勾股定理练习题(含答案)

合集下载

勾股定理练习题(含答案)

勾股定理练习题(含答案)

勾股定理练习题一、根底达标 :1.以下说法正确的选项是〔〕A. 假设 a 、b、c 是△ ABC的三边,那么 a2+b2=c2;B.假设 a 、b、c 是 Rt△ABC的三边,那么 a2+b2=c2;C. 假设 a 、b、c 是 Rt△ABC的三边,A 90 ,那么a2+b2=c2;222D. 假设 a 、b、c 是 Rt△ABC的三边,C 90 ,那么a+b=c.2.Rt △ABC的三条边长分别是a、b、c,那么以下各式成立的是〔〕A.a b c B. a b c C. a b c D. a2b2 c 2 3.如果 Rt△的两直角边长分别为k2-1,2k〔k >1 〕,那么它的斜边长是〔〕A、2kB、k+1C、k2- 1D、k2+14. a,b,c 为△ ABC三边,且满足 (a 2-b2)(a 2+b2-c2 ) =0,那么它的形状为〔〕A. 直角三角形B. 等腰三角形C. 等腰直角三角形D.等腰三角形或直角三角形5.直角三角形中一直角边的长为三角形的周长为〔〕A.121B.1206.△ABC中,AB=15,AC=13,高A.42B.32C9,另两边为连续自然数,那么直角C .90D.不能确定AD=12,那么△ABC的周长为〔〕.42 或32D.37或337.※直角三角形的面积为 S ,斜边上的中线长为 d ,那么这个三角形周长为〔〕〔A〕d2S 2d〔〕 d 2S d〔C〕2 d2BS 2d〔〕 2 d 2S dD8、在平面直角坐标系中,点 P的坐标是 (3,4),那么 OP的长为〔〕A:3B:4C:5D: 79.假设△ ABC中,AB=25cm,AC=26cm高 AD=24,那么 BC的长为〔〕A.17 B.3 C.17或 3 D.以上都不对10. a、b、c 是三角形的三边长,如果满足(a 6)2 b 8 c 100那么三角形的形状是〔〕A:底与边不相等的等腰三角形B:等边三角形C:钝角三角形D:直角三角形11.斜边的边长为17cm,一条直角边长为8cm的直角三角形的面积是.12.等腰三角形的腰长为 13,底边长为 10,那么顶角的平分线为__ .13.一个直角三角形的三边长的平方和为 200,那么斜边长为14.一个三角形三边之比是10 : 8 : 6 ,那么按角分类它是三角形.15.一个三角形的三边之比为 5∶12∶13,它的周长为 60,那么它的面积是___ .22216. 在 Rt△ABC中,斜边 AB=4,那么 AB+BC+AC=_____.17.假设三角形的三个内角的比是1: 2 : 3 ,最短边长为1cm,最长边长为2cm ,那么这个三角形三个角度数分别是,另外一边的平方是.18.如图,ABC中,C90 ,BA 15 ,AC12 ,以直角边 BC 为直径作半圆,那么这个半圆的面积是.19.一长方形的一边长为3cm,面积为12cm2,那么它的一条对角线长是.BCA二、综合开展 :1.如图,一个高4m、宽3m的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边 AC=6cm,BC=8cm,现将直角边AC 沿∠ CAB的角平分线 AD折叠,使它落在斜边 AB 上,且与 AE重合,你能求出 CD的长吗?CDB AE3. 一个三角形三条边的长分别为15cm,20cm,25cm,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m,棚宽a=4m,棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树 12m,高 8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民XX国道路交通管理条例〞规定:小汽车在城街路上行驶速度不得超过 70 km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方 30m处,过了 2s后,测得小汽车与车速检测仪间距离为50 m,这辆小汽车超速了吗?小汽车小汽车BCA观测点答案 :一、根底达标1. 解析 : 利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案:D.2. 解析:此题考察三角形的三边关系和勾股定理.答案: B.3.解析:设另一条直角边为x ,那么斜边为〔 x+1〕利用勾股定理可得方程,可以求出x .然后再求它的周长 . 答案: C .4.解析:解决此题关键是要画出图形来,作图时应注意高 AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案: C.5.解析 : 勾股定理得到:17 2 82 152 ,另一条直角边是 15,1 15 860cm 2所求直角三角形面积为 2.答案:60cm 2.6.解析:此题目主要是强调直角三角形中直角对的边是最长边, 反过来也是成立.答案 : a 2b 2c 2 ,c ,直角,斜,直角.7.解析 : 此题由边长之比是10 : 8 : 6 可知满足勾股定理,即是直角三角形.答案:直角. 8.解析:由三角形的内角和定理知三个角的度数 , 断定是直角三角形.答案:30 、6090,3.9.解析:由勾股定理知道:BC 2 AB 2 AC 2152 122 92,所以以直角边BC为直径的半圆面积为 10.125 π .答案: 10.125 π .10.解析 : 长方形面积长×宽,即12 长× 3,长4 ,所以一条对角线长为5.、9答案: 5cm .二、综合开展11.解析:木条长的平方=门高长的平方 +门宽长的平方.答案: 5m .12解析:因为 15 2202 252 ,所以这三角形是直角三角形,设最长边〔斜边〕上的高为xcm ,由直角三角形面积关系,可得115201 25 x ,∴x12 .答案:12cm2213.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出 .答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为 5m,所以矩形塑料薄膜的面积是:5× 20=100(m 2).14.解析:此题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是 13m ,两再利用时间关系式求解 .答案: 6.5s .15.解析:此题和 14 题相似,可以求出 BC的值,再利用速度等于路程除以时间后比拟.BC=40米,时间是2s,可得速度是20m/s=72km/h >70 km/h.答案:这辆小汽车超速了.。

