二元一次不等式(组)与平面区域

合集下载

二元一次不等式(组)与平面区域练习题及答案解析_必修5

二元一次不等式(组)与平面区域练习题及答案解析_必修5

1.没有正在3x+2y<6表示的仄里地区内的面是( )之阳早格格创做 A.(0,0) B.(1,1) C.(0,2) D.(2,0) 问案:D

2.没有等式组

 x-y+5≥0

x+y≥02≤x≤3表示的仄里地区是一个

( ) A.三角形B.曲角梯形 C.梯形D.矩形 剖析:选C.绘出没有等式组所表示的仄里地区即可. 3.本面O(0,0)与面集A={(x,y)|x+2y-1≥0,y≤x+2,2x+y-5≤0}的闭系是________,面M(1,1)与集中A的闭系是________. 剖析:将面(0,0)代进集中A中的三个没有等式,没有谦脚x+2y-1≥0,故O∉A,共样将M面代进,得M∈A.问案:O∉AM∈A 4.绘出下列没有等式组表示的仄里地区:

(1) 4x-2y-2>0,x-2y-5≤0;X k b 1 . c o m(2)

 x+3y≥0,

x+3y-3<0. 解: 一、采用题 1.图中表示的地区谦脚没有等式( ) A.2x+2y-1>0B.2x+2y-1≥0 C.2x+2y-1≤0D.2x+2y-1<0 问案:B 2.没有等式组

 x≥2

x-y+3≤0表示的仄里地区是下列图

中的( ) 问案:D 3.如图阳影部分用二元一次没有等式组表示为( )

A. y≤2,2x-y+4≥0B.

 0≤y≤2

x≤02x-y+4≥0

C. y≤2,x≤02x-y+4≥0D.

 0≤y≤2

2x-y+4≤0x≤0 剖析:x-y+4≤0正在曲线2x-y+4=0上及左上圆,故D错,A、C均缺y≥0,A还缺x≤0. 4.设面P(x,y),其中x,y∈N,则谦脚x+y≤3的面P的个数为( ) A.10B.9C.3D.无数 剖析:x=0时,y可与0,1,2,3有4个面; 当x=1时,y可与0,1,2有3个面; 当x=2时,y可与0,1有2个面; 当x=3时,y可与0,有1个面,故公有10个面,选A. 5.已知面(-3,1)战(0,-2)正在曲线x-y-a=0的一侧,则a的与值范畴是( ) A.(-2,4) B.(-4,2) C.(-∞,-2)∪(2,+∞) D.(-∞,-4)∪(2,+∞) 剖析:选D.(-3-1-a)(0+2-a)>0, 即(a+4)(a-2)>0,∴a>2或者a<-4. 6.正在仄里曲角坐标系中, 若没有等式组 x+y-1≥0

23-二元一次不等式(组)与平面区域(1)

23-二元一次不等式(组)与平面区域(1)

