不等式的基本公式绝对值

合集下载

高一数学不等式公式

高一数学不等式公式

高一数学不等式公式学习需要讲究方法和技巧,更要学会对知识点进行归纳整理。

下面是店铺为大家整理的高一数学不等式公式,希望对大家有所帮助! 高一数学不等式公式1、不等式的性质是证明不等式和解不等式的基础。

不等式的基本性质有:(1) 对称性:a>bb<a;(2) 传递性:若a>b,b>c,则a>c;(3) 可加性:a>ba+c>b+c;(4) 可乘性:a>b,当c>0时,ac>bc;当c<0时,ac<bc。

不等式运算性质:(1) 同向相加:若a>b,c>d,则a+c>b+d;(2) 异向相减:,.(3) 正数同向相乘:若a>b>0,c>d>0,则ac>bd。

(4) 乘方法则:若a>b>0,n∈N+,则;(5) 开方法则:若a>b>0,n∈N+,则;(6) 倒数法则:若ab>0,a>b,则。

2、基本不等式定理:如果,那么(当且仅当a=b时取“=”号)推论:如果,那么(当且仅当a=b时取“=”号)算术平均数;几何平均数;推广:若,则当且仅当a=b时取“=”号;3、绝对值不等式|x|0)的解集为:{x|-a|x|>a(a>0)的解集为:{x|x>a或x<-a}。

附:不等式证明知识概要不等式的证明问题,由于题型多变、方法多样、技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。

解决这个问题的途径在于熟练掌握不等式的性质和一些基本不等式,灵活运用常用的证明方法。

一、要点精析1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。

(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。

绝对值三角不等式公式

绝对值三角不等式公式

绝对值三角不等式公式
绝对值三角不等式定理:|a|-|b|≤|a±b|≤|a|+|b|。

三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子。

绝对值三角不等式公式||a|-|b||≤|a±b|≤|a|+|b|是由两个双边不等式组成。

一个是||a|-|b||≤|a+b|≤|a|+|b|,这个不等式当a、b同方向时(如果是实数,就是正负符合相同)|a+b|=|a|+|b|成立。

当a、b异向(如果是实数,就是ab正负符合不同)时,||a|-|b||=|a±b|成立。

另一个是||a|-|b||≤|a-b|≤|a|+|b|,这个等号成立的条件刚好和前面相反,当a、b异向(如果是实数,就是ab正负符合不同)时,|a-b|=|a|+|b|成立。

当a、b同方向时(如果是实数,就是正负符合相同)时,||a|-|b||=|a-b|成立。

三角不等式证明设ABC为一个三角形,记△ABC,延长BA
至点D,使DA=CA,连接DC.则因DA=AC,∠ADC=∠ACD(等边对等角,《几何原本》命题5)所以∠BCD大于∠ADC(整体大于部分公理)由于DCB是三角形,∠BCD大于∠BDC,而且较大角所对的边较大(大角对大边,命题19)所以DBBC,而DA=AC则
DB=AB+AD=AB+ACBC.。

三角不等式绝对值公式

三角不等式绝对值公式

三角不等式绝对值公式
三角不等式绝对值公式是数学中的一条重要定理,它可以帮助我们更好地理解三角形的性质和特点。

该公式的表述为:对于任意三角形ABC,有|AB+BC|≥|AC|,|AB-BC|≤|AC|,|AC+BC|≥|AB|,|AC-BC|≤|AB|,|AB+AC|≥|BC|,|AB-AC|≤|BC|。