(完整版)勾股定理练习题(含答案)

(完整版)勾股定理练习题(含答案)

勾股定理练习题1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+1 4. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 337.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A2d (Bd (C)2d (D)d +8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3B :4C :5D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是__.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC为直径作半圆,则这个半圆的面积是 . ACB18.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .20.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.21、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?22.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?23.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?24.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?25.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?A 小汽车 小汽车BC AE C D答案: 一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15, 所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.。

勾股定理测试题及答案

勾股定理测试题及答案

勾股定理测试题及答案一、选择题1. 勾股定理适用于()A. 任意三角形B. 直角三角形C. 钝角三角形D. 锐角三角形答案:B2. 在直角三角形中,如果两直角边的长度分别为3和4,那么斜边的长度是()A. 5B. 6C. 7D. 8答案:A3. 如果一个三角形的三边长分别为a、b、c,且a²+b²=c²,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B二、填空题4. 在直角三角形中,如果一个锐角为30°,那么另一个锐角为______。

答案:60°5. 如果一个直角三角形的斜边长为10,一条直角边长为6,那么另一条直角边长为______。

答案:8三、计算题6. 已知直角三角形的两直角边长分别为5和12,求斜边的长度。

答案:斜边长度为13,因为5² + 12² = 25 + 144 = 169,所以斜边长度为√169 = 13。

7. 一个直角三角形的斜边长为17,一条直角边长为8,求另一条直角边的长度。

答案:另一条直角边的长度为15,因为17² - 8² = 289 - 64 = 225,所以另一条直角边的长度为√225 = 15。

四、应用题8. 一个梯子的顶端靠在垂直的墙上,梯子的底部距离墙3米。

如果梯子与地面和墙形成一个直角三角形,且梯子的长度为5米,那么梯子的顶端距离地面的高度是多少?答案:梯子顶端距离地面的高度为4米。

根据勾股定理,3² +高度² = 5²,即9 + 高度² = 25,所以高度² = 16,高度= √16 = 4米。

9. 一个长方形的长和宽分别为6米和4米,求这个长方形的对角线长度。

答案:对角线长度为√(6² + 4²) = √(36 + 16) = √52 ≈ 7.21米。

五、证明题10. 证明:在一个直角三角形中,直角边的平方和等于斜边的平方。

勾股定理试题及答案

勾股定理试题及答案

勾股定理试题及答案一、选择题1. 在直角三角形中,如果两直角边长分别为3和4,则斜边长为()。

A. 5B. 6C. 7D. 8答案:A2. 已知直角三角形的斜边长为5,一条直角边长为3,则另一条直角边长为()。

A. 4B. 2C. 1D. 63. 如果直角三角形的两条直角边长分别为a和b,斜边长为c,则下列等式中正确的是()。

A. a² + b² = c²B. a² - b² = c²C. a² + b² = 2c²D. a² - b² = 2c²答案:A二、填空题4. 直角三角形的两条直角边长分别为6和8,斜边长为______。

答案:105. 已知直角三角形的斜边长为13,一条直角边长为5,则另一条直角边长为______。

6. 勾股定理的公式为:直角三角形的两条直角边的平方和等于______。

答案:斜边的平方三、解答题7. 一个直角三角形的斜边长为17,其中一条直角边长为8,求另一条直角边长。

解:设另一条直角边长为x,则根据勾股定理,有:8² + x² = 17²64 + x² = 289x² = 225x = 15答:另一条直角边长为15。

8. 已知直角三角形的两条直角边长分别为9和12,求斜边长。

解:设斜边长为c,则根据勾股定理,有:9² + 12² = c²81 + 144 = c²225 = c²c = 15答:斜边长为15。

9. 一个直角三角形的斜边长为25,其中一条直角边长为15,求另一条直角边长。

解:设另一条直角边长为x,则根据勾股定理,有:15² + x² = 25²225 + x² = 625x² = 400x = 20答:另一条直角边长为20。

勾股定理练习题及答案(共6套)