3.3 二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域教材分析本节课是在学生学习了直线与直线方程的关系,初步了解了二元一次方程的几何意义的基础上,引领学生进一步研究二元一次不等式的几何意义,为后面学习用图解法求二元函数最值问题创造条件.使学生体会数与形的转化过程,逐步加强学生应用几何图形解决代数问题的意识.基于以上分析,在教学中应充分利用多媒体课件向学生展示代数条件与几何图形的对应关系,加强学生对问题的了解,培养学生学习数学的兴趣.课时分配本节内容用1课时的时间完成,主要讲解二元一次不等式(组)表示平面区域.教学目标重点: 用二元一次不等式(组)表示平面区域的方法.难点:1.探究二元一次不等式所表示的平面区域的过程;2.正确画出二元一次不等式(组)相应的平面区域.知识点:二元一次不等式的几何意义,能准确画出二元一次不等式(组)表示平面区域.能力点:学生在学会知识的过程中,培养学生运用数学方法解决问题的能力.教育点:通过对新知识的构建,优化学生的思维品质.自主探究点:通过自主探索、合作交流,增强学生对数学的情感体验,提高创新意识. 通过学生合作探究、独立思考、自由讨论、情景设置等方法帮助学生在原有经验上对新知识主动建构.考试点:充分体会数学来源于生活,又服务于生活,培养学生的应用意识.易错易混点:引导学生进行尝试、猜想、证明、归纳,突破本节难点.拓展点:链接高考感悟提升.教具准备实物投影机和粉笔课堂模式基于问题驱动的一问一答式一、复习引入提出问题,引起思考师:今天是什么特殊日子?生:重阳节师:你准备好礼物了吗?生:没有师:我给你们推荐一份礼物:一束鲜花!送母亲选什么花?生:康乃馨师:康乃馨是母亲之花,它代表了母亲对子女伟大、无私而又含蓄的爱;然后还可以选择些纯洁的百合花加以点缀,并且祝愿父母百年好合心想事成.你们满意吗?生:师:可是我却遇到了一个问题: 当花店老板告诉我康乃馨每枝15元,百合每枝10元时,我才发现只有150元钱,而且希望康乃馨的数量不低于百合数量的2倍,我可以如何购买呢?今天就请同学们一起帮我解决这个问题.设计意图:通过设置实际问题情景引入新课,提高学生的学习兴趣和自主探求新知的欲望,为下面的讲解做好铺垫.另外,情景的设置贴近学生的生活,并借助鲜花营造一种温馨的氛围和浪漫的气息,适合当今学生的口味,使原本枯燥严肃的数学课在不改变其严谨本质的前提下尽量趣味化.分析问题,建立模型设购买康乃馨x 枝,购买百合y 枝.( x ,y 均为整数)则购买数量应满足的条件:3230211x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩介绍概念今天这个不等式模型与前面的不等式有所不同:它含有两个未知数,并且未知数的最高次数是1这样的不等式叫做二元一次不等式.由几个二元一次不等式组成的不等式组称为二元一次不等式组.满足二元一次不等式(组)的x 和y 的取值构成有序实数对(x ,y )叫做二元一次不等式的一个解,所有这样的有序实数对(x ,y )构成的集合称为二元一次不等式(组)的解集.设计意图:引导学生思考、探究,让学生经历建立线性规划模型的过程.在获得探究体验的基础上,通过交流形成共识,建立二元一次不等式模型.尝试解决,学生遇挫如何求上面的二元一次不等式组的解集?针对前面的不等式组 ,由学生自主分析思路,发表见解.学生可能的思路:①列举法---首先肯定学生的做法,列举法是解决数学问题的一种基本方法,也是生活中的常用方法,但是它有一定的局限性,引导学生寻求通法.②消元法- -----首先肯定学生的转化和消元的思想,这是数学中的重要思想方法,但是消元中会出现知识性错误,教师引导学生寻找错误根源.在各种思路均受阻的情况下,引导学生转化思维角度,重新审视不等式的解与点的坐标都是有序实数对,于是用几何方法来解决代数问题,利用数形结合的思想去尝试探求答案.灵感来源:二元一次不等式的解是有序实数对,而点的坐标也是有序实数对,所以,二元一次不等(组)的解集就可以看成是直角坐标系内的点构成的集合----数形结合思想.解决策略:探寻解集的问题转化为探寻这些点所构成的几何图形的问题————转化思想.设计意图:引导学生思考、探究,让学生经历建立线性规划模型的过程.在获得探究体验的基础上,通过交流形成共识,建立二元一次不等式模型.突出不等式的特性,将画平面区域作为不等式的一种几何解法,利用数形结合思想得到不等式的解集.二、探究新知探究一:二元一次不等式(组)的解集表示的图形(1)先研究具体的二元一次不等式6x y -<的解集所表示的图形.1.联系类比:二元一次方程6x y -=表示图形是一条直线,平面内所有的点被直线分成三类: 第一类:在直线6x y -=上的点;------------------6x y -=第二类:在直线6x y -=左上方的区域内的点;第三类:在直线6x y -=右下方的区域内的点. -----6x y -≠猜想:6x y -<和6x y ->,是各占一方还是相互交融?2.实验探索:设点1(,)P x y 是直线6x y -=上的点,选取点2(,)A x y ,使它的坐标满足不等式6x y -<,完成填表、作图并思考;①通过你的试验,你发现了什么?②进行理性思考,你觉得你的发现具有合理性吗?学生思考、讨论、交流,达成共识:在平面直角坐标系中,以二元一次不等式6x y -<的解为坐标的点都在直线6x y -=的左上方; ③反过来,直线6x y -=左上方的点的坐标都满足不等式6x y -<吗?3.交流合作.4.得出结论:在平面直角坐标系中,不等式6x y -<的解与直线6x y -=左上方的平面区域的点形成一一对应的关系;所以不等式6x y -<表示直线6x y -=左上方的平面区域.类似的:二元一次不等式6x y ->表示直线6x y -=右下方的区域,直线叫做这两个区域的边界.(2)特殊例子推广到一般情况:二元一次不等式0Ax By C ++<在平面直角坐标系中表示直线0Ax By C ++=某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)设计意图:先由学生提出自己的想法,再引导学生分析其问题所在,在思维层层受阻的情况下主动探索其它解法,增加学习的目的性和主动性.探究方法 :由特殊到一般,从感性观察到理性思考,符合学生的认知规律,充分体现以学生为主体、教师为主导的教学思想.第一步,小组合作探究,增强学生的合作意识.第二步,学生独立思考.第三步,引导学生类比出一般结论.探究二:二元一次不等式表示哪侧的平面区域.自由讨论:不等式6x y -<表示直线6x y -=左上方的平面区域,是不是二元一次不等式0Ax By C ++<一定也是表示边界下方的区域?师:判定到底表示哪一侧是区域有困难吗?这个问题我来回答.设置情境:师:我把这个问题的答案放到了咱们班的作业本中了.这两摞作业中,其中一摞是咱们班的,请徐美华同学帮我把咱们班的那部分作业拿到我这儿来.生:(学生很快将本班的作业找到)师:你能确定这摞就是咱们班的吗?生:能确定.师:作业本上没有班级,你怎么就知道是这一摞呢?生:我抽了一本看了看就是我们班的.师:明白了,你从中抽查了一本确认是咱们班的,于是就确定这摞就是咱们班的了,那么如果你抽的那本不是咱们班的呢?生:一共就两摞,那就是另一摞了.师:我明白了:因为我们找的是这两摞作业中的某一摞,所以我只需从两摞中任意选取一个验证一下,如何是咱们班的就确定它所在的这一摞都是咱们班的,如果不是咱们班的就确认另一摞是咱们班的.非常简单,好!那么刚才判断哪一侧区域这个问题的答案找到了吗?生:噢!(沉思少许,恍然大悟)生:只需在此直线的某一侧取一个特殊点00(,)x y ,代入不等式验证,如果满足此不等式就是这个点所在的一侧,如果不满足就是另外的那一侧.师:你会取哪个点验证呢?生:一般取简单的点,如(0,0),(1,0),(0,1)等等.师:太棒了,简直是无师自通!谁告诉你们的呢?师:是生活告诉我们的!刚才我让同学帮我取作业本这件事情,你们都觉得太容易了,一件简单的生活小事不仅启发了我们对数学问题的思考,里面还蕴含着深刻的数学道理,它应用的是集合的思想:一个元素或者属于某个集合,或者属于它的补集,当全集中只有两个互补子集时,只需对某个元素验证一次便可知它属于哪个集合.如:直线6x y -=外的点的集合为{}(,)6U x y x y =-≠直线两侧的点的集合分别为{}(,)6A x y x y =-> {}(,)6B x y x y =-<验证原点(0,0)B ∈,则知道集合A 表示的就是原点所在一侧的区域.当然集合B 表示另一侧的区域. 设计意图:此问题的处理有三个目的:①此时学生的注意力已经有所下降,学习效率降低,通过设置情境再次吸引学生的注意力,提高课堂效果.②如果简单地告诉学生特殊点定域的方法,学生也很容易接受,完成本课的教学任务,但只是授之鱼而不是授之于渔.将此问题上升到集合思想的高度,达到触类旁通.③让学生进一步体会“数学源于生活并服务于生活”,生活本身就蕴含着深刻的数学道理,增强学生的学习兴趣.探究三:如何画出二元一次不等式(组)所表示的平面区域的.①直线定界(有等则实,无等则虚)②特殊点定域(优先考虑原点)例 画出不等式44x y +<表示的平面区域.解:先画直线44x y +=(画成虚线).取原点(0,0),代入44x y +<成立∴原点在44x y +<表示的平面区域内.思考:如果是44x y +≤呢?非常好!已经成功按照由特殊到一般的方法,利用数形结合思想成功得到了二元一次的平面区域. 设计意图:解决开始提出的问题,也不仅仅是为了解决开始的问题,而是巩固、提高、深化对本节课的理解:首先,不等式组中包含的四个不等式正是本节内容的四种类型,典型全面,通过练习可以很好的巩固本节内容.其次,在师生共同完成不等式表示的平面区域的基础上,通过启发引导由学生自己完成不等式组的平面区域,又是能力提高的过程.另外,寻找整数点是难点但不是本节的重点,所以由教师完成,让学生体会我们前面的研究是在实数的前提下研究的,当变量的取值范围发生改变后,点集也会相应改变,深化对本节课的理解.三、运用新知带着收获的喜悦,我们来解前面的不等式组.1.首先分析:不等式组的解集是各不等式解集的交集,所以表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.2.引导学生一步步画出图形,找到正确的平面区域.3.启发学生找到整数点①有多少种购买方案? 16种②最多买多少枝? 取整数解(8,3)即,康乃馨8枝,百合3枝,共11枝让我们把这一束感激的鲜花,献给所有为了子女而辛勤忙碌的母亲,一十一枝鲜花代表我们一心一意的祝福,祝福天下所有母亲一生一世幸福安康!设计意图:本课在浪漫温馨并配以美妙音乐(感恩的心)的氛围中结束,本课小结在鲜花和音乐的衬托下缓缓打出,回顾本节知识,升华个人情感,多些感动多些感恩,不也正是当今学生所必修的内容吗?若能在学生的心灵上有所启迪岂不一箭双雕?教书育人,乐在其中!四、课堂小结1.二元一次不等式表示平面区域;2.二元一次不等式(组)表示平面区域的作图方法.五、布置作业1.基础巩固: 课本第86页练习1.2.3(目的:巩固,熟练本节基础知识)2.课堂延伸:特殊点定域只是确定平面区域的一种基本方法,相信你还能探索发现更为简单实用的方法,试试看!(目的:将课堂上的探究延伸到课下,进一步提高学生探究问题的能力)3.大显身手:已知康乃馨的进价为10元,百合进价为3元,如果你是花店老板,你会建议我怎么购买? (目的:为讲线性规划问题做好铺垫)六、反思提升鉴于高二学生已具有较好的数学基础知识和较强的分析问题、解决问题的能力,本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合一问一答的教学方法.首先设置“问题”情境,激发学生解决问题的欲望;其次提供观察、探索、交流的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取知识.恰当的利用多媒体课件辅助教学,直观生动地呈现学生思维的形成过程,从而提高教学效率.在教学过程中,注重学生的探索经历和发现新知的体验,使其形成自己对数学知识的理解和有效的学习策略.美中不足的是知识量太少,思维量还够,但练习量有点少,不一定能够适应当前的高考选拔方式.七、板书设计。

