积分中值定理在数学分析中的应用(优秀毕业论文)
推广的积分中值定理及其应用

推广的积分中值定理及其应用摘要:定积分是微积分的重要组成部分,而积分中值定理是定积分的重要性质之一,所以积分中值定理在微积分中占了很重要的地位,本文系统的叙述了推广的积分中值定理包括:ξ必可以在开区间中取得,导函数的积分中值定理等多个方面,我们所学知识中积分中值定理与微分中值定理的中间点的存在区间是不统一的,但推广后的积分中值定理能够与微分中值定理的存在区间从形式上统一起来,使与其相关的理论得以联系和应用.同时,在本篇论文中以实例的形式列举了推广的积分中值定理在确定零点分布、证明积分不等式、求极限等方面的应用,显然,推广的积分中值定理的优点就在于此,它可以解决原积分中值定理无法解决的问题,这表明了积分中值定理在推广后更具有应用性.关键词:积分中值定理;导函数;微分中值定理Promotion of Integral Mean ValueTheorem and Its ApplicationAbstract:Definite integral is an important component of calculus, the mean value theorem is one of the important properties of the definite integral, so integral mean value theorem in calculus plays a very important position .This paper describes the system topromote the integral mean value theorem, including: ξwill be achieved in the open interval ,of the derivatives and other integral mean value theorem, we have the knowledge of the differential mean value theorem and the Intermediate Value Theorem Existence interval is not uniform, but after the promotion of integral mean value theorem and the Mean Value Theorem to the presence of range from the formal unity, so that contact can be associated with the theory and application. Meanwhile, in this paper an example to cite a form of integral mean value theorem in determining the zeros to prove inequality, such as the application of limit, obviously, to promote the advantages of integral mean value theorem in this, it Can solve the original integral mean value theorem can not solve the problem, suggesting that the integral mean value theorem in the promotion of a more applied after.Keywords: Integral mean value theorem, derivative, mean value theorem1预备知识在本部分中具体叙述了这篇论文中所需要的相关知识,包括导函数介值性定理、拉格朗日中值定理以及变上限积分函数的定义和性质等,这些理论知识为第二部分的定理推导以及证明做了铺垫,所以起了重要的作用.1.1设()g x 在[,]a b 上非负可积,且()0abg x dx >⎰则存在[,](,)c d a b ⊂使得()0dcg x d x >⎰1.2 设()f x 在[,]a b 上连续,0x ,1x ,2x [,]a b ∈若10()()f x f x >,20()()f x f x <,则存在(,)a b ξ∈,使得0()()f f x ξ=1.3若函数()f x 在[,]a b 上可导,且''()()f a f b +-≠,k 为介于'()f a +,'()f b -之间的任意数,则在(,)a b 内至少存在一点ξ,使得'()f k ξ=1.4若'()f x 为[,]a b 上的非负导函数,且存在0[,]x a b ∈,使'0()0f x >,则必有'()0baf x dx >⎰1.5(拉格朗日中值定理)若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导;则在(,)a b 内至少存在一点ξ使得'()()()f b f a f b aξ-=-1.6变上限积分函数:设()f x 在[,]a b 上可积,x 为[,]a b 内任意一点,则称函数()()xax f t dt φ=⎰为变上限积分函数1.7变上限积分函数有以下若干性质 (1)有界性命题1 设函数()f x 在[,]a b 上可积,则()x φ在[,]a b 上有界(2)连续性命题2 设函数()f x 在[,]a b 上可积,则()x φ在[,]a b 上连续 (3)可积性命题3 设函数()f x 在[,]a b 上可积,则()x φ在[,]a b 上可积 (4)可微性(原函数存在定理)()f x 在[,]a b 上连续,则()x φ在[,]a b 上处处可导.且'()()()xad x f t dt f x dx φ==⎰ [,]x a b ∈2 推广的积分中值定理积分第一中值定理在数学分析教材中为:若()f x 在[,]a b 上连续,则至少存在一点[,]a b ξ∈,使得()()()baf x dx f b a ξ=-⎰推广的积分第一中值定理在数学分析教材中为:()f x ,()g x 都在[,]a b 上连续,且()g x 在[,]a b 上不变号,则至少存在一点[,]a b ξ∈,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰我们知道积分中值定理可用于确定数列及函数列的极限,确定零点分布,判别函数的敛散性,证明积分不等式等.