矩阵乘法可交换的条件

合集下载

矩阵的运算优秀课件

矩阵的运算优秀课件

(A
E )n
An
Cn1 An1
C
2 n
An2
Cnn1 A
E
3. 求矩阵A的n次幂的方法. 措施一 数学归纳法
先计算A2, A3等, 发现Ak的规律,再用数学归纳法证明之.
例1

A
1 0
11 , 求 An

A2
1 0
12 1
10
11 10
11
1 0
2 1
同理,
A3
A2
A
1 0
13
猜测
An
,
求An
1
1
n
1
n n
n

将A分解成A
E
1 n
B,
其中B
111
1
1
1
111,容易得出B2 nB
于是 A2
(E
1 n
B)2
E2
2 n
EB
1 n2
B2
E
2 n
B
1 n2
nB
E 1 B A(幂等矩阵),故An A.
n
措施三 利用乘法结合律 若A T , 其中 , 都是n 1矩阵(列矩阵).利用乘法结合律,
三、矩阵旳幂乘
1、定义 设A是一种n阶矩阵,对于正整数k, Ak AA A
k个
称为A旳k次幂。 2、幂乘旳运算规律:任意正整数 k , l ,有
Ak Al Akl , Ak l Akl
但一般来说 ( AB)k Ak Bk ,
例题 设A, B为n阶方阵, E为n阶单位矩阵,以下式子哪些成立 ?
由矩阵相等旳定义,得
x1 x3
x2 x4

《线性代数》课件-第3章 矩阵

《线性代数》课件-第3章 矩阵

§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。

矩阵运算理论小结

矩阵运算理论小结

班级:09金融3 学号:2009241164 姓名:陈妮矩阵运算理论小结运算是数学的基础概念和基础内容,矩阵是线性代数的基础概念和基础内容。

因此,矩阵运算理论是线性代数的重要理论之一。

矩阵是贯穿线性代数各部分内容的一条线索。

线性代数中的很多计算及应用与矩阵及其运算都有密切的关系。

掌握并能灵活运用矩阵运算及其性质是学好线性代数的一个必备条件。

矩阵运算的基本途径就是设法把一个较复杂的矩阵计算问题转化为一个简单的、易于求解的矩阵计算问题。

在《经济数学—线性代数》这一本书中,对矩阵的定义是:由m ×n 个aij(i=1,2,…,m;j=1,2,…,n)排成的m 行n 列的数表111213121222323132333123.................n n n n n n nna a a a a a a a a a a a a a a a 称为m 行n 列的矩阵,简称m ×n 矩阵。

一.线性方程组的矩阵表示 设有线性方程组若记则利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式:(2)其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程. 如果是方程组(1)的解, 记列矩阵则,这时也称是矩阵方程(2)的解; 反之, 如果列矩阵是矩阵方程(2)的解,即有矩阵等式成立, 则 即也是线性方程组(1)的解. 这样, 对线性方程组(1)的讨论便等价于对矩阵方程(2)的讨论. 特别地, 齐次线性方程组可以表示为将线性方程组写成矩阵方程的形式,不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,这给线性方程组的讨论带来很大的便利.二.矩阵的初等变换把线性方程组的三种初等变换移植到矩阵上,就得到矩阵的三种初等行变化:1.对调矩阵的两行(换行变换)2.以非零常数K乘矩阵某一行的各元(倍法行变换)3.把某一行所有的元素的K倍加到另一行对应的元上去(倍加行变换)。

把定义中的“行”变成“列”,即得矩阵的初等列变换定义,矩阵的初等行变换与初等列变换,统称为初等变换。

2 矩阵的运算

2  矩阵的运算

例2
有 x1 , x2 , x3 到 y1 , y2 , y33; a12 x2 + a13 x3 y2 = a21 x1 + a22 x2 + a23 x3 y = a x + a x + a x 31 1 32 2 33 3 3
a11 记 A = a21 a 31
A
a11 a21 即若 A = M a m1
T
或 A
'
a11 a12 L a1n a22 L a2 n a12 T 则A = M M M a am 2 L amn 1n
a21 L am1 a22 L am 2 M M a2 n L amn
k ( AB) = (kA) B = A(kB), k ∈ R
A0 = E ,规定
记为 Am (2)方阵 A 的 m 次幂, 定义为
674 4m 8 Am = AAL A
Ak Al = Ak +l
矩阵的幂显然有
( Ak )l = Akl
(3) 方阵 A 的矩阵多项式 m m −1 设 f ( x) = am x + am −1 x + L + a1 x + a0 定义
矩阵乘法不满足交换律 2 矩阵乘法 交换律 (1 )矩阵乘法不满足交换律: Ⅰ) AB 有意义, BA 可能没意义; Ⅱ) AB, BA有意义, 它们可能不同型。 Ⅲ) AB 与 BA 同型但可能不相等 故我们特别强调乘积顺序, 称 AB 为A 左乘 B, B 右乘 A (2) 对数成立的公式对矩阵不一定成立的公式
例5
a b 解: 设A与B可交换,则B应是2阶方阵,不妨记 B = c d 由 AB = BA 即有