二元一次不等式(组)所表示的平面区域

二元一次不等式(组)所表示的平面区域

分析:由于画所二求元平一面次区不域等的式点组的表坐
标需示同的时平满面足区两域个的不步等骤式:,
-5
因此二元一次不等式组表示
的区域是各个不等式表示的
区域的交集,即公共部分。
y
5
o4
x=3
x-y+5=0
x
x+y=0
例3.一个化肥厂生产甲、乙两种混合肥 料,生产1车皮甲种肥料需用的主要原料 是磷酸盐4吨,硝酸盐18吨,生产1车皮乙 种肥料需用的主要原料是磷酸盐1吨,硝 酸盐15吨,现有库存磷酸盐10吨,硝酸盐 66吨。如果在此基础上进行生产,设x,y 分别是计划生产甲、乙两种混合肥料的车 皮数,请列出满足生产条件的数学关系式, 并画出相应的平面区域。
把边界画成实线。
2、由实特殊于数2、点直 符点特代线 号定别入同 相域地侧 同Ax(,的 ,+B代当点 所y+入C的以C≠中特坐只0,殊时标需从点常代在所验把入直得证原线Ax结)点的+B果作某y的+为一C中正特侧,负殊取所即点一得可。个 判断Ax+By+C>0表示哪一侧的区域。
性质:
直线l:Ax+By+C=0把坐标平面内不在 直线l上的点分为两部分,直线l同一侧的点 的坐标使式子Ax+By+C的值具有相同的符 号,并且两侧的点的坐标使Ax+By+C的值 的符号相反,一侧都大于零,另一侧都小 于零。
(2)z=(x+3)2 +(y+1)2的最大值和最小值。
例3、写出表示下面区域 的二元一次不等式组
y
(-4,-1)
(0,1)
x
(2,-1)
典例精析
题型三:根据平面区域写出二元一次不等式(组)

数学ⅱ北师大版3.3.1二元一次不等式(组)与平面区域第2课时教案

数学ⅱ北师大版3.3.1二元一次不等式(组)与平面区域第2课时教案
判断方法:由于对在直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标〔x,y)代入Ax+By+C,所得到实数的符号都相同,因此只需在此直线的某一侧取一特别点〔x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.〔特别地,当C≠0时,常把原点作为此特别点〕。
随堂练习1
1、画出不等式2 +y-6<0表示的平面区域.
2、画出不等式组 表示的平面区域。
2.讲授新课
【应用举例】
例3某人预备投资1200万兴办一所完全中学,对教育市场进行调查后,他得到了下面的数据表格〔以班级为单位〕:
学段
班级学生人数
配备教师数
硬件建设/万元
教师年薪/万元
初中
45
2
26/班
2/人
高中
课题
§3.3.1二元一次不等式〔组〕与平面区域
第2课时
课型
新授课
课时
备课时间
教学目标
知识与技能
巩固二元一次不等式和二元一次不等式组所表示的平面区域;能依照实际问题中的条件,找出约束条件;
过程与方法
经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想;
情感态度与价值观
结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新.
重点
理解二元一次不等式表示平面区域并能把不等式〔组〕所表示的平面区域画出来;
难点
把实际问题抽象化,用二元一次不等式〔组〕表示平面区域
教学方法
教学过程
1.课题导入
[复习引入]
二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.〔虚线表示区域不包括边界直线〕

