滑块—木板模型的动力学分析
专题8 应用动力学解决滑块-滑板模型问题 2021年高考物理二轮专题解读与训练(解析版)

专题8 应用动力学解决滑块-滑板模型问题1.模型特点上、下叠放的两个物体,并且两物体在摩擦力的相互作用下发生相对滑动。
2.解题指导(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间位移关系或速度关系,建立方程。
(3)通常所说物体运动的位移、速度、加速度都是对地而言的。
在相对运动的过程中相互作用的物体之间位移、速度、加速度、时间一定存在关联。
它就是解决问题的突破口。
(4)求时间通常会用到牛顿第二定律加运动学公式或动量定理:应用动量定理时特别要注意条件和方向,最好是对单个物体应用动量定理求解。
(5)求位移通常会用到牛顿第二定律加运动学公式或动能定理,应用动能定理时研究对象为单个物体或可以看成单个物体的整体。
另外求相对位移时,通常会用到系统能量守恒定律。
(6)求速度通常会用到牛顿第二定律加运动学公式或动能定理或动量守恒定律:应用动量守恒定律时要特别注意系统的条件和方向。
3.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,二者位移之差等于滑板长度;反向运动时,二者位移之和等于滑板长。
4.易错点(1)不清楚滑块、滑板的受力情况,求不出各自的加速度;(2)不清楚物体间发生相对滑动的条件。
说明:两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力(动力学条件);(2)二者速度或加速度不相等(运动学条件)。
(其中动力学条件是判断的主要依据)5.分析“滑块—滑板模型”问题时应掌握的技巧(1)分析题中滑块、滑板的受力情况,求出各自的加速度; (2)画好运动草图,找出位移、速度、时间等物理量间的关系; (3)明确每一过程的末速度是下一过程的初速度。
例1.如图,质量为M 且足够长的倾角为θ的斜面体C 始终静止在水平面上,一质量为m 的长方形木板A 上表面光滑,木板A 获得初速度v 0后恰好能沿斜面匀速下滑,当木板A 匀速下滑时将一质量也为m 的滑块B 轻轻放在木板上,滑块B 在木板A 上下滑的过程中,下列说法正确的是( )A.A 与B 组成的系统在沿斜面的方向上动量不守恒B.A 的加速度大小为2g sin θC.A 的速度为012v 时B 的速度也是012v D.水平面对斜面体有向右的摩擦力 【答案】C【解析】A.因木板A 获得初速度v 0后恰好能沿斜面匀速下滑,即沿斜面方向受合力为零,可知sin cos mg mg θμθ=当放上木块B 后,对AB 系统沿斜面方向仍满足2sin 2cos mg mg θμθ=⋅可知系统沿斜面方向受到的合外力为零,则系统沿斜面方向动量守恒,选项A 错误;B.A 的加速度大小为sin 2cos sin A mg mg a g mθμθθ-⋅==-选项B 错误;C.由系统沿斜面方向动量守恒可知012v mv mmv =+ 解得12v v =选项C 正确;D.斜面体受到木板A 垂直斜面向下的正压力大小为2cos mg θ,A 对斜面体向下的摩擦力大小为2cos =2sin mg mg μθθ⋅,这两个力的合力竖直向下,可知斜面体水平方向受力为零,即水平面对斜面体没有摩擦力作用,选项D 错误。
高考物理滑块木板模型问题分析汇编

滑块—木板模型的动力学分析在高三物理复习中,滑块—木板模型作为力学的基本模型经常出现,是对一轮复习中直线运动和牛顿运动定律有关知识的巩固和应用。
这类问题的分析有利于培养学生对物理情景的想象能力,为后面动量和能量知识的综合应用打下良好的基础。
滑块—木板模型的常见题型及分析方法如下:例1如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。
分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B一起加速的最大加速度由A决定。
解答:物块A能获得的最大加速度为:.∴A、B一起加速运动时,拉力F的最大值为:.变式1例1中若拉力F作用在A上呢?如图2所示。
解答:木板B能获得的最大加速度为:。
∴A、B一起加速运动时,拉力F的最大值为:.变式2在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。