这个公式的意义在于,它告诉我们三角形中任意两边之和大于第三边,任意两边之差小于第三边。

这个结论对于我们理解三角形的性质和特点非常重要,因为它可以帮助我们判断一个三角形是否合法,以及判断一个三角形的形状和大小。

例如,如果我们知道一个三角形的三边长度分别为3、4、5,那么我们可以用三角不等式绝对值公式来验证这个三角形是否合法。

根据公式,我们可以得到|3+4|≥|5|,|3-4|≤|5|,|3+5|≥|4|,|3-5|≤|4|,|4+5|≥|3|,|4-5|≤|3|。

这些不等式都成立,因此我们可以得出结论,这个三角形是合法的。

三角不等式绝对值公式还可以帮助我们判断一个三角形的形状和大小。

例如,如果我们知道一个三角形的三边长度分别为5、6、7,那么我们可以用公式来判断这个三角形的形状和大小。

根据公式,我们可以得到|5+6|≥|7|,|5-6|≤|7|,|5+7|≥|6|,|5-7|≤|6|,|6+7|≥|5|,|6-7|≤|5|。

这些不等式都成立,因此我们可以得出结论,这个三角形是合法的,并且是一个锐角三角形。

三角不等式绝对值公式是数学中的一条重要定理,它可以帮助我们更好地理解三角形的性质和特点。

无论是在学习数学还是在实际生活中,我们都可以运用这个公式来解决问题,提高自己的数学素养。

基本不等式公式大全

基本不等式公式大全

基本不等式公式大全基本不等式公式为: a+b≥2√(ab)。

常用的不等式公式√((a2+b2)/2)>(a+b)/2≥√ab≥2/(1/a+1/b)√ab≤(a+b)/2a2+b2>2abab≤(a+b)2/4lla-Ibl[≤la+b|≤la/+b/(注:la读作a的绝对值)其中,a >0,b>0,当且仅当a=b时,等号成立不等式(inequality)是用不等号连接的式子。

不等式分为严格不等式与非严格不等式,用纯粹的大于号、小于号连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)连接的不等式称为非严格不等式,或称广义不等式。

不等式既可以表达一个命题,也可以表示一个问题。

一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。

总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。

其中,两边的解析式的公共定义域称为不等式的定义域。

如果x>y,那么y<x;如果y<x,那么x>y;(对称性)如果x>y,y>z;那么x>z;(传递性)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)如果x>y,m>n,那么x+m>y+n;(充分不必要条件)如果x>y>0,m>n>0,那么xm>yn;如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y 的n次幂(n为负数)。

绝对值不等式解法

绝对值不等式解法

典例讲解
例1解下列不等式
| 2 x 1 || x 1 | (3) | x 1 | | x 3 | 5 (2) (1) | 2 x 1 | 1
解:(2)原不等式两边平方得: (2x 1) ( x 1)
2
2
平 方 法
整理得: x 2 x 0
2
x 0或x 2
10 5 2 答案:(1) [ 3 , 3 ) (1, 3 ] 1 (2) ( , ) 2
(3) (,7] (2,)
不等式的解集为: (,0) (2,)
分段解不等式问题要点: 段内求交,段与段求并
典例讲解
| x 1 | | x 3 | 5 | 2 x 1 || x 1 | (3) (2) | 2 x 1 | 1 (1)
( x 1) ( x 3) 5 解:(3)当 x 1 ,原不等式可化为: 3 3 x x ,此时解为: 2 2 分 当 1 x 3 ,原不等式可化为: ( x 1) ( x 3) 5 段 4 5 ,此时解为:x无解 法 当 x 3 ,原不等式可化为: ( x 1) ( x 3) 5
典例讲解பைடு நூலகம்
例1解下列不等式
| 2 x 1 || x 1 | (3) | x 1 | | x 3 | 5 (2) (1) | 2 x 1 | 1
解:(1)原不等式可化为: 公 式 法
2 x 1 1或2 x 1 1
x 0或x 1
不等式的解集为: (,0) (1,)
7 7 x ,此时解为:x 2 2
例1解下列不等式
综上所述,不等式的解集为
3 7 ( , ) ( , ) 2 2