高一数学二元一次不等式(组)与平面区域教学设计

高一数学二元一次不等式(组)与平面区域教学设计

二元一次不等式(组)与平面区域教学设计一、内容和内容解析:本节介绍了二元一次不等式(组)的解集与平面直角坐标系中区域的对应关系,以及一些简单的线性规划问题.从内容上讲,本节主要是为下节课(简单的线性规划问题)做两方面的准备工作:1、从具体问题中抽象出二元一次不等式(组),其实就是从实际问题中建立数学模型;2、能够找到二元一次不等式(组)所对应的平面直角坐标系中的区域. 通过前一步使得具体问题转化为数学问题,是从“具体问题”到“数”的过程,通过后一步又把代数问题转化为几何问题,是从“数”到“形”的过程.有了这两步充分的准备,下节课的简单的线性规划问题才能把重点放到寻找最优解上.所以本节课的重点也就不言而喻了,即探索获取二元一次不等式与平面区域之间的关系,对学生来说,这是一个陌生而抽象的概念,要在一节课内解释清楚这个问题,就要从学生已有知识出发,通过提出问题,思考问题,解决问题的过程让学生自然而然接受这个新的概念,再通过课堂习题的精心设计,就能帮助学生轻松越过这个门槛.二、目标和目标解析:1、使学生能够从实际问题中抽象出二元一次不等式(组).培养学生“建模”能力和用数学工具解决实际问题的能力,从而提高学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.2、使学生能够画出二元一次不等式(组)所表示的平面区域.培养学生观察,联想以及作图的能力,并渗透集合、化归、数形结合的思想.3、使学生能够求出平面直角坐标系中的区域所对应的二元一次不等式(组).培养学生逆向思维能力.上述三项目标要求水平都是是“理解”并能“独立操作”.三、教学问题诊断分析:由于本节课重点在于探索获取二元一次不等式与平面区域之间的关系,要解释清楚这个问题,必须给学生提出一个类比的对象,即一元一次不等式(组)表示数轴上的区间,让学生从已有知识出发,大胆猜想,细心求证,最后得到二元一次不等式(组)与平面区域的关系.本节课是一节操作性要求比较高的课,需要学生严格画出直线,然后才能找到二元一次不等式(组)对应的平面区域,这也是为下节课寻找最优解做足铺垫奠定基础的地方,如果课上对这一点落实不够充分的话可能会给下节课带来不必要的麻烦.因此本节课的难点是:正确画出二元一次不等式(组)相应的平面区域.四、教学支持条件分析:本节课建议运用信息技术手段如几何画板等工具对直线0By+Cx一侧的A=+点)xp的坐标进行跟踪显示,让学生观察发现位于直线同一侧的点的坐标代入式子(y,x+A后得到的数值符号都相同,而位于直线两侧的点的坐标代入式子+ByCA后得到的数值符号都相反,再加上学生以前就认识到:直线上的所有点+x+ByC的坐标代入式子CA后得到的数值都为0,学生就会得到结论:平面上所有点+Byx+以代入式子CA后得到的数值符号不同而分成以直线为边界的三个部分,即+Byx+“直线定边界”;为了判断相应区域中点的符号的正负,可以采用“特殊点定值”方法.五、教学过程设计:1、问题引入引言设计:在现实生活和数学中,我们会遇到各种不同的不等关系,需要用不同的数学模型来刻画.前面我们学习了一元二次不等式及其解法,这里我们将学习另一种不等关系模型.引言设计是为了让学生理解本课时内容的大致内容,做到心中有数.引例设计:一家银行的信贷部门计划年初投入25 000 000元用于企业和个人贷款,希望这笔资金至少可带来30 000元的收益,其中从企业贷款中获益12%,从个人贷款中获益10%.那么,信贷部门应该如何分配资金?如果设用于企业、个人贷款的资金分别为x元、y元,你能用不等式刻画其中的不等量关系吗?设计意图:通过建立该问题相应的数学模型,让学生从实际问题中抽象出数学模型,体验数学在实际问题中的无处不在,锻炼学生“建模”能力;建立一元二次不等式组,也为解决问题做好准备.活动预设:由学生自己建立不等式组,教师点评并进行纠正或补充.这里可能出现的主要问题是不等式列举不完全,如对0x这一条件的遗漏,要在此培养学生严≥密的逻辑思维能力和审题能力.另外一个问题是把投入资金的不等关系=+yx.这里可以用问题串对学生进行追+yx建立成等量关系2500000025000000≤问,让学生通过思考自己纠正过来.问题串设计:追问1:25 000 000元的资金是否恰好全部贷出?(不一定全部贷出)追问2:既然不一定全部贷出,实际贷款总额和计划贷款总额应该是什么关系?(实际贷款总额不超过计划贷款总额)追问3:转化成数学式子应该是什么?(25000000x)≤+y追问4:对于企业贷款x和个人贷款y有没有什么限制条件?(有:要非负并且不超过25 000 000)追问5:转化成数学式子应该是什么?(25000000≤x)0≤活动结果概括:建立数学模型要先设定未知数,然后用不等式表示出问题所涉及到的所有不等关系,需要注意的是有些量根据其实际意义还要满足特定的不等式,在列举的时候不能遗忘.2、引例到新课的过渡在引例中我们得到了一个二元一次不等式组,它的每一组解的x和y的值构成有序数对)(yx构成的集合成为二元一次不等式组的解集.我们,x,所有这样的数对),(y知道有序数对和平面直角坐标系中的点一一对应,于是,二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.设计意图:在引例中已经解决了本节课的第一个重要内容即从实际问题中抽象出数学模型,下来要进行本节课的重点也是难点的部分即探索二元一次不等式(组)和平面区域的关系,这二者之间要通过相关知识进行一个过渡,这样不至于让学生感觉两部分的衔接过于生硬.3、新课探索由上述分析知道,二元一次不等式(组)的解集可以看成是直角坐标系内的点构成的集合,而且我们还知道,一元一次不等式(组)的解集可以表示为数轴上的区间(举实际例子分析),那么问题一:在平面直角坐标系内,二元一次不等式(组)的解集表示什么图形呢? 问题设计意图:让学生通过和一元一次不等式(组)的解集表示的区间进行对比,类比猜想二元一次不等式(组)的解集表示的图形,使学生建立新知与旧知之间的联系,容易理解.出来,学生类比起来才有个标准,不至于类比的结论千变万化不着边际.活动过程中教师可以从6=-y x ,6<-y x 和6>-y x 三个不等式的图形对学生进行引导总结.学生在老师的指引下能够完成表格,但是如果学生猜想的结果是错误的,在设计验证办法时可能会存在问题.那么如何验证猜想结果的正确性呢?验证办法设计:画出直线6=-y x ,通过取不等式6<-y x 的特殊解画出其所在位置进行验证. 并在此基础上通过不等式的代数特征对解的坐标进行一般性的分析,如,横坐标一定时,满足不等式6<-y x 的y 的值越大,相应的点越在直线6=-y x 的左上方.反之在直线6=-y x 的左上方任取一个特殊点可以验证该点的坐标满足不等式,因为纵坐标越大,y x -的值越小,所以直线6=-y x 的左上方的点的坐标满足不等式.辅助手段:此处可以借助几何画板进行演示验证.活动结果概括:在平面直角坐标系中,以二元一次不等式6<-y x 的解为坐标的点都位于直线6=-y x 的同一侧,并且是左上方;反之,在直线6=-y x 左上方的点的坐标都满足二元一次不等式6<-y x .问题二:6>-y x 表示的区域呢?设计意图:一方面让学生在得到结论的前提下再一次去思考二元一次不等式所表示的平面区域,使得总结出的结论得以验证,另外一方面也是保证知识的完整性所必须的.教师讲授:直线6=-y x 叫做这两个区域的边界(boundary ).这里,我们把直线6=-y x 画成虚线,以表示区域不包括边界.通过上面的研究,我们发现一个具体的二元一次不等式6<-y x ,所表示的是平面直角坐标系中直线6=-y x 一侧的区域.那么问题三:对于一般的二元一次不等式0>++C By Ax 所表示的平面区域是什么呢?设计意图:在对一个具体的例子进行探究以后,有必要把这个结论进行推广,得到一个更为一般的结论,这样对我们才有指导意义.结论概括:一个一般的二元一次不等式0>++C By Ax 所表示的平面区域是平面直角坐标系中直线0=++C By Ax 某一侧的平面区域.课堂练习设计:在不同的坐标系中画出下列不等式表示的平面区域:52<+y x ,63≥-y x ,032≤+-y x设计意图:巩固和消化所学知识,锻炼学生作图能力,并趁机提出当不等式中含有“等号”时,对应直线要画成实线.问题四:在练习题中,如何确定不等式所表示的区域是直线的哪一侧呢?设计意图:确定不等式表示的区域是直线的哪一侧是本节课的重中之重,实际上这一步也是很多同学在以后的学习以及练习中最容易出错的地方,所以在本节课把这个问题讲清楚并巩固下来就变得尤为重要.活动预设:学生在讨论中发现,由于直线0>++C By Ax 一侧的所有点的坐标代入式子C By Ax ++得到的数值的符号相同,所以可以在直线的一侧选取一个特殊点代入式子C By Ax ++进行检测,如果所得到的数值的符号符合不等式0>++C By Ax ,则得到结论:不等式0>++C By Ax 表示的区域是该点所在直线的一侧的区域;反之,如果所得到的数值的符号不符合不等式0>++C By Ax ,则得到结论:不等式0>++C By Ax 表示的区域是该点所在直线的另一侧的区域.经常用的特殊点是原点)0,0(,如果直线经过原点)0,0(,则可以选取)1,0(或)0,1(这样的点进行验证,减少计算量.结论概括:在实际问题中,要画出不等式0>++C By Ax 所表示的平面区域,经常采用“直线定边界,特殊点定域”的方法,这也是解决这类问题的步骤.前面我们探索了二元一次不等式所表示的平面区域,那么问题五:二元一次不等式组所表示的平面区域如何画出呢?设计意图:有了二元一次不等式所表示的区域做铺垫,二元一次不等式组表示的区域就水到渠成了.学生经过简单思考就可以得到结论.结论概括:二元一次不等式组的解集是不等式组中各个不等式的解集的交集,所表示的的区域是不等式组中各个不等式所表示的区域的交集.课堂练习设计:画出引例中得到的不等式组所表示的平面区域⎪⎪⎩⎪⎪⎨⎧≥≥≥+≤+003000000101225000000y x y x y x 设计意图:巩固所学知识,体验不等式组所表示的区域特点.4、小结本节课通过类比的方法,探索研究了二元一次不等式(组)所表示的平面区域,现作如下小结:① 本节课重要结论:一般地,在平面直角坐标系中,二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧所有点组成的平面区域.② 画二元一次不等式0>++C By Ax 所表示的区域的方法: “直线定边界,特殊点定域”③ 画图时需要注意:当不等式中的不等号是“>”或者“<”时,图形的边界线画成虚线;当不等式中的不等号是“≥”或者“≤”时,图形的边界线画成实线.设计意图:巩固本节课所学基础知识和思想方法,起到提纲挈领,画龙点睛的作用,同时也起到回顾一下这节课是否成功的,是否达到预期目的的作用.是一堂课必不可少的部分.六、目标检测设计:1、P86练习1,2,3.设计意图:复习最基本的画出直线所表示区域的方法.2、P85-P86例3,例4设计意图:提高学生从实际问题中抽象出不等式组的能力,复习最基本的画出直线所表示区域的方法.。