矩阵乘法不可交换的几何解释

矩阵乘法不可交换的几何解释

矩阵乘法不可交换的几何解释作者:李小山来源:《科教导刊·电子版》2017年第25期摘要矩阵是代数学的理论基础和重要工具,涉及代数学的各个重要内容。

矩阵乘法与数的乘法最本质的区别是矩阵乘法不满足交换律。

本文通过几个非常具有几何直观的例子来形象说明矩阵乘法不可交换这一数学现象,加深我们对矩阵乘法不可交换的认识。

关键词矩阵矩阵乘法交换律中图分类号:G423.3 文献标识码:A0引言线性代数是一门十分重要的数学数学课程,它的基本概念,理论和方法都具有高度的概括性,抽象性和广泛实用性。

线性代数无论是在数学,物理,还是工程力学都有着非常重要的应用。

因此,在大学阶段真正掌握和理解线性代数中的基本概念和方法就显得非常有必要。

线性代数的核心内容就是解线性方程组,而充分了解线性方程组解的基本理论是矩阵的理论。

可以这样说,解线性方程组是核心,而基本工具则是矩阵。

矩阵是线性代数中最为基本的概念。

其中矩阵运算包括矩阵的加法,数乘以及矩阵的乘法。

矩阵的加法和数乘对于线性代数的初学者都很好理解,唯有矩阵的乘法运算对于线性代数初学者来说是一道很难迈过的门槛。

在本文中,笔者将重点探讨如何来理解矩阵的乘法以及探讨为何矩阵不再满足交换律这一重要的数学事实。

我们将通过几个非常具有几何直观的例子来形象说明矩阵乘法不可交换这一数学现象,加深了我们对矩阵乘法不可交换的认识。

1矩阵乘法的定义的引入设A=(aij)是一个m€譻矩阵,B=(bij)是一个s€譶矩阵。

规定矩阵A与E的乘积是一个m€譶矩阵,其中(1)公式(1)是矩阵乘法的标准定义。

这个定义对于初学者来说显得极不自然,无法理解矩阵乘法为何要以这种方式定义。

按照笔者授课的经验,如果仅要求学生死记硬背矩阵乘法的定义,会很大程度上降低学生学习线性代数的兴趣与积极性。

又由于矩阵乘法是线性代数中最为基础的内容,如果这部分基础理解不透彻,对于后续内容的学习将会是一个很大的障碍。

对于矩阵乘法的教学,一个恰当的方法是通过线性变换的复合运算来理解矩阵的乘法。

矩阵的运算及其性质

矩阵的运算及其性质
s
cij ai1b1 j ai2b2 j aisbsj aikbkj (i 1,2,, m;j 1,2,, n) k 1 由定义可知,矩阵 A 的列数与 B 的行数相等时,两个
矩阵才能相乘. C (cij )mn 的第 i 行第 j 列元素等于矩阵的 第 i 行与矩阵 B 的第 j 列对应元素乘积之和.
1 2
例 2.2.4
设 A 3 0
1 4

B
2 4
3 1
,求
AB
.