勾股定理练习题及答案(共6套)

勾股定理课时练(1)1.在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm ,∠D=120°,则该零件另一腰AB 的长是______cm (结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m 处断裂,犹如装有铰链那样倒向地6.飞机在空中水平飞行上方4000米处,过了209.如图,在四边形CD=3,求AB 的长10.如图,一个牧童在小河的南的小屋B 的西8km 2m 的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗? 第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC ,所以AB222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+,再利用面积法得,136011米,由勾所以飞机飞行的速度为CE=60.2⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13. 9.解:延长BC 、AD 交于点E.(如图所示)第5题图第8题∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。

勾股定理练习题及答案(共6套)

勾股定理练习题及答案(共6套)

勾股定理课时练(1)1.在直角三角形ABC中,斜边AB=1,则AB222ACBC++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。

求CD的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R 90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ),CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。

勾股定理试题及答案

勾股定理试题及答案
一、选择题
1. 在直角三角形中,如果直角边长分别为3和4,则斜边长为:
A. 5
B. 7
C. 8
D. 9
答案:A
2. 勾股定理描述的是直角三角形中哪两条边的关系?
A. 直角边和斜边
B. 两个直角边
C. 斜边和直角边
D. 三条边
答案:A
二、填空题
3. 若直角三角形的一条直角边长为6,斜边长为10,则另一条直角边长为______。

答案:8
4. 一个直角三角形的两条直角边长分别为9和12,那么这个三角形的面积是______。

答案:54
三、解答题
5. 已知直角三角形的两条直角边长分别为5和12,求斜边长。

解:根据勾股定理,斜边长c满足c² = a² + b²,其中a和b是直
角边长。

c² = 5² + 12² = 25 + 144 = 169
c = √169 = 13
答:斜边长为13。

6. 一个直角三角形的斜边长为13,一条直角边长为5,求另一条直角边长。

解:设另一条直角边长为x,根据勾股定理,有:
x² + 5² = 13²
x² = 169 - 25 = 144
x = √144 = 12
答:另一条直角边长为12。

勾股定理练习题(含答案)

勾股定理练习题一、基础达标:1. 下列说法准确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+1 4. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定 6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 7.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d (B d(C )2d (D )d8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3B :4C :5D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形 11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为 14.一个三角形三边之比是6:8:10,则按角分类它是 三角形. 15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .ACB二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?AECDB5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?A小汽车小汽车BC观测点答案:一、基础达标1. 解析:利用勾股定理准确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长. 答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解. 答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角. 8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3. 9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5. 答案:cm 5. 二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解. 答案:6.5s . 15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h . 答案:这辆小汽车超速了.。

勾股定理练习题(含答案)

勾股定理练习题一、基础达标:1. 下列说法正确的是( )A.若 a、b、c是△ABC的三边,则a2+b2=c2;B.若 a、b、c是Rt△ABC22=c2;C.若 a、b、c是Rt△ABC a2+b2=c2;D.若 a、b、c是Rt△ABC a2+b2=c2.2. Rt△ABC3. 如果Rt△的两直角边长分别为k2-1,2k(k >1),那么它的斜边长是()A、2kB、k+1C、k2-1D、k2+14. 已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A.121 B.120 C.90D.不能确定6. △ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )A.42 B.32 C.42 或 32 D.37 或 3378、在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为( )A:39.若△ABC中,AB=25cm,AC=26cm高AD=24,则BC的长为( )10.已知a、b、c三角形的形状是( )A:底与边不相等的等腰三角形 B:等边三角形C:钝角三角形 D:直角三角形11的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为14,则按角分类它是 三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___. 16. 在Rt△ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.则这个三角形三个角度数分别是 ,另外一边的平方是 .18半圆的面积是 .19那么它的一条对角线长是 .二、综合发展:1木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD的长吗?AC B3高是多少?4.如图,要修建一个育苗棚,棚高h=3m,棚宽a=4m,棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度处,过了2s后,测得小汽车与车答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x,则斜边为(x+1)利用勾股定理可得方程,可以求出x.然后再求它的周长.答案:C.4.解析:解决本题关键是要画出图形来,作图时应注意高AD是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股15,所答案6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案7. 解析:本题由可知满足勾股定理,即是直角三角形.答案:直角.断定是直角三角形.答案:9. 所以以直角.答案:π.10. 解析×宽,即12长×所以一条对角线长为5.答案11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案12解析:所由直角三角形面积关∴答案:12cm13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.答案:6.5s.15.解析:本题和14题相似,可以求出BC的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s,可得速度是20m/s=72km/h答案:这辆小汽车超速了.勾股定理练习题一、填空题(每空3分,共24分)1、若直角三角形两直角边分别为6和8,则斜边为___________;2、已知两条线的长为5cm和4cm,当第三条线段的长为_________时,这三条线段能组成一个直角三角形;3、能够成为直角三角形三条边长的正整数,称为勾股数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