高中数学《3.3.1二元一次不等式(组)与平面区域》导学案 新人教A版必修5

高中数学《3.3.1二元一次不等式(组)与平面区域》导学案 新人教A版必修5

课题:3.3.1二元一次不等式(组)与平面区域(1)
班级: 组名: 姓名: 设计人:赵帅军 审核人:魏帅举 领导审批:
一.:自主学习,明确目标 1.知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表
示平面区域;
2.过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数
学建模的能力;
教学重点:用二元一次不等式(组)表示平面区域;
教学难点:用二元一次不等式(组)表示平面区域;
教学方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模
的能力;
二.研讨互动,问题生成
1.从实际问题中抽象出二元一次不等式(组)的数学模型
课本第82页的“银行信贷资金分配问题”
2.二元一次不等式和二元一次不等式组的定义
(1)二元一次不等式:
(2)二元一次不等式组
(3)二元一次不等式(组)的解集:
(4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:
例1 画出不等式44x y +<表示的平面区域。

变式1、画出不等式1234≤-y x 所表示的平面区域。

变式2、画出不等式1≥x 所表示的平面区域。

例2 用平面区域表示.不等式组312
2y x x y <-+⎧⎨<⎩
的解集。

变式1、画出不等式04)(12(<+-++)y x y x 表示的平面区域。

变式2、由直线02=++y x ,012=++y x 和012=++y x 围成的三角形区域(包括边界)用不等式可表示为 。

自我评价 同伴评价 小组长评价。

【新人教版高中数学公开课优质点评稿】二元一次不等式(组)与平面区域 点评(重庆江津)

新人教版高中数学优质公开课精品教案及点评资料二元一次不等式(组)与平面区域点评本课从教材实际情境引入,通过对实际情境分析,从现实生活中抽象出所要研究的数学模型,引出二元一次不等式(组)的相关概念,让学生体验数学问题是客观存在,来源于生活又服务于生活。