但观察上述式子我们发现ξ的取值有时会在两个端点处取得,有的习题用原有的积分中值定理不能够解答出来.例如在证明积分不等式时,运用原有的积分中值定理我们只可以证明≤或≥的情况,所以带有一定的局限性.下面我们对原有的积分中值定理做一下加强,使“ξ”的范围由闭区间缩小到开区间,即得到了下面所叙述的推广的积分中值定理.2.1积分第一中值定理的推广定理 2.1(1)若()f x 在闭区间[,]a b 上连续,则在开区间(,)a b 内至少存在一点ξ使得:()()()baf x dx f b a ξ=-⎰成立证明: 作辅助函数()()x aF x f t dt =⎰ [,]x a b ∈则()F x 是[,]a b 的可微函数,且'()()F x f x =.由微积分学中值定理,至少存在一点(,)a b ξ∈,使得:'()()()()F b F a F b a ξ-=-注意到()()ba Fb f x dx =⎰,()0F a =,即有()()()baf x dx f b a ξ=-⎰(,)a b ξ∈2.2推广的第一积分中值定理的加强引理1 设()g x 在[,]a b 上非负可积,且()0ba g x dx >⎰,则存在[,](,)c d ab ⊂使得()0dcg x dx >⎰证明:用反证法作辅助函数()()b x a xG x g t dt -+=⎰[0,]2b a x -∈,则()G x 是[0,]2b a-上的非负连续函数.若命题不成立,则对任意的(0,)2b ax -∈有()G x ≡0,令x o →+,得(0)()0b a G g t dt ==⎰,产生矛盾.引理2 ()f x 在[,]a b 上连续,0x ,1x ,2x [,]a b ∈,若10()()f x f x >,20()()f x f x <,则存在(,)a b ξ∈,使得0()()f f x ξ=证明:作辅助函数0()()()H x f x f x =-,我们不妨设12x x <,因为()f x 在[,]a b 上连续,故()H x 也连续,从而在12[,]x x 上连续.1()0H x >,2()0H x <由连续函数的零点定理知存在12(,)x x ξ∈使得()0H ξ=即当然0()()f f x ξ=其中(,)a b ξ∈.引理3 若()g x 在[,]a b 上连续且不恒为零,则积分()0ba g x dx >⎰证明:倘若有某0[,]x a b ∈,使0()0g x >,由连续函数的局部保号性知存在0x 的某邻域00(,)x x δδ-+,使在其中0()()02g x g x ≥>,则 00000000()()()()()00()02bx x b x aax x x g x g x dx g x dx g x dx g x dx dx g x δδδδδδδ-++-+-=++≥++=>⎰⎰⎰⎰⎰证毕.定理 2.2 设()f x 在[,]a b 上连续,()g x 在[,]a b 上可积不变号,则至少存在一点(,)a b ξ∈使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰证法1(2)证明:1︒()0bag x dx =⎰时,此时,由推广的积分中值定理知,存在[,]a b ξ∈使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰=0于是对任意的0(,)x a b ∈有0()()()()bbaaf xg x dx f x g x dx =⎰⎰命题成立2︒当()0g x ≥,且()0bag x dx >⎰时,若命题不成立,即不存在(,)a b ξ∈,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰则由推广的积分中值定理知,只能有()()()()b baaf xg x dx f a g x dx =⎰⎰ (1)或者 ()()()()b baaf xg x dx f b g x dx =⎰⎰ 成立 (2)若是命题不成立而(1)成立,则在(,)a b 内()()f x f a ≠ 由引理2在(,)a b 内恒有()()f x f a >或者()()f x f a <,不妨设()()f x f a >,而对()g x 运用引理2存在[,](,)c d a b ⊂,使得()0dc g x dx >⎰于是()()()()()()()()()()bbcdbaaacdf ag x dx f x g x dx f x g x dx f x g x dx f x g x dx ==++⎰⎰⎰⎰⎰=123()()()()()()c d bacdf g x dx f g x dx f g x dx ξξξ++⎰⎰⎰其中1[,]a c ξ∈,2[,]c d ξ∈,3[,]d b ξ∈,这是根据推广的积分中值定理得出的,由于1()()f f a ξ≥,()0cag x dx ≥⎰,2()()f f a ξ>,()0dcg x dx >⎰,3()f ξ中的3b ξ≠时3()()f f a ξ>.当3b ξ=时,对()()f x f a >,0x b →-,由()f x 在[,]a b 上的连续性可知,()()f b f a ≥而()0dd g x dx ≥⎰,综上可得到()()()()()()()()()()b c d b baacdaf ag x dx f a g x dx f a g x dx f a g x dx f a g x dx >++>⎰⎰⎰⎰⎰这是一个矛盾,因此命题成立.若是命题不成立而(2)成立,同样可得出矛盾,因此定理得以证明3︒ 当()0g x ≤,且()0ba g x dx <⎰时此时()0g x -≥,且[()]0bag x dx ->⎰,由情形2的讨论知,存在(,)a b ξ∈,使得()[()]()[()]bb aaf xg x dx f g x dxξ-=-⎰⎰ 即有()()()()bbaaf xg x dx f g x dx ξ=⎰⎰ (,)a b ξ∈总之,定理2.2完全得以证明证法2(3)证明:令()()xaF x f t dt =⎰,由拉格朗日中值定理知,(,)a b ξ∃∈,使得'()()()F b F a F b aξ-=-,即()()()baf x dx f b a ξ=-⎰不妨设()0g x ≥,[,]x a b ∈,若()g x 在[,]a b 上恒为零,则结论显然成立.