绿色荧光蛋白在转基因动物研究中的应用
绿色荧光蛋白——结构及应用

绿色荧光蛋白——结构及应用孙艺佩【摘要】绿色荧光蛋白(GFP)有稳定、灵敏度高、无毒害、载体便于构建等优点,因此在各个领域已经有了广泛的应用,在细胞生物学与分子生物学领域中,基因常被用作一个报导基因作为生物探针,拿来映证某些假设的实验方法;在医学领域,常用利用绿色荧光蛋白观测肿瘤发生、生长和转移等过程.本文就绿色荧光蛋白的发现与应用背景、结构、生色机理、相对于其他荧光分子的优点和在各领域的应用进行了综述.【期刊名称】《化工中间体》【年(卷),期】2017(000)008【总页数】2页(P124-125)【关键词】绿色荧光蛋白(GFP);荧光生色机理;生色团;技术应用【作者】孙艺佩【作者单位】山东省实验中学山东 250000【正文语种】中文【中图分类】Q绿色荧光蛋白(Green fluorescent protein,GFP)是一类能被蓝紫光激发而发出绿色荧光的蛋白,1962年,下村修等人于维多利亚管状水母中第一次发现并提取出了绿色荧光蛋白。
1994年,马丁·查尔菲首次在实验中成功表达GFP基因,向人们展示了绿色荧光蛋白作为遗传标签的价值。
同年,钱永健与其同事提出GFP生色团发光机理并改造GFP,使其更易作为标记物应用于各类试验。
2008年,诺贝尔化学奖授予钱永健、马丁·查尔菲和下修村,以表彰他们发现和发展了绿色荧光蛋白。
这一发现成果为生命科学的进步提供了更便捷的渠道。
从维多利亚多管水母中分离出来的野生型GFP由238个氨基酸残基组成,分子量约27kDa。
它具有β-桶的结构,几乎是个直径2.4nm,长4.2nm的完美圆柱。
11个β-折叠链形成β-筒的外周,筒两端分别被一些分子量较小的短α-螺旋覆盖,组成生色团的三个残基(Ser65-Tyr66-Gly67)与α-螺旋共价相连,位于圆筒中央螺旋中部。
β-圆筒与短α-螺旋形成致密的结构域,使配体不能扩散进入,生色团被严格保护在筒内,因此其性质稳定,不易被淬灭。
绿色荧光蛋白及其在细胞生物学中的应用

绿色荧光蛋白及其在细胞生物学中的应用绿色荧光蛋白(GFP)是生物学中非常著名的一个标记蛋白,它可以帮助科学家们观察、追踪细胞内部分子的运动和位置变化。
本文将介绍GFP的结构、功能以及在细胞生物学中的应用。
GFP结构与功能GFP来自于海葵(海洋无脊椎动物)中的一种发光蛋白,它的结构中含有一个环状结构(环状柄)和一个β桶(β-barrel)。
环状柄中含有一个色素分子,称为染料环,贡献了GFP的光学特性。
β桶的作用是保护染料环,并使它的光学特性达到最佳状态。
GFP有着非常特殊的性质,它可以在自然光下发出荧光,荧光颜色为绿色。
当其暴露在213-488nm的紫外线照射下,GFP就会发射从蓝、绿到黄的荧光波长。
GFP的这种特性使得它成为了生物学家们进行光学研究的最佳工具。
1. 显微镜下的成像GFP是一种非常强的标记蛋白,通过将其融合到目标物分子上,可以非常清晰地显示该分子的位置和运动。
利用显微镜技术,研究人员可以观察到细胞器、蛋白质、RNA等生命大分子在细胞内的运动和相互作用,从而揭示其在生物学中的重要作用。
2. 基因表达与细胞注释通过将GFP基因转染到细胞中,可以实现在特定细胞和组织中进行特定基因的表达。
同时,在转染GFP的细胞中,人们也可以通过显微镜监测到特定细胞的位置和分布,用于细胞的标记与识别。