解答:木板B能获得的最大加速度为:设A、B一起加速运动时,拉力F的最大值为F m,则:解得:例2 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。
(g取10m/s2)解答:物体放上后先加速:a1=μg=2m/s2此时小车的加速度为:当小车与物体达到共同速度时:v共=a1t1=v0+a2t1解得:t1=1s ,v共=2m/s以后物体与小车相对静止:(∵,物体不会落后于小车)物体在t=1.5s内通过的位移为:s=a1t12+v共(t-t1)+ a3(t-t1)2=2.1m练习1如图4所示,在水平面上静止着两个质量均为m=1kg、长度均为L=1.5m的木板A和B,A、B间距s=6m,在A的最左端静止着一个质量为M=2kg的小滑块C,A、B与C之间的动摩擦因数为μ1=0.2,A、B与水平地面之间的动摩擦因数为μ2=0.1。
牛顿运动定律的应用:牛顿运动定律的应用之“滑块—木板模型”

一、模型特征上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动,滑块-木板模型(如图所示),涉与摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,故频现于高考试卷中。
二、常见的两种位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度。
三、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f> f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
[名师点睛]1. 此类问题涉与两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口。
求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度。
木板滑块模型中的临界值问题分析

木板滑块模型中的临界值问题分析在高中研究力与运动的关系时,经常遇到滑块与木板模型的问题,涉及到两物体的受力分析、物体相对运动的分析、能量转化等问题综合性较强.近年全国高考理综课标卷都对该问题进行了考查,通过高考试题分析和得分情况来看,学生对该问题的难点理解还是存在很大问题。
此类题是高中物理学习的重点和难点,很好地考查了考生对摩擦力知识、动力学知识的掌握情况以及图像的识读能力和分析能力,对物理教学提出了能力培养的要求。
其中的一个难点就是模型中的临界状态分析,笔者将通过以下情境来分析木板滑块模型中的临界值问题。
模型一:恒力作用木板,木板叠放在光滑水平面上情境1.已知木板的质量为mB ,物块的质量为mA,物块A和木板B之间的动摩擦因数为μ,物块和木板之间的最大静摩擦力近似等于滑动摩擦力,恒力作用于木板,木板放在光滑水平面上,试讨论恒力多大时物块和木板发生滑动及相对运动各自的加速度?分析:先确定临界值,即刚好使A、B发生相对滑动的F值。
可先分析木块A,对A:,由于B对A的摩擦力的最大值为最大静摩擦力,所以A向右运动存在最大加速度,若B也是以此最大加速度加速,这就是A、B即将发生相对滑动的临界状态。
临界状态:对A:,对A、B整体:联立可得临界值讨论:(1)若,A、B一起加速,(2)若F>F,A、B发生相对滑动,,模型二:恒力作用木块,木板叠放在光滑水平面上情境2.已知木板的质量为mB ,物块的质量为mA,物块A和木板B之间的动摩擦因数为μ,物块和木板之间的最大静摩擦力近似等于滑动摩擦力,恒力作用于物块,木板放在光滑水平面上,试讨论恒力多大时物块和木板发生滑动及相对运动各自的加速度?分析:先确定临界值,经例1分析可知,当A、B间恰好达到最大静摩擦力时,为临界状态。
临界状态:对B:,对A、B整体:联立可得临界值讨论:(1)若,A、B一起加速,(2)若F>F,A、B发生相对滑动,,例题1、如图所示,木块A、B静止叠放在光滑水平面上,A的质量为m,B的质量为2m。
高中物理滑块木板模型动能定理解

高中物理滑块木板模型动能定理解高中物理滑块木板模型是一种常见的力学模型,用来研究物体在斜面上滑动的问题。
动能定理是描述物体动能变化的定理,它表达了物体的动能变化等于物体所受力的功。