1 AB 3
0
2
1 4
2 4
1 2 2 4
3 1
3 2 (1) 4 0 2 4 4
1 3 21 10
3
3
(1)
1
2
0 3 41 16
5 .
8 4
2
例 2.2.5
设 A 1
2
1

B
1
,求
AB
,
BA
.
大连理工大学出版社
目录
1.矩阵的加(减)法运算 2.矩阵的数乘运算 3.矩阵的乘法运算 4.矩阵的转置 5.方阵的行列式
1. 矩阵的加(减)法运算
定义 2.2.1 设 A (aij ), B (bij ) 都是 m n 矩 阵(此时称这两个矩阵为同型矩阵).若
aij bij (i 1,2,, m; j 1,2,, n) ,则称矩阵 A 与 B 相 等,记作 A B .
a11 a12 a1n
a11 a21 am1
, A
a21
a22
a2n
AT
a12
a22
am
2
.
am1

《线性代数》学习指南

学习指南《线性代数》是理工科及经济管理各学科专业的一门重要数学基础课程。

它的课程目标是通过各个教学环节,充分利用数学软件工具,运用各种教学手段和方法,系统地向学生阐述矩阵、向量、线性方程组的基本理论与基本方法,使学生掌握线性代数的基本概念、基本原理与基本计算方法,理解具体与抽象、特殊与一般、有限与无限等辨证关系,培养学生逻辑思维能力、抽象思维能力、分析问题与解决问题的能力、运用计算机解决与线性代数相关的实际问题的能力,为学习后继课程的学习,从事工程技术、经济管理工作,科学研究以及开拓新技术领域打下坚实的基础 。

第一章 矩阵矩阵是研究线性方程组和其他相关问题的有力工具,也是线性代数的主要研究对象之一。

矩阵作为一种抽象数学结构的具体表现,其理论与方法在自然科学、工程技术、经济管理、社会领域都具有广泛的应用。

本章从实际问题出发,引出矩阵的概念,讨论矩阵的运算及其性质,逆矩阵及其求法,矩阵的分块,矩阵的初等变换与初等矩阵的概念与性质。

重点是矩阵的运算,特别是矩阵的乘法运算,逆矩阵及其性质,初等变换、初等矩阵的概念与性质,用初等变换化矩阵为阶梯形与最简形,用初等变换和定义法求逆矩阵的方法。

1. 矩阵是初学线性代数认识的第一个概念。

矩阵不仅是线性代数主要讨论的对象之一,而且是非常重要的数学工具,它的理论和方法贯穿于本课程始终。

本章的重点之一是矩阵的各种运算,其中又以矩阵的乘法最为重要,它也是难点之一。

两个矩阵的乘积是有条件的,不是任何两个矩阵都能相乘的。

AB 有意义,必须是A 的列数等于B 的行数,而积矩阵AB 的行数等于A 的行数,列数等于B 的列数。

积矩阵AB 的第i 行第j 列元素等于左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积之和。

读者务必掌握矩阵乘法的实质。

矩阵的乘法与数的乘法不同。

尤其要注意以下三点:(1)矩阵乘法不满足交换律。

当乘积AB 有意义时,BA 不一定有意义,即使BA 有意义,也不一定有AB BA =。

设ab为n阶可逆矩阵则ab=ba

设ab为n阶可逆矩阵则ab=ba
ab是对称矩阵,则ab=ba的充要条件是a,b都为对称矩阵。

两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。

两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。

若a,b都为对称矩阵。

则:
(ab)t=btat=ba
因为ab是对称矩阵,所以(ab)t=ab
所以ab=ba
反之,若ab=ba
则(ab)t=(ba)t
ab=atbt
故a=at,b=bt
基本性质:1、对于任何方形矩阵x,x+xt是对称矩阵。