3. 胚胎发育研究GFP还可以用于观察和研究胚胎发育过程中各种细胞分子的运动和定位。
通过将GFP融合到发育过程中的标志性分子中,研究人员可以观察到该分子在胚胎发育的不同阶段中的表达和变化,从而揭示胚胎发育的机制。
总结GFP的发现和应用开创了一种全新的标记技术,使科学家们能够更深入地探究生命大分子的运动、位置和相互作用。
GFP的强烈荧光使得其在细胞生物学研究中具有广泛的应用价值,特别是在显微镜下的成像、基因表达与细胞注释以及胚胎发育研究中。
可以预见,在不久的将来,GFP的应用将会更加广泛,并将继续推动生命科学研究的进步。
绿色荧光蛋白标记技术及其在基础临床研究中的应用

【 要 】 绿 色荧 光 蛋 白 ( re lo ec n r ti , F ) 为 一 个 监 测 完 整 细 胞 和 组织 内基 因表 达及 蛋 白定 位 的理 摘 ge n f rs e t o e G P 作 u p n
想标记 物, 在受 到 紫 外 光 或蓝 光激 发 时可 高 效 发 射 清 晰 可 见 的 绿 光 , 荧 光 性 质 稳 定 , 其 它 标 记 物 相 比 , 有 明 显 优 且 与 具 势 。 因而 广 泛 应 用 于 转 基 因 动 物 的 研究 、 合 标 记 、 因治 疗 、 白在 活 细 胞 内功 能 定 位 及 迁 移 变 化 、 原 菌侵 入 活 细 胞 融 基 蛋 病 的分 子 过 程 等 。G P作 为 新 一 代 的 基 因 转 移 报 告 物 和 / 定 位 标 记 物 , 生命 科学 研究 中越 来越 受 到关 注 。 察 检 测 , 细 胞 几 乎 无 伤 对
大 吸 收 峰 为 3 5 m, 一 小 吸 收 峰 为 4 0 m, 大 发 射 峰 为 9n 另 7n 最 5 9 m, 5 0 m 处 有 一 肩 峰 。 由于 G P有 高 能 量 的 B态 和 0n 在 4n F
【 关键 词 】 绿 色荧 光蛋 白 基 础 与临 床 研 究
1 9 年 P ah r等¨ 92 rse 1 隆 到 GF 的 c A, 9 4 年 克 P DN 19 C af 等 首 次 在 大肠 杆 菌 细 胞 中 表 达 了 能 发 射 绿 色 荧 光 的 hle i 绿 色荧 光 蛋 白 , 创 了 应 用 绿 色 荧 光 蛋 白 标 记 技 术 的 先 河 。 开 G P主 要 来 自两 种 海 洋 无 脊 椎 动 物 一 西 南 太 平 洋 水 母 ( e F A— q oe i oi) 佐 治 亚 沿 海 水 域 的 三 色 堇 ( e ia rnf— u ra c r 和 vt a R n l ei l o mi L 。它 是 一 类 存 在 于 腔 肠 动 物 体 内 的 发 光 蛋 白 , s3 ) 当受 到 紫 外 光 或 蓝 光 激 发 时 , 发 射 清 晰 可 见 的 绿 色 荧 光 , 荧 光 性 质 能 且 稳 定 , 种 属 限制 。其 次 , P 的 检测 极 其 方 便 , 它 与 目的 基 无 GF 将 因 连 接 后 , 染 进 细 胞 , 合荧 光 显 微 镜 、 式 细胞 仪 或 激 光 共 转 结 流
绿色荧光蛋白研究进展