不等式基本公式

不等式基本公式

不等式基本公式不等式基本公式是解决不等式问题的重要工具,它建立在不等式的基本性质和数学推理的基础上,用于推导和解决各种类型的不等式问题。

下面是不等式基本公式的相关参考内容。

一、不等式基本性质:1. 不等式的传递性:如果a>b且b>c,则a>c。

这个性质可以用于推导和比较不等式的大小关系。

2. 不等式的加法性:如果a>b,则a+c>b+c。

这个性质可以用于将不等式中的常数项相加或相减,推导不等式的等价关系。

3. 不等式的乘法性:如果a>b且c>0,则ac>bc;如果a>b且c<0,则ac<bc。

这个性质可以用于将不等式中的变量进行乘法运算,推导不等式的大小关系。

二、一元一次不等式:1. 加减法不等式解法:对于不等式ax+b>c,可以将不等式中的常数项移项,得到ax>c-b。

然后比较a的正负性和c-b的大小关系,确定不等式的解集。

2. 乘除法不等式解法:对于不等式ax>b,可以将不等式中的常数项移项,得到ax-b>0。

然后比较a的正负性和ax-b的大小关系,确定不等式的解集。

三、一元二次不等式:1. 零点判别法:对于一元二次不等式ax^2+bx+c>0,可先求解对应的一元二次方程ax^2+bx+c=0。

然后根据一元二次方程的求解公式,判断二次函数的图像与x轴的位置关系,确定不等式的解集。

2. 符号判别法:对于一元二次不等式ax^2+bx+c>0,也可以利用一元二次方程ax^2+bx+c=0的零点判别式Δ=b^2-4ac,来判断二次函数的图像与x轴的位置关系,确定不等式的解集。

四、一元绝对值不等式:1. 绝对值的定义:对于任意的实数x,|x|表示x的绝对值,定义为:|x|=x,如果x≥0;|x|=-x,如果x<0。

2. 绝对值不等式的性质:对于任意的实数a和b,有以下两个性质:a) |a|>b等价于a>b或a<-b;b) |a|<b等价于-b<a<b。

解不等式常用公式

解不等式常用公式解不等式是数学中的一个重要内容,它在实际问题中具有广泛的应用。

在解不等式的过程中,我们可以运用一些常用的公式和方法来简化计算,提高求解的效率。

本文将介绍一些常用的不等式解法公式,并通过实际例子来说明它们的应用。

一、一元一次不等式的解法一元一次不等式是指只含有一个未知数的一次方程。

对于一元一次不等式ax+b>0(或<0)来说,我们可以通过以下公式来求解:1. 当a>0时,不等式ax+b>0的解集为x>-b/a;2. 当a<0时,不等式ax+b>0的解集为x<-b/a;3. 当a>0时,不等式ax+b<0的解集为x<-b/a;4. 当a<0时,不等式ax+b<0的解集为x>-b/a。

例如,对于不等式2x-3>0,我们可以将其转化为2x>3,再除以2,得到x>3/2。

因此,不等式2x-3>0的解集为x>3/2。

二、一元二次不等式的解法一元二次不等式是指含有一个未知数的二次方程。

对于一元二次不等式ax^2+bx+c>0(或<0)来说,我们可以通过以下公式来求解:1. 当a>0时,不等式ax^2+bx+c>0的解集为x<x1或x>x2,其中x1和x2分别为方程ax^2+bx+c=0的两个根;2. 当a<0时,不等式ax^2+bx+c>0的解集为x1<x<x2。

例如,对于不等式x^2-3x+2>0,我们可以先求出方程x^2-3x+2=0的根,即x1=1和x2=2。

由于a=1>0,因此不等式x^2-3x+2>0的解集为x<1或x>2。

三、绝对值不等式的解法绝对值不等式是指含有绝对值符号的不等式。

对于绝对值不等式|ax+b|>c来说,我们可以通过以下公式来求解:1. 当a>0时,不等式|ax+b|>c的解集为x<-b/a-c/a或x>-b/a+c/a;2. 当a<0时,不等式|ax+b|>c的解集为x<-b/a+c/a或x>-b/a-c/a。