下面我将详细介绍高中物理滑块木板模型及其动能定理的原理和应用。
首先,我们来介绍一下高中物理滑块木板模型的基本概念。
滑块木板模型由一条倾斜的木板和一个放置在木板上的滑块组成。
滑块与木板之间有一定的摩擦力,可以通过改变木板的角度或滑块的质量来研究滑块在木板上滑动的性质。
在滑块木板模型中,我们考虑滑块在斜面上的运动。
当斜坡上无滑动摩擦力时,滑块只受到重力作用,其加速度仅受到斜面角度和重力加速度的影响。
当斜坡上存在摩擦力时,滑块的加速度还会受到摩擦力对滑块的阻碍。
动能定理是描述物体动能变化的定理。
根据动能定理,物体的动能变化等于物体所受力的功。
在高中物理滑块木板模型中,滑块在斜坡上滑动时,通过斜坡上的重力和摩擦力对滑块进行功。
根据动能定理,滑块的动能变化等于这些力的功之和。
具体来说,滑块的动能变化可以用下式表示:△K = Wg + Wf其中,△K表示滑块的动能变化,Wg表示重力对滑块做的功,Wf 表示摩擦力对滑块做的功。
重力对滑块做的功可以用如下公式表示:Wg = mgh其中,m表示滑块的质量,g表示重力加速度,h表示滑块的垂直高度。
摩擦力对滑块做的功可以用如下公式表示:Wf = fdcosθ其中,f表示滑块和斜面之间的摩擦力,d表示滑块在斜面上的位移,θ表示斜面的倾角。
通过将重力功和摩擦力功代入动能定理的公式,可以得到滑块的动能变化的表达式。
动能定理在物理学中有广泛的应用。
首先,动能定理可以用来计算滑块在斜面上的运动速度。
通过将动能定理的公式进行转换,可以得到滑块的末速度的表达式。
其次,动能定理可以用来研究滑块与斜面之间的摩擦力的大小和方向。
通过观察滑块的动能变化和速度的变化,可以确定摩擦力的大小和方向。
此外,动能定理还可以用来分析滑块与斜面之间的能量转换。
滑块木板模型类型归纳

滑块木板模型类型归纳滑块-木板模型是物理学中一个经典的动力学问题,通常涉及到摩擦力、加速度、力和运动等概念。
这个问题之所以重要,是因为它能够以简单的形式展现摩擦力、相对运动以及能量转换等复杂物理现象。
在不同的物理情境下,滑块-木板模型的具体形式和解决方法也会有所差异。
下面,我们将详细介绍几种常见的滑块-木板模型类型。
一、基本滑块-木板模型1.1 类型一:滑块在木板上滑动在这个最基本的模型中,一个滑块沿着一个水平木板滑动。
滑块和木板之间存在摩擦力,这个摩擦力会影响滑块的运动。
根据摩擦力的方向和大小,可以将这种情况进一步细分为滑动摩擦和静摩擦。
1.2 类型二:多个滑块和木板组合在更复杂的模型中,可能会有多个滑块和木板组合在一起。
这些滑块和木板之间也可能存在摩擦力,而且它们的运动状态可能会互相影响。
例如,两个滑块通过一根轻绳相连,在受到外力作用时,两个滑块的运动状态将会相互依赖。
二、复杂情境下的滑块-木板模型2.1 类型三:斜面上的滑块-木板模型当滑块和木板放置在斜面上时,重力将会成为一个重要的因素。
滑块和木板之间的摩擦力以及斜面的角度都会影响它们的运动。
这个模型涉及到重力分量、斜面上的摩擦力和滑块的运动状态等多个物理量的计算。
2.2 类型四:旋转的滑块-木板模型在这个模型中,滑块或木板可能会绕着一个固定的轴旋转。
这种情况下,滑块和木板之间的摩擦力以及滑块自身的旋转状态都需要考虑。
这个模型涉及到旋转动力学和平衡条件等复杂物理概念。
三、特殊条件下的滑块-木板模型3.1 类型五:滑块和木板间的动摩擦系数变化在某些情况下,滑块和木板之间的动摩擦系数可能会随着它们之间的相对速度或受力情况而变化。
这种情况下的滑块-木板模型需要根据实际情况来确定摩擦系数的取值。
3.2 类型六:滑块和木板的质量变化在某些问题中,滑块或木板的质量可能会发生变化,例如,滑块在运动过程中可能会失去一部分质量。
这种情况下,滑块-木板模型的解决方案需要考虑到质量变化对摩擦力和其他物理量的影响。
高考物理中的传送带模型和滑块_木板模型
传送带模型1.模型特征 (1)水平传送带模型(2)2.分析传送带问题的关键是判断摩擦力的方向。
要注意抓住两个关键时刻:一是初始时刻,根据物体速度v 物和传送带速度v 传的关系确定摩擦力的方向,二是当v 物=v 传时,判断物体能否与传送带保持相对静止。