绿色荧光蛋白研究进展动物医学进展,2008,29(1):56259Progress in Veterinary Medicine绿色荧光蛋白研究进展王晓丽1,邵卫星2,单虎13(1.青岛农业大学动物科技学院,山东青岛266109;2.中国动物卫生与流行病学中心,山东青岛266071)摘要:来源于海洋多管水母属的绿色荧光蛋白(GFP)基因是目前惟一在细胞内稳定表达,在蓝光或长紫外光的激发下,不需要任何反应底物及其他辅助因子就能发出绿色荧光的新型报告基因,无种属、组织和位置特异性,且能监测基因表达、信号转导、共转染、蛋白运输与定位,以及细胞系谱分类等。
GFP对细胞无毒性,且检测方法简单,结果真实可靠,目前在多种原核和真核生物研究中得到广泛的应用。
文章就GFP 的生化特性、GFP的改进及其在分子生物学研究中的应用潜力进行简要阐述。
关键词:绿色荧光蛋白;选择标记基因;应用中图分类号:Q516文献标识码:A文章编号:100725038(2008)0120056204随着生命科学和医学研究的不断深入,研究者们迫切需要一种能够在活体中表达且易于检测的报告基因,目前常用的报告基因主要有分泌型胎盘磷酸酯酶(secreted embryo alkaline p ho sp hatase, SEA P)基因、β2半乳糖苷酶(galactosidase)基因、β2葡糖苷酸酶(glucosidase,GU S)基因、萤火虫荧光素酶(luciferase,L UC)基因等[1],但这些基因的检测方法并不理想,它们都需要底物和辅助因子,因而在活体中的应用受到限制。
一种全新的非酶性报告基因———绿色荧光蛋白(green fluorescent p rotein, GFP)引起了人们的关注[2],该蛋白能够自身催化形成发色结构并在蓝光激发下发出绿色荧光。
作为报告基因,GFP是能在活细胞中表达的发光蛋白;作为荧光标记分子,GFP既具有敏感的标记检测率,收稿日期:2007210218作者简介:王晓丽(1981-),女,山东威海人,硕士研究生,主要从事预防兽医学研究。
绿色荧光蛋白及其在细胞生物学中的应用

绿色荧光蛋白及其在细胞生物学中的应用绿色荧光蛋白(GFP)是一种由蛋白质基因编码的荧光标记物,可以在活细胞中可视化蛋白质的位置和移动。
GFP最初是从海葵中发现的,现在已被广泛应用于生物学研究中。
在细胞生物学中,GFP已成为一种重要的工具,用于研究细胞的结构、功能和信号转导。
GFP可以用于标记蛋白质,从而观察它们在细胞中的位置和运动。
通过将GFP基因与目标蛋白质基因融合,可以制造出发出绿色荧光的融合蛋白。
这种荧光标记可以在活细胞中使用显微镜观察。
因为GFP 是自发发光的,所以不需要其他化学试剂或光源,也不会伤害细胞。
此外,GFP的亚细胞定位可以通过不同的融合蛋白实现,比如细胞核、质膜、内质网、线粒体等。
除了用于观察蛋白质的位置和移动,GFP还可以被用于研究细胞的功能和信号转导。
例如,GFP可以用于标记细胞器,如细胞核、线粒体和内质网,从而研究它们的功能和相互作用。
此外,GFP还可以用于标记细胞信号分子,如钙离子和蛋白激酶,从而研究它们在信号传递中的作用。
总之,GFP已成为一个重要的工具,在细胞生物学研究中发挥着重要作用。
通过使用GFP融合蛋白标记,可以可视化细胞内蛋白质的位置和运动,研究细胞的功能和信号转导,以及研究细胞亚结构。
- 1 -。
用绿色荧光蛋白进行转基因蛋研究

用绿色荧光蛋白进行转基因蛋研究
赵昀;张峰
【期刊名称】《高技术通讯》
【年(卷),期】1999(009)006
【摘要】绿色荧光蛋白基因用基因枪的渗透法导入蚕卵,它的表达由家蚕核多角