若()g x 在[,]a b 上连续且不恒为零,则积分()0ba g x dx >⎰令()()()x aF x f t g t dt =⎰,()()xaG x g t dt =⎰,在[,]a b 上应用柯西中值定理,(,)a b ξ∃∈,使''()()()()()()()()()()()()()babaf tg t dtF b F a F f g fG b G a G g g t dtξξξξξξ-=⇒==-⎰⎰即()()()()bbaaf xg x dx f g x dx ξ=⎰⎰2.3积分第二中值定理的推广在数学分析教材中积分第二中值定理是这样叙述的,设函数()f x 在[,]a b 上可积 (1)若函数()g x 在[,]a b 上减,且()0g x ≥,则存在[,]a b ξ∈,使得()()()()baaf xg x dx g a f x dx ξ=⎰⎰(2)若函数()g x 在[,]a b 上增,且()0g x ≥,则存在[,]a b η∈,使得()()()()bbaf xg x dx g b f x dx η=⎰⎰其推论为:设函数()f x 在[,]a b 上可积,若()g x 为单调函数,则存在[,]a b ξ∈,使得()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰现在研究一下推论的情形:在第一积分中值定理中,我们把ξ的取值区间由闭区间缩小到开区间,但对于积分第二中值定理是否可以做这样的加强呢,看一下下面的例子:在闭区间[,]a b 上()1f x =,1[,)()2x a b g x x b ∈⎧=⎨=⎩若在(,)a b 上存在ξ使得()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰即 ()()()()2()2b a g a a g b b a b b a ξξξξξ-=-+-=-+-=--所以b ξ=,即ξ在[,]a b 的端点.这个例子告诉我们积分第一中值定理的加强结果对于积分第二中值定理不一定成立,但是这里的有限区间[,]a b 却可以换成[,)a +∞或(,]b -∞或(,)-∞+∞.此处只讨论第一种情况定理 2.3(4)设()g x 在[,)a +∞上单调有界,()f x 在[,)a +∞上可积,且()f x 没有+∞以外的瑕点,则存在[,)a ξ∈+∞使得()()()()()()aaf xg x dx g a f x dx g f x dx ξξ+∞+∞=++∞⎰⎰⎰这里()lim ()x g g x →+∞+∞=证明:不妨设()g x 在[,)a +∞上单调下降,由于()g x 有界,所以()g x 在+∞处有有限的极限,记为()g +∞,于是可记()()()G x g x g =-+∞,则()0G x ≥,而对于任意的有穷区间[,]a A ,由第二积分中值定理可知,总有[,]a A η∈使得:()()()()Aaaf x G x dx G a f x dx η=⎰⎰而()()A aF A f x dx =⎰是[,)a +∞上的关于A 的连续函数,又()f x 在[,)a +∞上可积,则()F A 在[,)a +∞上有有穷的下确界和上确界,不妨记[,)inf ()A a m F A ∈+∞=,[,)sup ()A a M F A ∈+∞=,则有()m F A M ≤≤又因为()()()()Aaaf x G x dx G a f x dx η=⎰⎰所以有()()()()AamG a G x f x dx MG a ≤≤⎰再令A →+∞,则有()()()()amG a G x f x dx MG a +∞≤≤⎰令 ()()()aG a G x f x dx μ+∞=⎰, (3)则有()()()mG a G a MG a μ≤≤如果()0G a ≠则m M μ≤≤,因为()()AaF A f x dx =⎰是[,)a +∞上的关于A 的连续函数,所以()F A 可以达到其上确界M 和下确界m 及上确界和下确界之间的任意值,即存在[,)a ξ∈+∞使得()af x dx ξμ=⎰将其带入(3)式就有()()()()aaG a f x dx G x f x dx ξ+∞=⎰⎰即(()())()(()())()aag a g f x dx g x g f x dx ξ+∞-+∞=-+∞⎰⎰所以()()()()()()aaf xg x dx g a f x dx g f x dx ξξ+∞+∞=++∞⎰⎰⎰如果()0G a =,因为()g x 在[,)a +∞上单调下降,所以()G x 在[,)a +∞上单调下降,又因为()0G x ≥即()0G x =所以()()g x g =+∞,即()g x =常数,那么对任意的[,)a ξ∈+∞,都有()()()()()()aaf xg x dx g a f x dx g f x dx ξξ+∞+∞=++∞⎰⎰⎰证毕.这个定理告诉我们:第二积分中值定理虽然在有限开区间上不一定成立,但在无穷区间上却是成立的.通过以上的推导过程我们会发现在积分中值定理的前提下,ξ必可以在开区间中取得.在微积分学中积分中值定理和微分中值定理两者在一定意义上是互逆的、对立的,这种辩证的对立统一使微积分的内容更加丰富多彩,但两者中间点ξ的存在区间是不统一的,给其相关理论和应用带来了不便,但改动之后,推广的积分中值定理与微分中值定理的取值区间得以统一,从而更能体现积分中值定理的中值性,以及两个定理之间的联系.