(舍去负值).因此,当点M 在线段OB 上运动时,存在S =4的情形,此时211t =+.③如图4,当∠OMN =90°时,在Rt △BNM 中,BN =t ,BM 5t =-,3cos 5B =,所以535t t -=.解得258t =. 如图5,当∠OMN =90°时,N 与C 重合,5t =.不存在∠ONM =90°的可能. 所以,当258t =或者5t =时,△MON 为直角三角形.图4 图5 考点伸展在本题情景下,如果△MON 的边与AC 平行,求t 的值.如图6,当ON //AC 时,t =3;如图7,当MN //AC 时,t =2.5.图6 图7。

31 动点引起的等腰直角三角形存在性问题-【初中数学】120个题型大招!冲刺满分秘籍!

动点引起的等腰直角三角形存在性问题△ABP 为等腰直角三角形,黑色部分为P 点位置.【一题多解·典例剖析】例题1.(2021·湖南衡阳市中考)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如()()1,1,2021,2021……都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标;(2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线2y x 2x 3=-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线2y x 2x 3=-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC △,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)(2,2)、(-2,-2);(2)①0<c<4;②45°;(3)存在,P 点坐标为315,24⎛⎫ ⎪⎝⎭或312⎛⎫⎪⎪⎝⎭或31,2⎛⎫⎪⎝⎭.【解析】解:(1)联立4yxy x⎧=⎪⎨⎪=⎩,解得:22xy=⎧⎨=⎩或22xy=-⎧⎨=-⎩即:函数4yx=上的雁点坐标为(2,2)、(-2,-2).(2)①联立25y xy ax x c=⎧⎨=++⎩得ax2+4x+c=0∵这样的雁点E只有一个,即该一元二次方程有两个相等的实根,∴△=16-4ac=0,即ac=4∵a>1∴a=4c>1,即4c-1>0,4cc->0,解得:0<c<4.②由①知,E点坐标为:x=422a a-=-,即E22,a a⎛⎫--⎪⎝⎭在y=ax2+5x+4a中,当y=0时,得:x=-4a,x=-1a即M点坐标为(-4a,0),N点坐标为(-1a,0)过E点向x轴作垂线,垂足为H点,EH=2a,MH=242()a a a---=∴EH=MH即△EMH为等腰直角三角形,∠EMN=45°.(3)存在,理由如下:①如图所示:过P作直线l垂直于x轴于点k,过C作CH⊥PK于点H方法一设C(m,m),P(x,y)∵△CPB为等腰三角形,∴PC=PB,∠CPB=90°,∴∠KPB+∠HPC=90°,∵∠HPC+∠HCP=90°,∴∠KPB=∠HCP,∵∠H=∠PKB=90°,∴△CHP ≌△PKB ,∴CH =PK ,HP =KB ,即3m x y m y x -=⎧⎨-=-⎩∴3232x y m ⎧=⎪⎪⎨⎪=-⎪⎩即P (32,154).方法二设P (m ,-m 2+2m+3),同理,CH =PK ,HP =KB ,则C (m -m 2+2m+3,-m 2+2m+3+3-m )∵C 为雁点∴m -m 2+2m+3=-m 2+2m+3+3-m ,解得:m=32,即P (32,154).②如图所示,同理可得:△KCP ≌△JPB∴KP =JB ,KC =JP方法一设P (x ,y ),C (m ,m )∴KP =x -m ,KC =y -m ,JB =y ,JP =3-x ,即3x m y y m x-=⎧⎨-=-⎩解得3232x m y ⎧=+⎪⎪⎨⎪=⎪⎩则P 23(,)22或23(,)22方法二设P (m ,-m 2+2m+3),则C (m -(-m 2+2m+3),-m 2+2m+3-(3-m ))∴m -(-m 2+2m+3)=-m 2+2m+3-(3-m ),解得:③如图所示,此时P 与第②种情况重合综上所述,符合题意P 的坐标为(32,154)或3()22,或23()22,.【一题多解·对标练习】练习1.(2021·湖南省怀化市中考)如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且2OA =,4OB =,8OC =.(1)求抛物线的解析式;(2)点Q 是抛物线上位于x 轴上方的一点,点R 在x 轴上,是否存在以点Q 为直角顶点的等腰Rt CQR △?若存在,求出点Q 的坐标,若不存在,请说明理由.【答案】(1)y=-x2+2x+8;(2)存在,13313322Q⎫++⎪⎪⎝⎭或34141322Q⎛⎫⎪⎪⎝⎭.【解析】解:(1)∵OA=2,OB=4,OC=8,∴A(-2,0),B(4,0),C(0,8),设二次函数的解析式为y=a(x+2)(x-4),将(0,8)代入得:a=-1即抛物线的解析式为:y=-x2+2x+8;(2)存在以点Q为直角顶点的等腰直角△CQR,理由如下:①当点Q在第二象限时,如图所示过点Q作QL⊥x轴于点L,过点C作CK⊥QL,交其延长线于点K,∴∠CKQ=∠QLR=∠COL=90°,∴四边形COLK是矩形,∴CK=OL,∵CQR为等腰直角三角形,∴CQ=QR,∠CQR=90°,∴∠KCQ=∠LQR∴△KCQ ≌△LQR∴RL=QK ,QL=CK ,设R (m ,0),Q (x ,y )则m -x=8-y-x=y即-x=-x 2+2x+8,解得:x=32-或x=32+(舍)则Q (32-,32)②当点Q 在第一象限时,如图所示同理可得:x=-x 2+2x+8,解得:x=12或x=12-(舍),∴Q ⎫⎪⎝⎭.