体病毒(BmNPV)的即刻早期蛋白基因启动子控制。
在紫外灯下能观察到少数5龄幼虫身上显示绿色荧光斑点,PCR实验证实部分蚕染色体DNA中含有GFP基因,说明了GFP基因已整合到这些蚕的染色体DNA中并得到了表达。
【总页数】4页(P16-19)
【作者】赵昀;张峰
【作者单位】中国科学院生物化学研究所;中国农业科学院蚕业研究所
【正文语种】中文
【中图分类】Q78
【相关文献】
1.绿色荧光蛋白转基因小鼠脂肪干细胞治疗后肢缺血的实验研究 [J], 袁福康;陆信武;秦金保;彭智猷;叶开创;杨芯蕊;黄丽佳;蒋米尔
2.经诱导的绿色荧光蛋白转基因C57BL雄鼠脾细胞移植重建雌鼠造血功能研究 [J], 阮光萍;姚翔;王金祥;邓永丽;庞荣清;王强;潘兴华
3.绿色荧光蛋白转基因小鼠用作hprt基因突变试验动物模型的研究 [J], 李永红;
杨录军;刘文斌;曹佳;刘晋祎
4.绿色荧光蛋白转基因雄鼠肝细胞移植重建雌鼠的造血功能研究 [J], 阮光萍;王金
祥;庞荣清;姚翔;邓永丽;马丽花;潘兴华
5.转基因DT40细胞导入早期鸡胚后的分布及绿色荧光蛋白表达的研究 [J], 孙鹏;赵晨;燕丽;靳文静;张文新;李赞东
因版权原因,仅展示原文概要,查看原文内容请购买。
证实了绿色荧光蛋白与活体生物的相容性
目录
• 绿色荧光蛋白的特性 • 实验方法 • 实验结果 • 讨论与结论
01
绿色荧光蛋白的特性
荧光特性
绿色荧光蛋白能够吸收蓝光并发 出绿色荧光,这一特性使其在生 物学研究中成为重要的标记物。
绿色荧光蛋白的荧光强度与浓度 成正比,这使得研究人员可以通 过荧光强度来监测其在细胞内的
药物研发与筛选
利用绿色荧光蛋白标记药物,可追 踪药物的分布、活化及代谢过程, 有助于药物研发和优化。
对生物医学领域的影响
拓展实验动物模型
推动生物技术革新
绿色荧光蛋白标记技术为实验动物模 型提供了新的工具,有助于深入研究 疾病机制和药物作用。
绿色荧光蛋白的应用有助于生物技术 的创新与发展,为生物医学领域带来 更多突破性成果。
为了全面了解绿色荧光蛋白对小鼠的影响,应对小鼠的生理指标进行检 测,如血常规、生化指标等。通过检测这些指标,可以评估绿色荧光蛋 白对小鼠生理功能的影响。
03
实验结果
荧光表达
绿色荧光蛋白在活体生物中成功表达
通过基因工程技术,将绿色荧光蛋白基因导入活体生物细胞内,观察到明显的绿色荧光信 号,表明绿色荧光蛋白在活体生物中得到了表达。
03
实验结果显示,转基因动物的生存期与对照组无明显差异,表
明绿色荧光蛋白对活体生物的生存期无影响。
04
讨论与结论
绿色荧光蛋白的应用前景
生物标记与示踪
绿色荧光蛋白可作为生物标记物, 用于示踪细胞、组织或器官的动 态变化,有助于深入了解生命过 程。
疾病诊断与监测
通过绿色荧光蛋白标记特定细胞或 分子,可实现疾病的早期诊断和实 时监测病情进展。
促进个性化医疗发展
绿色荧光蛋白及其在细胞生物学中的应用
绿色荧光蛋白及其在细胞生物学中的应用绿色荧光蛋白(Green Fluorescent Protein,简称GFP)是一种源自于海葵的蛋白质,具有绿色荧光特性。
它的发现和应用为细胞生物学研究带来了巨大的突破,成为了生物学研究中的重要工具。
本文将介绍绿色荧光蛋白的特性和它在细胞生物学中的应用。
绿色荧光蛋白的发现和研究始于上世纪60年代末。
由于GFP具有独特的荧光特性,能够发射绿色荧光,并且不需要外源性荧光素或酶辅助作用,使得它成为细胞生物学研究中的理想标记工具。