一方面可由微分中值定理推出积分中值定理根据牛顿—莱布尼茨公式:()()()ba f x dx Fb F a =-⎰其中()F x 是()f x 在[,]a b 上的原函数即'()()F x f x =,[,]x a b ∈,显然()F x 在[,]a b 上满足拉格朗日中值定理的条件,于是至少存在一点(,)a b ξ∈使得'()()()()F b F a F b a ξ-=-()()f b a ξ=- (,)a b ξ∈即()()()baf x dx f b a ξ=-⎰(,)a b ξ∈另一方面,推广的积分中值定理推出微分中值定理:若()f x 在[,]a b 上有连续的导函数,直接计算得:'()()()baf x dx f b f a =-⎰ (4)而由推广的积分中值定理至少存在一点(,)a b ξ∈,使得''()()()baf x dx f b a ξ=-⎰(5)由(4)和(5)有'()()()()f b f a f b a ξ-=-,这正是微分中值定理.2.4 导函数的积分中值定理及其应用在微积分学中,积分中值定理与微分中值定理都有着很重要的地位,下面我们将积分中值定理条件下的连续函数推广到导函数,并用Darboux 定理给出了详尽的证明,由此我们得出了导函数积分中值定理.引理1(5)(Darboux ) 若函数()f x 在[,]a b 上可导,且''()()f a f b +-≠,k 为介于'()f a +,'()f b -之间的任意数,则在(,)a b 内至少存在一点ξ,使得'()f k ξ=引理2 若'()f x 为[,]a b 上的非负导函数,且存在0[,]x a b ∈,使'0()0f x >,则必有'()0baf x dx >⎰定理 2.4(6)若'()f x 为[,]a b 上的导函数,()g x 为[,]a b 上的连续函数,且()g x 在[,]a b 上不变号,则至少存在一点ξ[,]a b ∈,使得''()()()()bbaaf xg x dx f g x dx ξ=⎰⎰证明:不妨设()0g x ≥,'()f x 在[,]a b 上的最大值和最小值为别为M 与m ,其中M 可以取+∞,m 可以取-∞,在a 点取'()f a +,在b 点取'()f b -,令()0ba I g x dx =≥⎰,又'()()()()mg x f x g x Mg x ≤≤,([,])x a b ∈,则有'()()()()bbbaaam g x dx f x g x dx M g x dx ≤≤⎰⎰⎰当0I =或m M =时,任意取(,)a b ξ∈均可当0I >或m M <时,令'1()()b a u f x g x dx I=⎰ ()m u M ≤≤ 当m u M ≤≤时,由Darboux 定理知,至少存在一点(,)a b ξ∈,使得'()f u ξ= 当m u M =<时,利用反证法证明存在(,)a b ξ∈,使得'()f u ξ=若对一切的(,)x a b ∈,有'()0f x u ->且()0baI g x dx =>⎰,则()g x 在[,]a b 上不恒为零,即存在0[,]x a b ∈,使得0()0g x >,由连续函数的保号性知存在0x 的邻域00(,)x x σσ-+(当0x a =或0x b =时,则为右邻域或左邻域)使得对于任意的00(,)x x x σσ∈-+,有0()()02g x g x ≥>,则 0000'''0()(())()(())()(())2bx x ax x g x f x u g x dx f x u g x dx f x u dx σσσσ++--->-≥-⎰⎰⎰ 由引理2可得00'(())0x x f x u dx σσ+-->⎰,从而有'(())()0b af x ug x dx ->⎰另一方面:''0(())()()()()0bbbaaaf x ug x dx f x g x dx u g x dx uI uI <-=-=-=⎰⎰⎰出现矛盾,故原命题成立,即当m u M =<时,存在(,)a b ξ∈,使得'()f u ξ=当m u M <=时,同理可证必存在(,)a b ξ∈,使得'()f u ξ=成立同理可证二阶导函数,n 阶导函数对上述的导函数的积分中值定理成立,只要我们把它们看成一阶连续导函数和n-1阶连续导函数的导函数,便可用同样的方法得证.定理2.4的应用说明例1 设函数()f x 在[,]a b 上二次可微,证明存在一点(,)a b ξ∈,使得''324().[()()]()2b aa bf f x f dx b a ξ+=--⎰ 证明:记02a bx +=,将被积函数在0x x =处按泰勒公式展开,得 2'''0000()()()()()()2x x f x f x x x f x f η--=-+其中η在x 与0x 之间,因为'00()()0bax x f x dx -=⎰,即2''00()(()())()2bbaax x f x f x dx f dx η--=⎰⎰由定理知存在(,)a b ξ∈使32''''2''00()()()()()()12bba ab a x x f dx f x x dx f ηξξ--=-=⎰⎰从而''324().[()()]()2b a a bf f x f dx b a ξ+=--⎰例2 已知导函数'()f x 在[1,2]上有界,求证2'1lim ()0nx n f x e dx -→∞=⎰证明:导函数'()f x 在[1,2]上有界,所以存在正数M ,对[1,2]ξ∈,有'()f M ξ<,由定理1知,存在1(1,2)ξ∈,2(1,2)ξ∈, 使得222'''1111()()()n nnx x f x edx f edx f eξξξ---==⎰⎰从而有2'1lim ()0nx n f x e dx -→∞=⎰3 推广的积分中值定理的应用3.1用于确定零点分布例3 (7)证明:若()f x 在[,]a b 上连续,且()()0b ba af x dx xf x dx ==⎰⎰,则在(,)a b 内至少存在两点1x ,2x 使得12()()f x f x =证明:设()()xa F x f t dt =⎰那么我们有()()()0baf x dx F b F a =-=⎰,所以()()F b F a ==0又因为()()()()bbbba aaaxf x dx xdF x xF x F x dx ==-=⎰⎰⎰ ()()()()bF b aF a F b a ξ---所以可得; ()()()()b a F b F b a ξ-=-,所以()()()F b F F a ξ===0 证毕例4(8) 证明:若()f x 在[0,]π上连续,且0()()cos 0f x dx f x xdx ππ==⎰⎰,证明:存在两点1ξ,2ξ (0,)π∈,使得 12()()0f f ξξ==证明:令0()()xF x f t dt =⎰ 即'()()F x f x =,()(0)0F F π==00()cos cos ()cos ()()cos f x xdx xdF x xF x F x d xππππ==-⎰⎰⎰()sin ()sin .0F x xdx F πξξπ===⎰所以()0F ξ= (0,)ξπ∈,对()F x 在(0,)ξ,(,)ξπ上使用罗尔定理,即存在1(0,)x ξ∈,2(,)x ξπ∈满足'1()0F x =,'2()0F x =,即12()()0f x f x ==证毕 例5(3)假如()f x 在[0,]π上连续,且0()sin ()cos 0f x xdx f x xdx ππ==⎰⎰,则()f x 在(0,)π内至少有两个零点.