综上所述,满足题意的Q 点坐标为1122⎛⎫ ⎪⎝⎭或3322⎛⎫- ⎪⎝⎭.【多题一解·典例剖析】例题2.(2021·四川省广安市中考)如图,在平面直角坐标系中,抛物线2y x bx c =-++的图象与坐标轴相交于A 、B 、C 三点,其中A 点坐标为()3,0,B 点坐标为()1,0-,连接AC 、BC .动点P 从点A 出发,在线段AC 个单位长度向点C 做匀速运动;同时,动点Q 从点B 出发,在线段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)求b 、c 的值;(2)在P 、Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少?(3)在线段AC 上方的抛物线上是否存在点M ,使MPQ 是以点P 为直角顶点的等腰直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)b =2,c =3;(2)t =2,最小值为4;(3)【解析】解:(1)∵抛物线y =-x 2+bx +c 经过点A (3,0),B (-1,0),则09301b c b c =-++⎧⎨=--+⎩,解得:23b c =⎧⎨=⎩;(2)由(1)得:抛物线表达式为y =-x 2+2x +3,C (0,3),A (3,0),∴△OAC 是等腰直角三角形,由点P 的运动可知:AP,过点P 作PE ⊥x 轴,垂足为E ,∴AE =PE t ,即E (3-t ,0),又Q (-1+t ,0),∴S 四边形BCPQ =S △ABC -S △APQ =()11433122t t ⨯⨯-⨯--+⎡⎤⎣⎦=21262t t -+∴当t =2时,四边形BCPQ 的面积最小,最小值为4.(3)如图,过点P 作x 轴的垂线,交x 轴于E ,过M 作y 轴的垂线,与EP 交于F,∵△PMQ 是等腰直角三角形,PM =PQ ,∠MPQ =90°,∴∠MPF +∠QPE =90°,又∠MPF +∠PMF =90°,∴∠PMF =∠QPE ,在△PFM 和△QEP 中,F QEP PMF QPE PM PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFM ≌△QEP ,∴MF =PE =t ,PF =QE =4-2t ,∴EF =4-2t +t =4-t ,又OE =3-t ,∴点M 的坐标为(3-2t ,4-t ),∴4-t =-(3-2t )2+2(3-2t )+3,解得:t,∴M.【多题一解·对标练习】练习2.(2021·山东枣庄中考)如图,在平面直角坐标系中,直线132y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线213y x bx c =++经过坐标原点和点A ,顶点为点M .(1)求抛物线的关系式及点M 的坐标;(2)将直线AB 向下平移,得到过点M 的直线y mx n =+,且与x 轴负半轴交于点C ,取点()2,0D ,连接DM ,求证:45ADM ACM ∠-∠=︒.【答案】(1)y=13x2-2x,M(3,-3);(2)见解析.【解析】解:(1)∵直线AB:y=-12x+3交坐标轴与A、B∴A(6,0),B(0,3)将(6,0),(0,0)代入y=13x2+bx+cx得:1260b cc++=⎧⎨=⎩,解得:2bc=-⎧⎨=⎩,∴抛物线的关系式为y=13x2-2x,顶点M的坐标为(3,-3);(2)由题意得:m=1 2-,将点(3,-3)代入y=12-x+n得:n=32-,则直线CM的解析式为y=12-x32-,如图,过点D作DH⊥CM于H,设直线DM的解析式为y=2x+k,将点(2,0)代入得:4+k=0,解得k=-4,则直线DH的解析式为:y=2x-4,联立132224y x y x ⎧=--⎪⎨⎪=-⎩,解得12x y =⎧⎨=-⎩,即H (1,-2),∴=,=即DH=MH ,又DH ⊥CM ,即三角形DHM 是等腰直角三角形,∠DMH=45°,∴∠ADM=∠ACM+45°即∠ADM -∠ACM=45°.练习3.(2021·湖北黄石中考)抛物线22y ax bx b =-+(0a ≠)与y 轴相交于点()0,3C -,且抛物线的对称轴为3x =,D 为对称轴与x 轴的交点.(1)求抛物线的解析式;(2)在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E 、F 两点,若DEF 是等腰直角三角形,求DEF的面积.【答案】(1)y=-x 2+6x -3;(2)4.【解析】解:(1)由抛物线与y 轴相交于点(0,-3),得b=-3,∵抛物线的对称轴为x=3,即232b a--=,解得:a=-1∴抛物线的解析式为y=-x 2+6x -3.(2)过点E 作EM ⊥AB 于点M ,过点F 作FN ⊥AB 于N ,∵△DEF是等腰直角三角形∴DE=DF,∠FED=∠EFD=45°∵EF∥x轴∴∠EDM=45°∴△EMD为等腰直角三角形∴EM=DM设E(m,-m2+6m-3),则M(m,0),DM=3-m,EM=-m2+6m-3,∴3-m=-m2+6m-3解得:m=1或m=6当m=1时,E(1,2),符合题意,DM=EM=2,MN=4,△DEF的面积为4当m=6时,E(6,-3),舍去,综上所述:△DEF的面积为4.。