通过将GFP基因与其他基因融合,研究人员可以追踪和观察特定基因在活细胞中的表达和运动。
GFP的应用广泛涉及细胞生物学的多个领域。
首先,GFP可以用来研究细胞的结构和形态。
通过将GFP与细胞骨架蛋白或细胞器定位蛋白融合,研究人员可以直接观察细胞骨架的分布和细胞器的定位,进而了解细胞的结构和功能。
GFP在细胞生物学中的应用还包括研究蛋白质的亚细胞定位和动态变化。
通过将GFP与感兴趣的蛋白质融合,研究人员可以实时观察蛋白质在细胞中的定位和运动。
这种技术被广泛应用于研究蛋白质的转运、分泌和降解等过程,有助于揭示蛋白质的功能和调控机制。
GFP还可以用于研究细胞的信号传导和相互作用。
通过将GFP与信号分子或蛋白质相互作用的区域融合,研究人员可以观察信号分子的活动和相互作用过程。
这为研究细胞信号传导通路的调控机制提供了有力的工具。
除了在基础研究中的应用,GFP还被广泛用于生物荧光成像和生物医学研究。
通过将GFP标记的细胞或组织注射到动物体内,研究人员可以实时观察和追踪细胞或组织的活动和变化。
这种技术被应用于研究胚胎发育、神经元活动、肿瘤生长等过程,对于理解生物学的机制和疾病的发生发展具有重要意义。
总结起来,绿色荧光蛋白作为一种重要的标记工具,为细胞生物学研究提供了强大的支持。
通过GFP的应用,研究人员可以实时观察和追踪细胞和蛋白质的活动,揭示细胞的结构和功能,以及了解生物学的机制和疾病的发生发展。
绿色荧光蛋白(GFP)的基因克隆及表达
绿色荧光蛋白(GFP)的基因克隆及表达摘要绿色荧光蛋白(GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
采用PCR技术,对实验室提供的质粒pEGFP-N1中的目的基因进行扩增。
所得PCR产物和质粒pET-28b经过BamH I和Nde I双酶切后,用琼脂糖凝胶电泳法检测酶切产物的酶切情况并回收凝胶,再利用T4DNA连接酶将目的基因与载体连接起来,得到重组质粒。
将重组质粒导入克隆菌E. coli DH5a中培养扩增,提取阳性菌落质粒进行重组子鉴定,进而导入表达菌E. coLi BL-21大肠杆菌感受态细胞中,经IPTG诱导目的基因表达产生绿色荧光蛋白。
关键词:绿色荧光蛋白 PCR 基因克隆表达1.前言1.1绿色荧光蛋白(green fluorescent protein,GFP)绿色荧光蛋白是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
当受到紫外或蓝光激发时,GFP 发射绿色荧光[1]。
1.2 GFP 的结构GFP中央是一个圆柱形水桶样结构,如图二。
长420 nm,宽240 nm,由11 个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。
发色团是由其蛋白质内部第65-67位的Ser-Tyr-GLy自身环化和氧化形成。
1.3 GFP的研究应用GFP可标记细胞和蛋白质,具有广泛的应用前景。
GFP及其突变体已被广泛应用于基因表达调控、蛋白质空间定位、生物分子之间相互作用、转基因动物]2[等方面。
基于新型功能荧光蛋白的光学分子成像技术的发展,为在活细胞乃至活体动物内研究基因表达和蛋白质功能提供了更多的选择空间。
GFP还用于观察微生物、发育机理研究、细胞筛选、免疫学等方面。