证明:由已知条件,并运用推广的积分中值定理得0()sin ()sin 2()()0f x xdx f xdx f f ππξξξ===⇒=⎰⎰,(0,)ξπ∈即()f x 在(0,)π有一个零点,假如仅有一个零点x ξ=,则()f x 在[,]a ξ与[,]b ξ上均不变号,且异号,那么()sin()f x x dx ξ-在[0,]π上保持同号,连续且不恒为零,必有()sin()0f x x dx πξ->⎰(或0<)与已知0()sin()cos ()sin sin ()cos 0f x x dx f x xdx f x xdx πππξξξ-=-=⎰⎰⎰矛盾.3.2 证明积分不等式在证明积分不等式时,常常考虑积分中值定理以便去掉积分符号,如果被积函数是两个函数之积时,可考虑用积分第一或第二中值定理,对于某些不等式的证明运用原积分中值定理只能得到“≥”的结论,或者不等式根被就不能得以证明,而运用了推广的积分中值定理后,则可以得到“>”的结论,或者成功的解决.例6(9) 假设()f x 在[0,1]上连续并且单调递减,证明对任何的(0,1)a ∈有1()()af x dx a f x dx >⎰⎰证明:将要证的不等式移项11()()()()()aa a af x dx a f x dx f x dx a f x dx a f x dx -=--⎰⎰⎰⎰⎰1(1)()()aaa f x dx a f x dx =--⎰⎰因为()f x 单调递减,所以在区间[0,]a 上()()f x f a ≥,即0()()af x dx af a ≥⎰,再对上式右边第二项运用推广的积分中值定理,即存在ξ其中1a ξ<<,使上式变成1(1)()()(1)()()(1)(1)[()()]a aa f x dx a f x dx a af a af a a a f a f ξξ--≥---=--⎰⎰因为()f x 单调递减,且1a ξ<<,,所以(1)[()()]0a a f a f ξ-->,即得证.例7(9) 设()f x 在[,]a b 上连续且单调递增,证明()()2bbaaa b xf x dx f x dx +>⎰⎰证明:将要证的不等式移项,并分部积分得()()2bbaa ab xf x dx f x dx +-⎰⎰ 22()()()()()()222a bbb a b a a a b a b a bx f x dx x f x dx x f x dx +++++=-=-+-⎰⎰⎰ 令()()2a b g x x +=-,显然()f x ,()g x 在[,]2a b a +和[,]2a b b +上可积,且()g x 在[,]2a b a +和[,]2a b b +上不变号,由推广的积分中值定理知:即存在11()2a b a ξξ+<<,22()2a bb ξξ+<<,使得221222()()()()()()()()2222a ba bb b a b a b aa ab a b a b a b x f x dx x f x dx f x dx f x dxξξ++++++++-+-=-+-⎰⎰⎰⎰整理得221()[()()]8a b f f ξξ+-,因为()f x 是单调递增函数,122a b a b ξξ+<<<<,所以221()[()()]08a b f f ξξ+->,证毕. 在上述例子中我们可以看到有的题原积分中值定理不适用,而推广的积分中值定理可以将问题解决.在例6中如果运用原积分中值定理,由1a ξ≤≤只能得到“0≥”的结论;而在例7中也只能得到12()()f f ξξ≤的结论.3.3求极限例8(10)证明10lim 01nn x dx x→∞=+⎰ 证明:0ε∀>,如果取1[0,1]2ξε∈-,则有10lim 01nn dx ξξ→∞=+⎰,即N ∃,当n N >时,有12n ξεξ<+,又因为:11120012111n n n x x x dx dx dx x x x εε--=++++⎰⎰⎰对等式右边第一个积分运用中值定理,对第二个积分的被积函数用不等式011n x x <≤+,则有当n N >时有100[2]122n x dx x εε<<-+⎰,所以有10lim 01n n x dx x→∞=+⎰ 证毕.参考文献[1] 杨延龄,邹励农,章栋恩.高等数学微积分700例题[M].中国建材工业出版社.2004年10月.123页.[2] 陈卫星,马全中.关于积分中值定理及推广的积分中值定理的改进[J]. 中国煤碳经济学院学报,1994年,第1期.54,55页.[3] 郝涌,李学志,陶有德.数学分析选讲[M].国防工业出版社.2010年4月.83页,94页.[4] 朱碧,王磊.第二积分中值定理的一些推广及其应用[J]. 考试周刊, 2008年,第30期.49页.[5] 刘玉琏,傅沛仁.数学分析讲义[M].北京.高等教育出版社.2003年.[6] 谢焕田.积分中值定理的推广及其应用[J].高师理科学刊,2009年,第5期.8,9页[7] 华东师范大学数学系. 数学分析[M]. 高等教育出版社.1991年.[8] 许洪范.考研微积分500例[M]. 国防工业出版社.2009年3月.121页.[9] 李海军.积分中值定理的应用[J].赤峰学院学报.2010年,第6期,4页.[10]荆江雁.积分中值定理得推广[J].常州工学院学报.2007年,第1期 ,53页.致谢从选择论文题目到搜集材料再到一遍又一遍的修改仿佛经历了太长的时间,论文比我想象中要难写的多,我明白想写好一篇优秀的论文就必须付出百倍的努力,在论文即将交稿之时,心里多了一些轻松,同时多了一丝伤感.自己的大学生活随着论文的结束而画上了一个句号.回想自己写论文的全过程,自己最要感谢的是论文导师许宏文老师,她为人很随和,治学严谨,对待工作认真,对待学生负责,许老师给人一种很容易接近的感觉,忘不了第一次接许老师电话的情景:她耐心的给我指点着,细心的帮我分析写这篇论文的注意事项……之所以论文会顺利的完成许老师付出了太多,太多.一遍一遍的检查,一遍又一遍的帮我指出错误,在这里我想说声:许老师:您辛苦了!真的谢谢您!最后要感谢我的学校,感谢教予我知识的老师,感谢我四年的大学生活,在这四年里自己学到了很多,也成长了很多.谢谢!。