基本不等式公式总结大全

基本不等式公式总结大全在数学中,不等式是比较两个数或者表达式大小关系的数学式子。

而基本不等式则是指那些在数学中应用最为广泛、最为基础的不等式。

基本不等式在数学推导和证明中起着非常重要的作用,它们是我们解决各种数学问题的基础。

以下是一些常见的基本不等式公式:1. 两个正数的不等式,若a>b,则a+c>b+c,a-c>b-c(c为正数),ac>bc(c为正数),a/c>b/c(c为正数且不为0)。

2. 两个负数的不等式,若a<b,则a+c<b+c,a-c<b-c(c为正数),ac<bc(c为正数),a/c<b/c(c为正数且不为0)。

3. 绝对值不等式,|a+b|≤|a|+|b|,|a-b|≥||a|-|b||。

4. 平均值不等式,对于任意非负实数a和b,有(a+b)/2≥√(ab)。

5. 柯西-施瓦茨不等式,对于任意实数a1, a2, ..., an和b1,b2, ..., bn,有|(a1b1 + a2b2 + ... + anbn)| ≤ √(a1^2 +a2^2 + ... + an^2) √(b1^2 + b2^2 + ... + bn^2)。

6. 阿贝尔不等式,若a1, a2, ..., an和b1, b2, ..., bn为实数且满足a1≤a2≤...≤an和b1≥b2≥...≥bn,则有a1b1 +a2b2 + ... + anbn ≤ (a1 + a2 + ... + an) (b1 + b2 + ... + bn)。

这些基本不等式公式在数学中有着广泛的应用,可以用来证明其他数学定理,解决各种数学问题,以及在实际生活中的应用。

熟练掌握这些基本不等式公式,对于提高数学推理和解决问题的能力非常重要。

希望这些基本不等式公式能够帮助你更好地理解和运用数学知识。

绝对值的三角不等式公式证明

绝对值的三角不等式公式证明
绝对值三角不等式是一个非常强大且非常有用的数学公式,它可以帮助我们精确地解决很多问题。

它的数学形式可以表述为:|x-y| < = a+b,其中x、y、a、b 都是实数,|x-y|表示x-y的绝对值。

绝对值三角不等式的证明由单射定理开始,它是数学中一个基本定理,其定义可以表达为:如果a>b,则存在c>0,使得a - c < b。

根据这个定理,关于x、y、a、b之间的关系可以写成更加清楚的等式形式:a-b<x-y < a+b。

接下来,假设y-x>0,也就是说x<y,此时有y-x<a+b,带入单射定理可得a-(y-x)<b,也就是说a-y+x < b,整理得x-y<a+b,故可证|x-y|<=a+b。

同理,如果y-x<0,也就是说x>y,此时有x-y<a+b,根据单射定理可得a-(x-y)<b,整理得a-x+y<b,故可证|x-y|<=a+b。

综上所述,可以看出绝对值三角不等式的证明基于单射定理,从而为我们提供了一个精确地解决数学问题的有效方法。

正是由于绝对值三角不等式的重要性和有效性,它被广泛用于各种数学领域中,如超越几何、微积分、概率论等。

绝对值的三角不等式公式

绝对值的三角不等式公式
绝对值三角不等式定理:|a|-|b|≤|a±b|≤|a|+|b|。

三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子。

三角不等式定理
绝对值的三角不等式公式 2
||a|-|b||≤|a±b|≤|a|+|b|是由两个双边不等式组成。

一个是||a|-|b||≤|a+b|≤|a|+|b|,这个不等式当a、b同方向时(如果是实数,就是正负符合相同)|a+b|=|a|+|b|成立。

当a、b异向(如果是实数,就是ab正负符合不同)时,||a|-|b||=|a±b|成立。

另一个是||a|-|b||≤|a-b|≤|a|+|b|,这个等号成立的条件刚好和前面相反,当a、b异向(如果是实数,就是ab正负符合不同)时,|a-b|=|a|+|b|成立。

当a、b同方向时(如果是实数,就是正负符合相同)时,||a|-|b||=|a-b|成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档