在探究中,注重探究过程。

通过师生互动,教师步步追问,让所有问题成为一个整体的问题串,使得学生的思维具有整体性、系统性。

特别是在教师的引导追问下,学生主动探究,小组合作,通过猜想、验证,从特殊到一般,归纳得出结论。

之后,通过例题、练习进行运用、理解,巩固。

最后师生共同反思小结,对所学内容进行概括,并对探究过程中的数学方法进行研究,对课堂知识进行了升华。

这样的教学设计既体现了本课数学内容的生成过程,又与学生的认知过程相吻合,充分体现了课改的基本理念。

在探究中,注重探究方法的运用。

从实际生活中建立数学模型,然后从学生熟知的一元一次不等式组所表示的解集出发,引发二元一次不等式的类比探究。

同时从方程组的思想到不等式组的思想,单个突破,寻求二元一次不等式解集所表示的平面区域。

在直角坐标系中,直线将平面分为三部分,其中分类讨论以不等式的解为坐标的点与直线的位置关系。

在证明过程中利用转化的思想,学生得出特殊结论,再转化为一般性结论,达到完成探究目的。

在探究中,注重探究手段。

通过几何画板的模拟演示,让学生更加直观,使信息技术成为学生实验、探究、操作的工具,引导学生通过技术,发现数学、建立数学。

教师能把传统教学中的“板书、板演、对答、展示等”行之有效的教学方法与现代信息技术等有机结合,发挥两者的最佳效益,又避免两者的不足。

课堂教学实践表明,课堂教学效果是好的。

二元一次不等式(组)所表示的平面区域

二元一次不等式(组)表示平面区域主备人:审核:使用人:班级:【课题】:二元一次不等式(组)表示平面区域【学习目标】1、了解二元一次不等式(组)的概念,理解其解集的几何意义;2、会画二元一次不等式(组)所表示的平面区域。

【学习重难点】会画二元一次不等式(组)所表示的平面区域。

【课前预习案】1、二元一次不等式表示平面区域:一般的,二元一次不等式Ax By C++>在平面直角坐标系中表示直线0Ax By C++=某一侧所有点组成的________________.我们把直线画成_________以表示区域不包括边界直线.当我们在坐标系中画出不等式0Ax By C++≥所表示的平面区域时,此区域应包括边界直线,则把边界直线画成___________.2、如何确定二元一次不等式0Ax By C++>(或<0)表示的平面区域?【预习检测】画出不等式组10230x yx y--<⎧⎨--≥⎩表示的平面区域.【课内探究案】一、二元一次不等式表示平面区域例1、画出下列不等式表示的平面区域(1)230x y-->;(2)3260x y+-≤【变式训练】画出二元一次不等式320ax y++≥表示的平面区域,已知点(-1,0)在区域边界上.二、二元一次不等式组表示平面区域例2、画出不等式组表示的平面区域(1)21010x yx y-+≥⎧⎨+-≥⎩(2)232021030x yyx-+>⎧⎪+≥⎨⎪-≤⎩【变式训练】已知直线ax=2与x-by+1=0的交点为(1,2),试分别画出2a x<与10x by-+≥所表示的平面区域.三、用二元一次不等式组表示实际问题例3.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料需用的主要原料是磷酸盐4吨,硝酸盐18吨,生产1车皮乙种肥料需用的主要原料是磷酸盐1吨,硝酸盐15吨,现有库存磷酸盐10吨,硝酸盐66吨。

如果在此基础上进行生产,设x,y分别是计划生产甲、乙两种混合肥料的车皮数,请列出满足生产条件的数学关系式,并画出相应的平面区域。

“二元一次不等式(组)表示的平面区域”教学实录与反思


探 究特殊二元一次不等式表示 的平 面区域.
3 .教 学难 点
生 :直角坐标系 内点的集合. 师 :我们这节课 要研究 的就是二元一次 不等式 ( 组)表示
≠0 ,B≠0 )
的平 面 区域 .
探 究 一般 二元 一次 不等 式 A +研 +C>0
收 稿 日期 :2 1- 1 2 0 1 l— 5
验班.

生。 :设 和 Y分别表示购买熏鸡 和猪蹄的数量 ,根据题 意 பைடு நூலகம்

教 学 目标 、 教 学 难点 及 教 学 方 法
列 出二元一次方程组 :
Y 一6>0 ) , 4 x+2 y 0 0 O 一2 0≤ 0 ② .
1 教 学 目标 .
( )掌握不等式 区域 的判断方 法 ;能作 出二元 一次 不等式 1

个猪蹄售价 2 0元 ,如果希望所带 的特产 ( 熏鸡或猪蹄二选 一
( 第一课 时).研究 的主题是 通过学生 的 自主探究培 养解 决数学 即可)至 少送 给 6个 以上 的朋友 ,试 问应该 如何 确 定购 买方 ” 问题 的能力 ,授课班 级为锦州市 北宁第一 高级 中学高二 理科试 案 ?
( 师板 书 “ 号 同侧 ? ) 教 同 ”
( 学生在愉快而又紧张的探索之后 ,各小组代表纷纷要求发 言. ) 生 ( 方法 1 :先 画出直线 +Y一6=0 ) ,直线上 的点满足 + Y一6=0 ,直线上方就应该满足大 于 0 ,下方小于 0 .
( 组)表示的平面区域 . () 2 经历 自主探究提高分析 问题和解决问题的能力 ;理解数 学 的转化 、数形结合 以及分类讨论 的思想. () 3 通过主动参与和合作交流 ,培养 团结协作 和勇于探究 的