积分中值定理的推广及应用(论文)

衡阳师范学院毕业论文(设计)题目:积分中值定理的推广及应用学号:姓名:年级:学院:信息科学技术学院系别:数学系专业:信息与计算科学指导教师:完成日期:年月日摘要本论文讲述的主要内容是积分中值定理及其应用,我们将它主要分为以下几个方面:积分中值定理、积分中值定理的推广、积分中值定理中值点ξ的渐进性,积分中值定理的应用。
有关ξ点的渐进性,我们对第一积分中值定理的ξ点的做了详细的讨论,给出详细清楚的证明过程。
而第二积分中值定理的渐进性问题只证明了其中的一种情形,其它证明过程只做简要说明。
对于应用,我们给出了一些较简单的情形如估计积分值,求含有定积分的极限,确定积分号,比较积分大小,证明函数的单调性还有对阿贝尔判别法和狄理克莱判别法这两个定理的证明。
我们讨论了定积分中值定理、第一积分中值定理、第二积分中值定理,而且还给出了这些定理的详细证明过程。
在此基础上,我们还讨论了在几何形体Ω上的黎曼积分第一中值定理,它使得积分中值定理更加一般化,此情形对于讨论一般实际问题有很显著作用。
在积分中值定理的推广方面,我们由最初的在闭区间[,]f x的积分中值a b讨论函数()定理情形转换为在开区间(,)a b上讨论函数()f x上的积分中值定理,这个变化对于解决一些实际的数学问题更为方便。
不仅如此,我们还将几何形体Ω上的黎曼积分第一中值定理推广到第一、第二曲线型积分中定理和第一、第二曲面型积分中值定理情形。
关键词:积分中值定理;推广;应用;渐进性AbstractThe main content of this paper are the mean-value theorem and its application, it will be mainly divided into the following respects: integral mean-value theorem, the generalation of integral mean-value theorem, the asymptotic property of the “intermediate point”of integral median point, the application of integral mean-value theorem.About the Progressive of ξpoint, we have discussed the ξpoint of the mean-value theorem in detail and give clear proof of the process. While the gradual issues of the secondintegral mean value theorem has been demonstrated one of these situations. And the otherprocess of proving has been expressed in brief.According to application,we presented a simple situation, for example, estimate integralvalue ,solve the limits of definite integral, define integral sign, compare the magnitude of integralvalue, prove the monotonic of function and Abel test and Dirichlet testWe have discussed the definite integral mean-value theorem, the first mean value theorem,the second integral mean-value theorem, and have given a detailed proof of these theoremsprocess. On this basis, we also have discussed the Riemann first integral mean-value theorem onthe geometryΩ. It makes the integral mean-value theorem is more general, the case has asignificant role in the discussion of practical issues in general.In the promotion of integral mean value theorem, we have discussed the integralmean-value theorem of function ()a b in the case off x in the initial closed interval [,]discussing it in the open interval(,)a b, the change has more convenience in solving some practical mathematical problem. In addition, we will promote the Riemann first integral mean-value theorem on the geometryΩto the situation of the first and second type curve in integral