1.(多选)如图,一质量为m的小物体以一定的速率v0滑到水平传送带上左端的A点,当传送带始终静止时,已知物体能滑过右端的B点,经过的时间为t0,则下列判断正确的是().A.若传送带逆时针方向运行且保持速率不变,则物体也能滑过B点,且用时为t0B.若传送带逆时针方向运行且保持速率不变,则物体可能先向右做匀减速运动直到速度减为零,然后向左加速,因此不能滑过B点C.若传送带顺时针方向运行,当其运行速率(保持不变)v=v0时,物体将一直做匀速运动滑过B点,用时一定小于t0D.若传送带顺时针方向运行,当其运行速率(保持不变)v>v0时,物体一定向右一直做匀加速运动滑过B点,用时一定小于t02.如图甲所示,绷紧的水平传送带始终以恒定速率v1运行。
初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带。
若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示。
已知v2>v1,则()A.t2时刻,小物块离A处的距离达到最大B.t2时刻,小物块相对传送带滑动的距离达到最大C.0~t2时间内,小物块受到的摩擦力方向先向右后向左D.0~t3时间内,小物块始终受到大小不变的摩擦力作用3.如图所示,水平传送带以速度v1匀速运动,小物体P、Q由通过定滑轮且不可伸长的轻绳相连,t=0时刻P在传送带左端具有速度v2,P与定滑轮间的绳水平,t=t0时刻P离开传送带。
不计定滑轮质量和摩擦,绳足够长。
正确描述小物体P速度随时间变化的图象可能是()4.物块m在静止的传送带上匀速下滑时,传送带突然转动,传送带转动的方向如图中箭头所示。
滑块木板模型(学生版)-动量守恒的十种模型
动量守恒的十种模型滑块木板模型模型解读1.模型图示2.模型特点(1)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能。
(2)若滑块未从木板上滑下,当两者速度相同时,木板速度最大,相对位移最大。
3.求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统。
(2)求时间:根据动量定理求解,研究对象为一个物体。
(3)求系统产生的内能或相对位移:根据能量守恒定律Q =f Δx 或Q =E 初-E 末,研究对象为一个系统。
【方法归纳】.“子弹打木块”(“滑块-木板”)模型,采用动量守恒定律、动能定理或能量守恒定律列方程解答。
滑块木板模型的位移关系:滑块由木板的一端运动到另一端的过程中,若滑块和木板同向运动,二者位移之差等于板长。
若滑块和木板反向运动,二者位移之和等于板长。
【典例精析】1(2024·广东广州校考)如图,长为L 的矩形长木板静置于光滑水平面上,一质量为m 的滑块以水平向右的初速度v 0滑上木板左端。
若木板固定,则滑块离开木板时的速度大小为v 03;若木板不固定,则滑块恰好不离开木板。
滑块可视为质点,重力加速度大小为g 。
求:(1)滑块与木板间的动摩擦因数μ;(2)木板的质量M ;(3)两种情况下,滑块从木板左端滑到右端的过程中,摩擦力对滑块的冲量大小之比I 1∶I 2。
【针对性训练】1(2024年5月武汉三模)一块质量为M 、长为l 的长木板A 静止放在光滑的水平面上,质量为m 的物体B (可视为质点)以初速度v 0从左端滑上长木板 A 的上表面并从右端滑下,该过程中,物体B 的动能减少量为ΔE kB,长木板A的动能增加量为ΔE kA,A、B间因摩擦产生的热量为Q,下列说法正确的是()A.A、B组成的系统动量、机械能均守恒B.ΔE kB,ΔE kA,Q的值可能为ΔE kB=7J,ΔE kA=2J,Q=5JC.ΔE kB,ΔE kA,Q的值可能为ΔE kB=5J,ΔE kA=3J,Q=2JD.若增大v0和长木板A的质量M,B一定会从长木板A的右端滑下,且Q将增大2如图所示,光滑水平面上有一矩形长木板,木板左端放一小物块,已知木板质量大于物块质量,t=0时两者从图中位置以相同的水平速度v0向右运动,碰到右面的竖直挡板后木板以与原来等大反向的速度被反弹回来,运动过程中物块一直未离开木板,则关于物块运动的速度v随时间t变化的图像可能正确的是()3(10分)(2024年4月安徽安庆示范高中联考)如图所示,一质量为M=4kg的木板静止在水平面上,木板上距离其左端点为L=25m处放置一个质量为m=1kg的物块(视为质点),物块与木板之间的动摩擦因数为μ1=0.3。
专题 滑块—木板模型(板块模型)(课件)高中物理课件(人教版2019必修第一册)