本实验是利用实验室提供的质粒pEGFP-N1,其结构如图三所示。
其上有所用酶的酶切位点。
绿色荧光蛋白
Martin Chalfie
Roger Y. Tsien (钱永健) 钱永健)
2008年10月8日,美Woods Hole海洋生物 年 月 日 海洋生物 学实验室的下村修、哥伦比亚大学的马丁-沙 学实验室的下村修、哥伦比亚大学的马丁 沙 尔菲和加州大学圣地亚哥分校的钱永健三位 美国科学家, 美国科学家,因为在水母中发现和研究绿色 荧光蛋白而获得2008年诺贝尔化学奖。 年诺贝尔化学奖。 荧光蛋白而获得 年诺贝尔化学奖
潘多拉的魔盒 ——绿色荧光蛋白 ——绿色荧光蛋白
一、GPF的发现 GPF的发现 二、GPF的优点 GPF的优点 三、GPF的应用 GPF的应用
一、GPF的发现 GPF的发现
GFP发现之旅 GFP发现之旅
1962年,下村修首次从维多利亚多管水母 年 Aequorea victoria 中分离出 中分离出GFP。他发现该蛋白 。 在紫外线下会发出明亮的绿光。 在紫外线下会发出明亮的绿光。 1992年,道格拉斯 普瑞舍克隆并测定了水 年 道格拉斯·普瑞舍克隆并测定了水 母中绿色荧光蛋白的基因。 母中绿色荧光蛋白的基因。 1993年 1993年, Martin Chalfie证明了GFP作为多种 Chalfie证明了 证明了GFP作为多种 生物学现象的发光遗传标记的价值。 生物学现象的发光遗传标记的价值。在最初的一 项实验中,他用GFP使秀丽隐杆线虫的 个单独细 使秀丽隐杆线虫的6个单独细 项实验中,他用 使秀丽隐杆线虫的 胞有了颜色。 胞有了颜色。 1994年,钱永健开始改造荧光蛋白,培育出 年 钱永健开始改造荧光蛋白, 黄色、蓝色、绿色、红色等多种颜色的荧光蛋白, 黄色、蓝色、绿色、红色等多种颜色的荧光蛋白, 理解了GFP发出荧光的机制。世界上目前使用的 发出荧光的机制。 理解了 发出荧光的机制 荧光蛋白大多是钱永健实验室改造后的变种。 荧光蛋白大多是钱永健实验室改造后的变种。令 在同一时间跟踪多个不同的生物学过程成为现实。 在同一时间跟踪多个不同的生物学过程成为现实。 钱永健还开发了检测荧光蛋白的荧光探针技术。 钱永健还开发了检测荧光蛋白的荧光探针技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绿色荧光蛋白在转基因动物研究中的应用绿色荧光蛋白(GFP)是一种来自水母的蛋白质,具有独特的荧光性质,可以发出绿色荧光。
近年来,GFP被广泛应用于生物学研究中,特别是在转基因动物研究中得到了广泛应用。
利用GFP基因的表达,科学家可以追踪细胞、组织以及整个生物体系的运动和功能。
通过将GFP基因转入目标细胞或组织中,科学家可以用荧光显微镜观察其在生物中的位置和运动轨迹,繁殖情况以及基因表达水平等重要信息。
在转基因动物研究中,GFP的应用尤其重要。
通过将GFP基因转入小鼠、果蝇等模式动物中,科学家可以追踪这些动物的胚胎发育、器官生长、细胞分化以及疾病模型等过程。
此外,还可以利用GFP的荧光特性,观察细胞内各种蛋白质的表达情况,从而了解其在疾病发生发展中的作用,为药物开发提供参考。
总之,GFP在转基因动物研究中的应用,不仅能够促进科学家对于生物体系的认识和了解,还能够为疾病治疗提供新的思路和方法。
随着技术的进步,GFP的应用前景将会更加广阔。
- 1 -。