任禄成

勾股定理测试题
一、基础达标:
1. 下列说法正确的是( )
A.若 a、b、c是△ABC的三边,则a2+b2=c2;
B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;
C.若 a、b、c是Rt△ABC的三边,90A,则a2+b2=c2;
D.若 a、b、c是Rt△ABC的三边,90C,则a2+b2=c2.
2. Rt△ABC的三条边长分别是a、b、c,则下列各式成立的是( )
A.cba B. cba C. cba D. 222cba

3. 如果Rt△的两直角边长分别为k2-1,2k(k >1),那么它的斜边长是( )
A、2k B、k+1 C、k2-1 D、k2+1
4. 已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为
( )
A.直角三角形 B.等腰三角形
C.等腰直角三角形 D.等腰三角形或直角三角形
5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周
长为( )
A.121 B.120 C.90 D.不能确定
6. △ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )
A.42 B.32 C.42 或 32 D.37 或 33
7.※直角三角形的面积为S,斜边长为2d,则这个三角形周长为( )
(A)22dSd (B)2dSd
(C)222dSd (D)22dSd
8、在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为( )A:3

B:4 C:5 D:7
9.若△ABC中,AB=25cm,AC=26cm高AD=24,则BC的长为( )
A.17 B.3 C.17或3 D.以上都不对

10.已知a、b、c是三角形的三边长,如果满足2(6)8100abc则

任禄成

三角形的形状是( )
A:底与边不相等的等腰三角形 B:等边三角形
C:钝角三角形 D:直角三角形
11.斜边的边长为cm17,一条直角边长为cm8的直角三角形的面积是 .
12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.
13. 一个直角三角形的三边长的平方和为200,则斜边长为
14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.

15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.
16. 在Rt△ABC中,斜边AB=4,则AB2+BC2+AC2=_____.
17.若三角形的三个内角的比是3:2:1,最短边长为cm1,最长边长为cm2,则
这个三角形三个角度数分别是 ,另外一边的平方是 .
18.如图,已知ABC中,90C,15BA,
12AC
,以直角边BC为直径作半圆,则这个半

圆的面积是 .
19. 一长方形的一边长为cm3,面积为212cm,那
么它的一条对角线长是 .

二、综合发展:
1.如图,一个高4m、宽3m的大门,需要在对角线的顶点间加固一个木条,求
木条的长.

A
C
B

任禄成

2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿∠CAB
的角平分线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?

3.一个三角形三条边的长分别为cm15,cm20,cm25,这个三角形最长边上的
高是多少?

4.如图,要修建一个育苗棚,棚高h=3m,棚宽a=4m,棚的长为12m,现要在棚
顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?

5.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,
高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,
它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?

A
E

C
D

B

任禄成

15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不
得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚
好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检
测仪间距离为50m,这辆小汽车超速了吗?

A
小汽车
小汽车
B
C

观测点

任禄成

答案:
一、基础达标
1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.
答案: D.
2. 解析:本题考察三角形的三边关系和勾股定理.
答案:B.
3. 解析:设另一条直角边为x,则斜边为(x+1)利用勾股定理可得方程,可
以求出x.然后再求它的周长.
答案:C.
4.解析:解决本题关键是要画出图形来,作图时应注意高AD是在三角形的内部
还是在三角形的外部,有两种情况,分别求解.
答案:C.

5. 解析: 勾股定理得到:22215817,另一条直角边是15,

所求直角三角形面积为21158602cm.答案: 260cm.
6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成
立.
答案:222cba,c,直角,斜,直角.
7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答
案:直角.
8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:
30、60、90
,3.

9. 解析:由勾股定理知道:22222291215ACABBC,所以以直角边
9BC
为直径的半圆面积为10.125π.答案:10.125π.

10. 解析:长方形面积长×宽,即12长×3,长4,所以一条对角线长为5.
答案:cm5.
二、综合发展
11. 解析:木条长的平方=门高长的平方+门宽长的平方.
答案:5m.

12解析:因为222252015,所以这三角形是直角三角形,设最长边(斜边)
上的高为xcm,由直角三角形面积关系,可得1115202522x,∴12x.答
案:12cm
13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,
可以借助勾股定理求出.
答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,
所以矩形塑料薄膜的面积是:5×20=100(m2) .
14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也
就是两树树梢之间的距离是13m,两再利用时间关系式求解.

任禄成

答案:6.5s.
15.解析:本题和14题相似,可以求出BC的值,再利用速度等于路程除以时间
后比较.BC=40米,时间是2s,可得速度是20m/s=72km/h>70km/h.
答案:这辆小汽车超速了.

相关文档
最新文档