theorem and The second type surface integral mean-value theorem.Key words: integral mean-value; theorem promotion ;apply;progressive目录1 引言 (1)2 积分中值定理的证明 (2)2.1 定积分中值定理 (2)2.2 积分第一中值定理 (3)2.3 积分第二中值定理 (3)2.4 几何形体上黎曼积分第一中值定理 (6)3 积分中值定理的推广 (9)3.1 定积分中值定理的推广 (9)3.2 定积分第一中值定理的推广 (9)3.3 定积分第二中值定理的推广 (11)3.4 第一曲线积分中值定理 (12)3.5 第二曲线积分中值定理 (12)3.6 第一曲面积分中值定理 (13)3.7 第二曲面积分中值定理 (14)4 第一积分中值定理中值点的渐进性 (16)5 第二积分中值定理中值点的渐进性 (20)6 积分中值定理的应用 (23)6.1 估计积分值 (23)6.2 求含定积分的极限 (24)6.3 确定积分号 (24)6.4 比较积分大小 (25)6.5 证明函数的单调性 (25)6.6 证明定理 (25)7 结论 (29)谢辞 (30)参考文献 (31)1引言随着时代的发展,数学也跟着时代步伐大迈步前进。
微分中值定理及其应用(大学毕业论文)

毕业论文(设计)题目名称:微分中值定理的推广及应用题目类型:理论研究型学生姓名:邓奇峰院(系):信息与数学学院专业班级:数学10903班指导教师:熊骏辅导教师:熊骏时间:2012年12月至2013年6月目录毕业设计任务书 (I)开题报告 ....................................................................................................................................... I I 指导老师审查意见. (III)评阅老师评语 (IV)答辩会议记录 (V)中文摘要 (VI)外文摘要 .................................................................................................................................... V II1 引言 (1)2 题目来源 (1)3 研究目的和意义 (1)4 国内外现状和发展趋势与研究的主攻方向 (1)5 微分中值定理的发展过程 (2)6 微分中值定理的基本内容 (3)6.1 罗尔(Rolle)中值定理 (3)6.2 拉格朗日(Lagrange)中值定理 (4)6.3 柯西(Cauchy)中值定理 (4)6.4 泰勒(Taylor)定理 (4)7 微分中值定理之间的联系 (5)8 微分中值定理的应用 (5)8.1 根的存在性证明 (6)8.2 利用微分中值定理求极限 (8)8.3 利用微分中值定理证明函数的连续性 (10)8.4 利用微分中值定理解决含高阶导数的中值问题 (10)8.5 利用微分中值定理求近似值 (10)8.6 利用微分中值定理解决导数估值问题 (10)8.7 利用微分中值定理证明不等式 (11)9 微分中值定理的推广 (14)9.1 微分中值定理的推广定理 (15)9.2 微分中值定理的推广定理的应用 (17)参考文献 (18)致谢 (19)微分中值定理的推广及应用学生:邓奇峰,信息与数学学院指导老师:熊骏,信息与数学学院【摘要】微分中值定理,是微积分的基本定理,是沟通函数与其导数之间的桥梁,是应用导数的局部性研究函数整体性的重要数学工具,在微积分中起着极其重要的作用。
积分中值定理的简单应用 数学专业毕业设计 毕业论文

积分中值定理的简单应用数学专业毕业设计毕业论文本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
论文题目:作者签名:日期:年月日论文版权使用授权书本人完全了解吉首大学有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件和磁盘,允许论文被查阅和借阅,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。
同意吉首大学可以用不同方式在不同媒体上发表、传播学位论文的全部或部分内容。
(保密的学位论文在解密后应遵守此协议)论文题目:学生签名:日期:年月日导师签名:日期:年月日目录摘要 (1)关键词 (1)Abstract (1)Key words (1)1引言 (1)2准备知识 (2)3在应用积分中值定理时应注意以下几点 (2)4积分中值定理的简单应用 (3)4.1在力学中的应用 (3)4.2确定定积分的符号 (5)4.3求含有定积分的极限 (6)4.4估计定积分 (7)4.5证明积分不等式 (8)4.6判断某些点的存在问题 (9)4.7求与有关收敛有关的问题 (10)积分中值定理的简单应用(吉首大学数学与统计学院湖南吉首416000)摘要:本文综合归纳了积分中值定理在力学、确定定积分符号、求含有定积分的极限、估计定积分、证明积分不等式、判断某些点的存在问题及求与收敛有关问题的应用.关键词:积分第一中值定理;推广的积分中值定理;估计定积分The application about intermediate value theorem of integral(college of mathematics and statistics , JiShou university, JiShou hunan 416000) Abstract:This paper reviews and summarizes the application of stationary functional theory in integration, mainly regarding to the field of machanics, determining the signs for definite integrals, evaluating the limit of the dedinite integral, estimating the definite integral, evidencing the definite integral inequality, judging the exist problems related to it and finding solution to convergence problem.Key words:Intermediate value theorem of integral ;Extension intermediate value theorem of integral ;Estimate definite integral1引言积分中值定理是数学分析中一个基本定理之一,同时也是定积分的一个主要性质,它建立了积分和被积函数之间的关系,它在数学很多方面都有十分重要的作用.