二元一次不等式(组)所表示的平面区域 教案

芯衣州星海市涌泉学校3.5.1二元一次不等式〔组〕所表示的平面区域教案一、教学目的:1.知识目的:能做出二元一次不等式〔组〕所表示平面区域;会把假设干直线围成的平面区域用二元一次不等式组表示.2.才能目的:培养学生用数形结合思想分析问题、解决问题的才能;3.情感目的:体会数学的应用价值,激发学生的学习兴趣.二、教学重点、难点:重点:二元一次不等式〔组〕表示的平面区域难点:用二元一次不等式〔组〕表示平面区域.三、教学方法与手段本节课采用探究式教学法,采用启发、引导、探究、讨论交流的方式进展组织教学.并充分利用多媒体辅助教学.四、教学过程〔一〕创设情景,引入新课本班方案用少于100元的钱购置单价分别为2元和1元的大、小彩球装点元旦晚会的会场,根据需要,大球数不少于10个,小球数不少于20个,请你给出几种不同的购置方案?分析:〔1〕引入问题中的变量:设买大球x 个,买小球y 个;〔2〕把文字语言转化为数学符号语言:〔少于100元的钱购置〕⇒1002<+y x 〔1〕 〔大球数不少于10〕⇒10≥x ,N x ∈ 〔2〕 〔小球数不少于20〕⇒20≥y ,N y ∈〔3〕〔3〕抽象出数学模型:2x y 100x 10y 20,x,y N +<⎧⎪≥⎨⎪≥∈⎩〔二〕讲授新课1.二元一次不等式〔组〕的定义〔1〕二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式. 〔2〕二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组. 注意:二元一次不等式〔组〕是根据未知数的个数和未知数的最高次数加以区分.2.探究二元一次不等式〔组〕的解集表示的图形回忆:初中一元一次不等式〔组〕的解集所表示的图形——数轴上的区间二元一次方程表示的是什么图形?直线考虑:在直角坐标系内,二元一次不等式〔组〕的解集表示什么图形?问题一:平面直角坐标系中不在直线上的点被直线AxBy C 0++=分为几部分? 两部分以x y 10+-=为例进展直观说明,引出以下概念:每部分叫做开半平面,开半平面与直线的并集叫做闭半平面.以不等式解〔x,y 〕为坐标的所有点构成的集合,叫做不等式表示的区域或者者不等式的图象. 如何求二元一次不等式表示的平面区域?我们先研究详细的二元一次不等式xy 10+->的解集所表示的图形. 问题二:平面内所有的点被直线xy 10+-=分成几类? 如图:在平面直角坐标系内,x y 10+-=表示一条直线.平面内所有的点被直线分成三类:第一类:在直线xy 10+-=上的点; 第二类:在直线x y 10+-=左下方的区域内的点;第三类:在直线x y 10+-=右上方的区域内的点.问题三:每部分中的点都有哪些特点?在直线的上方、下方取一些点:上方:〔0,2〕,〔1,3〕,〔0,5〕,〔2,2〕下方:〔-1,0〕,〔0,0〕,〔0,-2〕,〔1,-1〕分别把点的坐标代入式子xy 1+-中,会有什么结果? 直线上方的点使的x y 10+->;直线下方的点使的x y 10+-<.猜想:直线同侧点的坐标是否使式子的值具有一样的符号?问题四:直线x y 10+-=右上方的平面区域如何表示?左下方的平面区域呢?x y 10+->;x y 10+-<.由学生自行归纳总结,不要求证明.结论:直线AxBy C 0++=把平面直角坐标系中不在直线上的点分为两部分,同一侧点的坐标使式子Ax By C ++的值具有一样的符号,并且两侧的点的坐标使式子Ax By C ++的值符号相反,一侧都大于0,一侧都小于0.问题五:如何判断Ax By C 0++>表示直线Ax By C 0++=哪一侧平面区域?根据以上结论,只需要在直线的某一侧取一个特殊点(x0,y0),从00A B C y ++x 的正负即可判断不等式Ax By C 0++>表示直线哪一侧的平面区域,这种方法称为代点法.概括为:“直线定界,特殊点定域〞.特别地,当0≠C时,常把原点作为特殊点,即“直线定界、原点定域〞. 问题六:0≥++C y Ax B 表示的平面区域与0>++C y Ax B 表示的平面区域有何不同?如何表达这种区别?把直线画成实线以表示区域包含边界直线;把直线画成虚线以表示区域不包含边界直线.〔三〕应用新知,练习稳固例1.画出下面二元一次不等式表示的平面区域:〔1〕2x y 30-->;〔2〕3x 2y 60+-≤.设计以下几个问题:(1)不等式表示的区域是在哪条直线的一侧?这条直线是画实线还是虚线?(2)运用代点法判断平面区域的位置时取哪个特殊点代入较好学生完成,师指导.例2.画出以下不等式组表示的平面区域〔1〕2x y 10x y 10-+>⎧⎨+-≥⎩〔2〕2x 3y 202y 10x 30-+>⎧⎪+≥⎨⎪-≤⎩设计以下几个问题:(1)不等式组表示的平面区域如何确定?(各个不等式表示的平面点集的交集即各个不等式所表示的平面区域的公一一共部分)(2)第二小题中加上条件x,y N ∈,又会是什么图形呢?多媒体演示平面区域(是上述公一一共平面区域内的整点)例3.一个化肥厂消费甲、乙两种混料,消费1车皮甲种肥料需要的主要原料是磷酸盐4吨,硝酸盐18吨;消费1车皮乙种肥料需要的主要原料是磷酸盐1吨,硝酸盐15吨.现有库存磷酸盐10吨,硝酸盐66吨.假设在此根底上进展消费,设x,y分别为方案消费甲、乙两种混料的车皮数,请列出满足消费条件的数学关系式,并画出相应的平面区域.解:x,y满足的数学关系式为:4x y10 18x15y66 x0y0+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩分别画出不等式组中,各不等式表示的区域,然后取交集.如图中的阴影部分.反响练习:教材89页练习A组2〔4〕.〔四〕课堂小结知识上:1.二元一次不等式〔组〕表示平面区域2.断定方法:“直线定界,特殊点定域〞.小窍门:假设C≠0,可取(0,0);假设C=0,可取(1,0)或者者(0,1).思想方法上:数形结合的数学思想方法.〔五〕布置作业教材89页练习B组1、2.大屏幕展示考虑题:〔再次回到引例〕为下一节课做准备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次不等式(组)与平面区域课时目标1.了解二元一次不等式表示的平面区域.2.会画出二元一次不等式(组)表示的平面区域.1.二元一次不等式(组)的概念 含有两个未知数,并且未知数的次数是1的不等式叫做二元一次不等式.由几个二元一次不等式组成的不等式组称为二元一次不等式组. 2.二元一次不等式表示的平面区域在平面直角坐标系中,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0某一侧所有点组成的平面区域,把直线画成虚线以表示区域不包括边界.不等式Ax +By +C ≥0表示的平面区域包括边界,把边界画成实线.3.二元一次不等式(组)表示平面区域的确定(1)直线Ax +By +C =0同一侧的所有点的坐标(x ,y )代入Ax +By +C 所得的符号都相同.(2)在直线Ax +By +C =0的一侧取某个特殊点(x 0,y 0),由Ax 0+By 0+C 的符号可以断定Ax +By +C >0表示的是直线Ax +By +C =0哪一侧的平面区域.一、选择题1.如图所示,表示阴影部分的二元一次不等式组是( )A.⎩⎪⎨⎪⎧y ≥-23x -2y +6>0x <0B.⎩⎪⎨⎪⎧y ≥-23x -2y +6≥0x ≤0C.⎩⎪⎨⎪⎧y >-23x -2y +6>0x ≤0D.