因动点产生的相似三角形问题 - 专题

因动点产生的相似三角形问题关键词:动点、相似三角形动点:运动的点或者说是不确定的点,有时题目中会明确指出动点,有时题目中相关点的坐标含有参数,换言之就是在不同的条件下会有不同的位置,或者满足条件的位置有多个。

相似三角形:对应角相等,对应边成比例的两个或多个三角形,两个三角形相似的判定定理一般说来有3个,定理1:两个角对应相等,两三角形相似‘AA”定理2:两边对应成比例且夹角相等“SAS”定理3:三边对应成比例。

“SSS”相似三角形的判定这3个定理,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分AB DEAC DF=和AB DFAC DE=两种情况列方程.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).两个直角三角形相似的判定方法(1)有一个锐角对应相等的两个直角三角形相似.(2)两条直角边对应成比例的两个直角三角形相似.(3)斜边和一条直角边对应成比例的两个直角三角形相似.如果要讨论相似的两个三角形中有一个是直角三角形:如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.由动点产生的相似三角形问题一般在函数和几何图中出现,其中以函数表现居多。

题型一般有是否存在点P,使得:①△PDE∽△ABC②以P、D、E为顶点的三角形与△ABC相似或者通过动点产生相似解决有关问题一般以大题为主,也有出现在填空后两题。

函数中因动点产生的相似三角形问题一般有三个解题过程:①求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。