(1)B被敲击后的瞬间,A、B的加速度大小;
(2)A最终停在B上的位置距B右端的距离;
【答案】(1)2m/s2 4m/s2 ;
(2)3m;
(3)2.04m
【详解】(1)以向右为正方向, 被敲击后的瞬间, 、 的加速度分别为
1
=
=
−
−
1
= 2m/s2
2(
+
)
=− 4m/s2
突出---独立性、规律性、关联性
抓住---两个加速度
两个位移
三个关系
01
知识梳理
板块模型
1.概念:一个物体在另一个物体上发生相对滑动,两者之间有相对运动。
问题涉及两个物体、多个过程,两物体的运动时间、速度、位移间有一
定的关系。
2.模型的特点:
滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板
当 F>(
+
)
后,A、B 分别做加速运动,AB 间滑动摩擦力为
= μmg
M
【例题】如图所示mA=1kg,mB=2 kg,A、B间动摩擦因数是0.5,水平面光滑。用10 N
10
N
水平力F拉B时,A、B间的摩擦力是_________,
用20 N水平力F拉B时,A、B间的摩
3
5N
擦力是_____。(g取10
若使A、B不发生相对运动,求F的最大值。
解析:滑块与木板发生相对运动时,它们之间的摩擦力变为滑动摩擦力f=umAg=12 N。
此时B加速度最大为
F=(mA+mB)
=
=6
Τ 2 ,滑块和木板发生相对滑动的临界值为
4.6滑块-滑板模型
方法指导
2.运动学条件判断法:先求出不受外力F作用的那个物 体的最大临界加速度,再用假设法求出在外力F作用下 滑块和滑板整体的加速度,最后把滑块和滑板的整体加 速度与不受外力F作用的那个物体的最大临界加速度进 行大小比较。若滑块与滑板整体的加速度不大于(小于
或等于)滑块的最大加速度,即 a a,ma二x 者之间就不发
(1)若地面光滑,计算说明铁块与木板间是否会发生相对滑动;
(2)若木板与水平地面间的动摩擦因数 μ2=0.1,求铁块运动到木 板右端所用的时间.
动力学中的滑块—滑板模型
典型例题
(1)A、B 之间的最大静摩擦力为 fm>μ1mg=0.3×1×10 N=3 N(2 分) 假设 A、B 之间不发生相对滑动,则 对 A、B 整体:F=(M+m)a(2 分) 对 A:fAB=Ma(2 分) 解得:fAB=2.5 N(1 分) 因 fAB<fm,故 A、B 之间不发生相对滑动.(1 分) (2)对 B:F-μ1mg=maB(2 分) 对 A:μ1mg-μ2(M+m)g=MaA(2 分) 据题意:xB-xA=L(2 分) xA=12aAt2;xB=12aBt2(2 分)
知识梳理
3.两种位移关系:(相对滑动的位移关系)
滑块由滑板的一端运动到另一端的过程
中,若滑块和滑板同向运动,位移之差等于
板长;反向运动时,位移之和等于板长.
F
x1
L
x2
F
x2
L
x1
同向运动时: L=X1-X2
L
反向运动时: L=X1+X2
方法指导
一、滑块与滑板间是否发生相对滑动的判断方法
方法有两种: 1.动力学条件判断法:即通过分析滑块——滑木板间的摩 擦力是否为滑动摩擦力来进行判断。可先假设滑块与木板 间无相对滑动,然后根据牛顿第二定律对滑块与木板整体 列式求出加速度,再把滑块或木板隔离出来列式求出两者 之间的摩擦力,把求得的摩擦力与滑块和木板之间的滑动 摩擦力进行比较,分析求得的摩擦力是静摩擦力还是滑动 摩擦力,若为静摩擦力,则两者之间无相对滑动;若为滑 动摩擦力,则两者之间有相对滑动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滑块—木板模型的动力学分析
在高三物理复习中,滑块—木板模型作为力学的基本模
型经常出现,是对一轮复习中直线运动和牛顿运动定律有关
知识的巩固和应用。这类问题的分析有利于培养学生对物理
情景的想象能力,为后面动量和能量知识的综合应用打下良
好的基础。滑块—木板模型的常见题型及分析方法如下:
例1 如图1所示,光滑水平面上放置质量分别为m、
2m的物块A和木板B,A、B间的最大静摩擦力为μmg,
现用水平拉力F拉B,使A、B以同一加速度运动,求拉力
F的最大值。
分析:为防止运动过程中A落后于B(A不受拉力F的
直接作用,靠A、B间的静摩擦力加速),A、B一起加速的
最大加速度由A决定。
解答:物块A能获得的最大加速度为:.