2、a为方形矩阵是a为对称矩阵的必要条件。

3、对角矩阵都是对称矩阵。

4、两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。

两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。

5、每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。

6、若对称矩阵a的每个元素均为实数,a是symmetric矩阵。

7、一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零的时候成立。

8、如果x是对称矩阵,那么对于任意的矩阵a,axat也是对称矩阵。

9、n阶实对称矩阵,是n维欧式空间v(r)的对称变换在单位正交基下所对应的矩阵。

线性代数第二章 矩阵代数 S2矩阵的代数运算


(1) h( A) f ( A) g( A), s( A) f ( A)g( A).
(2) f ( A)g( A) g( A) f ( A).
24
4、n阶矩阵乘积的行列式
方阵对应着行列式,于是有如下定理:
定理:若 A,B是n阶方阵,则 |AB| = |A| |B|.
(此定理可以推广到有限个同阶矩阵的情况)
或 Al .
la11
lA
Al
la21
la12
la22
la1n
la2n
.
lam1 lam1 lamn
特别的,lE 称为数量矩阵.
6
2、线性运算的运算性质
矩阵的加(减)法和数乘统称为矩阵的线性 运算,这些运算都归结为数(元)的加法与乘法.
运算性质
设A, B为同型矩阵,l, m为数,则 ➢ l(A + B) = l A + l B ➢ (l + m)A = l A+ m A ➢ l (m A) = (lm) A
0 bn2
bnn
29
a11 a12 a21 a22
A 0 an1 an2 E B 1 0
0 1
a1n c11 c12
c1n
a2n
c21
Cc22
c2n
ann cn1 cn2
cnn
0 00
0
0 00
0
00
1 0 0
0
AC
E 0
再利用拉普拉斯定 理按后n行展开
E (1)[(n1)(n2) 2n](12 n) C
(2) 由AB=O不能得出A、B至少有一个零矩阵.
如前面的A, B矩阵
A 1 1 ≠O, B 1 1 ≠ O,

高等代数北大版第四章矩阵知识点总结

高等代数北大版第四章矩阵知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第四章 矩阵( * * * )一、复习指导:矩阵这一章节可以说是一个基础章节,它不仅很重要,而且还是其他章节的基础,学好矩阵十分重要,我们要对逆矩阵,转置矩阵,对称矩阵等等的概念都要弄清楚,除此之外,还要知道矩阵的运算性质,矩阵的秩。

在考试中,很有可能会出与矩阵这一章节有关的证明题,例如证明相互关联的矩阵的秩,矩阵的逆之间的关系,还有可能有与求矩阵的逆有关的题目。

总的来说,这一个章节是一个关键的章节,高等代数这本书里面的知识都是融会贯通的,学好了矩阵能够为后面的章节夯实基础。

二、考点精讲:(一) 基本概念及其运算1.基本概念矩阵—形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛mn m m n n a a a a a aa a a212222111211称为m 行n 列的矩阵,记为n m ij a A ⨯=)(,行数与列数相等的矩阵称为方阵,元素全为零的矩阵称为零矩阵。

(1)若矩阵中所有元素都为零,该矩阵称为零矩阵,记为O 。

(2)对n m ij a A ⨯=)(,若n m =,称A 为n 阶方阵。

(3)称⎪⎪⎪⎭⎫ ⎝⎛=11 E 为单位矩阵。

(4)对称矩阵—设n n ij a A ⨯=)(,若),,2,1,(n j i a a ji ij ==,称A 为对称矩阵。

(5)转置矩阵—设⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211,记⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn n n m m Ta a a a a a a a a A212221212111,称T A 为矩阵A 的转置矩阵。

(6)同型矩阵及矩阵相等—若两个矩阵行数与列数相同,称两个矩阵为同型矩阵,若两个矩阵为同型矩阵,且对应元素相同,称两个矩阵相等。

(7)伴随矩阵—设n n ij a A ⨯=)(为n 矩阵,将矩阵A 中的第i 行和j 列去掉,余下的元素按照原来的元素排列次序构成的1-n 阶行列式,称为元素ij a 的余子式,记为ij M ,同时称ij j i ij M A +-=)1(为元素ij a 的代数余子式,这样矩阵中的每一个元素都有自己的代数余子式,记⎪⎪⎪⎪⎪⎭⎫⎝⎛=*nn n n n n A A A A A A A A A A 212221212111,称为矩阵A 的伴随矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵乘法可交换的条件
矩阵的理论可知,矩阵的乘法不同于数的乘法,矩阵的乘法不满足交换律,即当矩AB有意义时,矩阵BA未必有意义,即使AB, BA都有意义时它们也不一定相等。

但是当A, B满足一定条件时,就有AB= BA,此时也称A与B是可交换的。

扩展资料
1、设A、B至少有一个为零矩阵,则A、B可交换;
2、设A,B至少有一个为单位矩阵则A、B可交换;
3、设A,B至少有一个为数量矩阵,则A、B可交换;
4、设A,B均为对角矩阵,则A,B可交换;
5、设A,B均为准对角矩阵准对角矩阵是分块矩阵概念下的.一种矩阵。

即除去主对角线上分块矩阵不为零矩阵外,其余分块矩阵均为零矩阵,则A,B可交换;
6、设A*是A的伴随矩阵,则A*与A可交换;
7、设A可逆,则A与其逆矩阵可交换;
注:A的逆矩阵经过数乘变换所得到的矩阵也可以与A进行交换。

8、A^n(n=0,1。

),n属于N、可与A^m(m=0,1。

),m属于N、交换。

这一点由矩阵乘法的结合律证明。

相关文档
最新文档