【专题突破】直角三角形中动点问题的分类讨论

【专题突破】直角三角形中动点问题的分类讨论在全国各地的中考试卷中,动点产生的直角三角形问题经常出现,有好多同学看见这样的题目,找不到思考的方向。

下面给大家总结一下这类题常用的解法,很有参考价值,以下内容都是干货,不凑字数,力求精炼。

【方法技巧】1、两个定点求一个动点。

这种题目找点方法是过两个定点做垂线,以定长为直径画圆,简称“两个垂直一个圆”。

通过这样的作图法,可以快速找到符合题意的点,这就是常说的找点。

求点的方法,构造三垂直模型,根据直角两侧有相似就可以求解。

2、两个动点或三个动点。

因为三角形只有三个角,所以分三种情况讨论就可以了!当然有时也有直角不成立的情况。

当它们分别为直角时,用相似或勾股定理求解,一般情况下,相似求解比勾股定理要简单一些。

【典型例题】【答案解析】动点在直角三角中的分类讨论在全国各地的中考试卷中,动点产生的直角三角形问题经常出现,有好多同学看见这样的题目,找不到思考的方向。

下面给大家总结一下这类题常用的解法,很有参考价值,以下内容都是干货,不凑字数,力求精炼。

【方法技巧】1、两个定点求一个动点。

这种题目找点方法是过两个定点做垂线,以定长为直径画圆,简称“两个垂直一个圆”。

通过这样的作图法,可以快速找到符合题意的点,这就是常说的找点。

求点的方法,构造三垂直模型,根据直角两侧有相似就可以求解。

2、两个动点或三个动点。

因为三角形只有三个角,所以分三种情况讨论就可以了!当然有时也有直角不成立的情况。

当它们分别为直角时,用相似或勾股定理求解,一般情况下,相似求解比勾股定理要简单一些。

【典型例题1】图1【思路分析】【答案解析】【典型例题2】【思路分析】【答案解析】更多内容见公众号:初中数学解题思路来源:初中数学解题思路。

中考数学专题练习 动点构成直角三角形问题

2020中考动点构成直角三角形专题例1.如图1,在平面直角坐标系中,已知点A的坐标是(4, 0),并且OA=OC=4OB,动点P 在过A、B、C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F.连结EF,当线段EF最短时,求点P的坐标.图1例2.如图1,二次函数y=a(x2-2mx-3m2)(其中a、m是常数,且a>0,m>0)的图象与x轴分别交于A、B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD//AB,连结AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的式子表示a;(2)求证:ADAE为定值;(3)设该二次函数的图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.图1例3.如图1,已知抛物线y=-x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连结BC.(1)求A、B、C三点的坐标;(2)若点P为线段BC上的一点(不与B、C重合),P M∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求△BPN的周长;(3)在(2)的条件下,当BCM的面积最大时,在抛物线的对称轴上存在点Q,使得△CNQ 为直角三角形,求点Q的坐标.图1例4.如图1,在Rt△ABC中,∠ACB=90°,AB=13,CD//AB,点E为射线CD上一动点(不与点C重合),连结AE交边BC于F,∠BAE的平分线交BC于点G.(1)当CE=3时,求S△CEF∶S△CAF的值;(2)设CE=x,AE=y,当CG=2GB时,求y与x之间的函数关系式;(3)当AC=5时,连结EG,若△AEG为直角三角形,求BG的长.图1例5.如图1,在平面直角坐标系中,二次函数的图象经过点A(-1,0)、B(4, 0)、C(0, 2).点D是点C关于原点的对称点,连结BD,点E是x轴上的一个动点,设点E的坐标为(m, 0),过点E作x轴的垂线l交抛物线于点P.(1)求这个二次函数的解析式;(2)当点E在线段OB上运动时,直线l交BD于点Q,当四边形CDQP是平行四边形时,求m的值;(3)是否存在点P,使△BDP是不以BD为斜边的直角三角形,如果存在,请直接写出点P的坐标;如果不存在,请说明理由.图1 备用图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因动点产生的直角三角形问题 姓名:__________
课前准备
1.正方形ABCD的边长为4,CN=1,M是BC上的一个动点.当BM= 时,AM⊥MN.

变式1:如图,在Rt△ABC中,∠C=90°,BC=8,AC=6,动点Q从B点开始在线段BA
上以每秒2个单位长度的速度向点A移动,同时点P从A点开始在线段AC上以每秒1个
单位长度的速度向点C移动.当一点停止运,另一点也随之停止运动.设点Q,P移动的时
间为t秒.当t=_____________时,△APQ 是直角三角形

变式2:如图,已知点A(-2,0),点B(3,0),点P是直线y=x+3上的一个动点,若△ABP
是以AB为斜边的直角三角形,则点P的坐标是__________________________________

例 如图,已知抛物线y=-x2+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交
于点C,连接BC.
(1)求A,B,C三点的坐标;
(2)若点P为线段BC上一点(不与B、C重合),PM∥y轴,且PM
交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求△BPN
的周长;
(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴
上存在一点Q,使得△CNQ为直角三角形,求点Q的坐标.

练习1:如图,在平面直角坐标系中,已知点A的

• B •
A

y
x
y=x+3
坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.
(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合
条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足
为F,连接EF,当线段EF的长度最短时,求出点P的坐标

练习2:在△ABC中,AB=AC=10,cosB=54(如图1),D、E为线段BC上的两个动点,
且DE=3(E在D右边),运动初始时D和B重合,运动至E和C重合时运动终止.过E
作EF∥AC交AB于F,联结DF.
(1)若设BD=x,EF=y,求y关于x的函数,并求其定义域;
(2)如果△BDF为直角三角形,求△BDF的面积;
(3)如果MN过△DEF的重心,且MN∥BC分别交FD、FE于M、N(如图2).求整个
运动过程中线段MN扫过的区域的形状和面积(直接写出答案).

相关文档
最新文档