∴A、B一起加速运动时,拉力F的最大值为:
.
变式1 例1中若拉力F作用在A上呢?如图2所示。
解答:木板B能获得的最大加速度为:。
∴A、B一起加速运动时,拉力F的最大值为:
.
变式2 在变式1的基础上再改为:B与水平面间的动摩
擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B
以同一加速度运动,求拉力F的最大值。
解答:木板B能获得的最大加速度为:
设A、B一起加速运动时,拉力F的最大值为Fm,则:
解得:
例2 如图3所示,质量M=8kg的小车放在光滑的水平
面上,在小车右端加一水平恒力F,F=8N,当小车速度达到
1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg
的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,
求物体从放在小车上开始经t=1.5s通过的位移大小。(g取
10m/s2)
解答:物体放上后先加速:a1=μg=2m/s2
此时小车的加速度为:
当小车与物体达到共同速度时:
v共=a1t1=v0+a2t1
解得:t1=1s ,v共=2m/s
以后物体与小车相对静止: (∵,
物体不会落后于小车)
物体在t=1.5s内通过的位移为:s=a1t12+v共 (t
-t1)+ a3(t-t1)2=2.1m
练习1 如图4所示,在水平面上静止着两个质量均为
m=1kg、长度均为L=1.5m的木板A和B,A、B间距s=6m,
在A的最左端静止着一个质量为M=2kg的小滑块C,A、B
与C之间的动摩擦因数为μ1=0.2,A、B与水平地面之间
的动摩擦因数为μ2=0.1。最大静摩擦力可以认为等于滑动
摩擦力。现在对C施加一个水平向右的恒力F=4N,A和C
开始运动,经过一段时间A、B相碰,碰后立刻达到共同速
度,C瞬间速度不变,但A、B并不粘连,求:经过时间t=10s
时A、B、C的速度分别为多少?(已知重力加速度g=10m/s2)
解答:假设力F作用后A、C一起加速,则:
而A能获得的最大加速度为:
∵ ∴假设成立
在A、C滑行6m的过程中: ∴v1=2m/s
A、B相碰过程,由动量守恒定律可得:mv1=2mv2 ∴
v2=1m/s
此后A、C相对滑动:,故C匀速运动;
,故AB
也匀速运动。
设经时间t2,C从A右端滑下:v1t2-v2t2=L ∴
t2=1.5s
然后A、B分离,A减速运动直至停止:aA=μ2g=1m/s2,
向左
,故t=10s时,vA=0.
C在B上继续滑动,且C匀速、B加速:aB=a0=1m/s2
设经时间t4,C.B速度相等: ∴t4=1s
此过程中,C.B的相对位移为:
,故C没有从B的右端滑下。
然后C.B一起加速,加速度为a1,加速的时间为:
故t=10s时,A、B、C的速度分别为0,2.5m/s,2.5m/s.
练习2 如图5所示,质量M=1kg的木板静止在粗糙的
水平地面上,木板与地面间的动摩擦因数,在木板的
左端放置一个质量m=1kg、大小可以忽略的铁块,铁块与木
板间的动摩擦因数,取g=10m/s2,试求:
一、若木板长L=1m,在铁块上加一个水平向右的恒力F=8N,
经过多长时间铁块运动到木板的右端?
二、若在铁块上施加一个大小从零开始连续增加的水平向右
的力F,通过分析和计算后,请在图6中画出铁块受到木板
的摩擦力f2随拉力F大小变化的图象。(设木板足够长)
(三)(解答略)答案如下:
1.t=1s
2.①当F≤N时,A、B相对静止且对地静止,f2=F;
②当2N
画出f2随拉力F大小变化的图象如图7所示。
从以上几例我们可以看到,无论物体的运动情景如何复
杂,这类问题的解答有一个基本技巧和方法:在物体运动的
每一个过程中,若两个物体的初速度不同,则两物体必然相
对滑动;若两个物体的初速度相同(包括初速为0),则要先
判定两个物体是否发生相对滑动,其方法是求出不受外力F
作用的那个物体的最大临界加速度并用假设法求出在外力F
作用下整体的加速度,比较二者的大小即可得出结论。