⎩⎪⎨⎪⎧y >-23x -2y +6<0x <0答案 C解析 可结合图形,根据确定二元一次不等式组表示的平面区域的方法逆着进行.由图知所给区域的三个边界中,有两个是虚的,所以C 正确.2.已知点(-1,2)和(3,-3)在直线3x +y -a =0的两侧,则a 的取值范围是( )A .(-1,6)B .(-6,1)C .(-∞,-1)∪(6,+∞)D .(-∞,-6)∪(1,+∞) 答案 A解析 由题意知,(-3+2-a )(9-3-a )<0, 即(a +1)(a -6)<0,∴-1<a <6.3.如图所示,表示满足不等式(x -y )(x +2y -2)>0的点(x ,y )所在的区域为( )答案 B解析 不等式(x -y )(x +2y -2)>0等价于不等式组(Ⅰ)⎩⎪⎨⎪⎧x -y >0,x +2y -2>0或不等式组(Ⅱ)⎩⎪⎨⎪⎧x -y <0,x +2y -2<0.分别画出不等式组(Ⅰ)和(Ⅱ)所表示的平面区域,再求并集,可得正确答案为B.4.不等式组⎩⎪⎨⎪⎧4x +3y ≤12,x -y >-1,y ≥0表示的平面区域内整点的个数是( )A .2个B .4个C .6个D .8个 答案 C解析 画出可行域后,可按x =0,x =1,x =2,x =3分类代入检验,符合要求的点有(0,0),(1,0),(2,0),(3,0),(1,1),(2,1)共6个.5.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y +4≥0,x ≤a (a 为常数)表示的平面区域的面积是9,那么实数a 的值为( )A .32+2B .-32+2C .-5D .1 答案 D解析 区域如图,易求得A (-2,2),B (a ,a +4), C (a ,-a ).S △ABC =12|BC |·|a +2|=(a +2)2=9,由题意得a =1. 6.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34 答案 A解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点M ⎝⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43, 所以k =73. 二、填空题7.△ABC 的三个顶点坐标为A (3,-1),B (-1,1),C (1,3),则△ABC 的内部及边界所对应的二元一次不等式组是________________.答案⎩⎪⎨⎪⎧x +2y -1≥0x -y +2≥02x +y -5≤0解析如图直线AB 的方程为x +2y -1=0(可用两点式或点斜式写出). 直线AC 的方程为2x +y -5=0, 直线BC 的方程为x -y +2=0, 把(0,0)代入2x +y -5=-5<0, ∴AC 左下方的区域为2x +y -5<0.∴同理可得△ABC 区域(含边界)为⎩⎪⎨⎪⎧x +2y -1≥0x -y +2≥02x +y -5≤0.8.已知x ,y 为非负整数,则满足x +y ≤2的点(x ,y )共有________个.答案 6解析由题意点(x ,y )的坐标应满足⎩⎪⎨⎪⎧x ∈N y ∈Nx +y ≤2,由图可知,整数点有(0,0),(1,0),(2,0)(0,1)(0,2)(1,1)6个.9.原点与点(1,1)有且仅有一个点在不等式2x -y +a >0表示的平面区域内,则a 的取值范围为________.答案 -1<a ≤0解析 根据题意,分以下两种情况:①原点(0,0)在该区域内,点(1,1)不在该区域内. 则⎩⎨⎧a >0a +1≤0.无解. ②原点(0,0)不在该区域内,点(1,1)在该区域内, 则⎩⎪⎨⎪⎧a ≤0a +1>0,∴-1<a ≤0. 综上所述,-1<a ≤0.10.若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.答案 74 解析如图所示,区域A 表示的平面区域为△OBC 内部及其边界组成的图形,当a 从-2连续变化到1时扫过的区域为四边形ODEC 所围成的区域.又D (0,1),B (0,2), E ⎝ ⎛⎭⎪⎫-12,32,C (-2,0). S 四边形ODEC =S △OBC -S △BDE =2-14=74. 三、解答题11.利用平面区域求不等式组⎩⎪⎨⎪⎧x ≥3y ≥26x +7y ≤50的整数解.解 先画出平面区域,再用代入法逐个验证.把x =3代入6x +7y ≤50,得y ≤327,又∵y ≥2, ∴整点有:(3,2)(3,3)(3,4); 把x =4代入6x +7y ≤50,得y ≤267,∴整点有:(4,2)(4,3).把x =5代入6x +7y ≤50,得y ≤207, ∴整点有:(5,2);把x =6代入6x +7y ≤50,得y ≤2,整点有(6,2);把x =7代入6x +7y ≤50,得y ≤87,与y ≥2不符. ∴整数解共有7个为(3,2),(3,3),(3,4),(4,2),(4,3),(5,2),(6,2). 12.若直线y =kx +1与圆x 2+y 2+kx +my -4=0相交于P 、Q 两点,且P 、Q 关于直线x +y =0对称,则不等式组⎩⎪⎨⎪⎧kx -y +1≥0kx -my ≤0y ≥0表示的平面区域的面积是多少?解 P 、Q 关于直线x +y =0对称,故PQ 与直线x +y =0垂直,直线PQ 即是直线y =kx +1,故k =1;又线段PQ 为圆x 2+y 2+kx +my -4=0的一条弦,故该圆的圆心在线段PQ 的垂直平分线上,即为直线x +y =0,又圆心为(-k 2,-m2),∴m =-k =-1,∴不等式组为⎩⎪⎨⎪⎧x -y +1≥0x +y ≤0y ≥0,它表示的区域如图所示,直线x -y +1=0与x +y =0的交点为(-12,12),∴S △=12×1×12=14.故面积为14.能力提升13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞) 答案 A解析 作出不等式组表示的平面区域D ,如图阴影部分所示.由⎩⎪⎨⎪⎧x +y -11=0,3x -y +3=0,得交点A (2,9). 对y =a x 的图象,当0<a <1时,没有点在区域D 上. 当a >1,y =a x 恰好经过A 点时,由a 2=9,得a =3. 要满足题意,需满足a 2≤9,解得1<a ≤3.14.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是______________.答案 0<a ≤1或a ≥43 解析不等式表示的平面区域如图所示,当x +y =a 过A ⎝ ⎛⎭⎪⎫23,23时表示的区域是△AOB ,此时a =43;当a >43时,表示区域是△AOB ;当x +y =a 过B (1,0)时表示的区域是△DOB ,此时a =1; 当0<a <1时可表示三角形;当a <0时不表示任何区域,当1<a <43时,区域是四边形.故当0<a ≤1或a ≥43时表示的平面区域为三角形.1.二元一次不等式(组)的解集对应着坐标平面的一个区域,该区域内每一个点的坐标均满足不等式(组).常用特殊点法确定二元一次不等式表示的是直线哪一侧的部分.2.画平面区域时,注意边界线的虚实问题.3.求平面区域内的整点个数时,要有一个明确的思路不可马虎大意,常先确定x 的范围,再逐一代入不等式组,求出y 的范围最后确定整数解的个数.。

相关文档
最新文档