为简单起见,文中就积分第一中值定理以及推广的积分第一中值定理的应用进行讨论.2 准备知识定理 2.1[1] (积分第一中值定理) 若()x f 在区间[a,b]上连续,则在(a,b )内至少存在一点ξ使得()()()b a a b f dx x f b≤≤-=⎰ξξ,a定理2.2[1] (推广的积分第一中值定理)若()()x g x f ,在],[b a 上连续,且()x g 在],[b a 上不变号,则在],[b a 至少存在一点ξ,使得dx x g f dx x g x f baba⎰⎰=)()()()(ξ,b a ≤≤ξ3 在应用积分中值定理时应注意以下几点(1)在应用定理2.1中要注意被积函数在],[b a 区间上连续这一条件,否则结论不成立.例如 :⎪⎩⎪⎨⎧≤≤≤≤--=40,cos 04,cos )(ππx x x x x f显然)(x f 在0=x 处间断, 由于⎰⎰⎰+=--40444)()()(ππππdx x f dx x f dx x f⎰⎰-+-=0440)(cos )cos (ππdx x dx x=0但在]4,4[ππ-上,0)(≠x f ,所以,对任何]4,4[ππξ-∈都不能使πξππ⎰-=44)(21)(f dx x f (2)在应用定理2.2中在],[b a 上不变号这个条件也不能去掉 例如: 令 ]2,2[,sin )(,sin )(ππ-∈==x x x g x x f 由于 ⎰⎰⎰---==2222222sin sin sin )()(ππππππξxdx xdx dx x g x f但⎰⎰--==22220sin )(ππππxdx dx x g所以不存在]2,2[ππξ-∈使 ⎰⎰--=2222)()()()(ππππξdx x g f dx x g x f4 积分中值定理的简单应用4.1 在力学中的应用(1)求平均速度设速度函数)(t v 在时间区间][2,1t t 内连续,根据定理2.1,有⎰-=21))(()(12t t t t v dt t v ξ1221)()(t t dtv v t t -=⎰ξξ )(21t t ≤≤ξ由力学知识知,物体的位移⎰=∆21)(t t dt t v x ,则1221)()(t t dtv v t t -=⎰ξξtx∆∆=即)(ξv 就是物体的平均速度.例1 当物体做匀变速直线运动时,即)(00t t a v v -+=)(恒量=a 时0-t t t =∆内的平均速度 :00t t 0)]([)(t t dt t t a v t t vdt v tt --+=-=⎰⎰ξ)(0t t ≤≤ξ)(),(21)(0000t t a v v t t a t v -=--+=而ξ所以)(21)(0v v v +=ξ 这个结果说明,只有当速度函数对时间均匀变化时,平均速度等于],[0t t 内始、末速度的算术平均值.(2)求对空间累积的平均作用力设力)(x F 在位置区间],[21x x 内连续,根据定积分中值定理,有)()()(1221x x F dx x F x x -=⎰ξ )(21x x ≤≤ξ)(x F 相对位移12x x x -=∆的平均作用力为1221)()(x x dxx F F x x -=⎰ξ当)(x F 与位置坐标x 无确定函数关系时,利用动能定理21222121)(21mv mv dx x F x x -=⎰可得1221222121)(x x mv mv F --=ξ 当)(x F 与变量x 有确定函数关系时,可直接求出平均作用力.例2 弹簧振子的作用力为kx F -=,那么振子所受的平均作用力是:12122121)()(x x dxkx x x FdxF x x x x --=-=⎰⎰ξ )(21x x ≤≤ξ计算得 )(21)(12F F F +=ξ,即x F 与有线性关系时,平均作用力等于质点始、末位置所受力的算术平均值.4.2 确定定积分的符号定积分的几何意义是求去边多边形的面积,如能知道它的符号对我们解很多题有很大的帮助.下面来看几个实例.例3 确定⎰π20sin xdx x 的符号解 原式=⎰⎰+πππ2sin sin xdx x xdx x=⎰⎰+-πππ0sin )(sin tdt t xdx x=⎰-ππ0sin xdx= c sin 2π-(0sin >c ) 其中π<<c 0 =0sin 2<-c π例4 确定dx x x⎰π20sin 的符号 解 原式=dx x xdx x x ⎰⎰+πππ20sin sin=dt t t dx x x ⎰⎰+-πππ00sin sin =⎰+πππ0)(sin dx x x x由定理2.1得dx xx⎰π20sin =)(sin 2ππ+c c c >0 其中π<<c 0 例5 确定dx e x x ⎰-223符号解 原式=dx e x dx e x x x ⎰⎰+-203023=dx e x dx e t x t ⎰⎰+-203023=dx e e x x x ⎰--203)(=)(23c c e e c -->0 其中0<c<24.3 求含有定积分的极限定积分的极限问题,在不借助积分中值定理的情况下是很难求出结果的,但是运用了积分中值定理就能去掉定积分的积分号,起到了化难为易的效果.下面来看几个实例.例6 计算40lim sin ()nn x dx π→∞⎰的值解 由定理2.1得40sin ()(0)sin 4n n n x dx ππξ=-⎰,因为[0,]4n πξ∈,所以1sin 0<<n n ξ可得40lim sin ()n n x dx π→∞⎰= n n n ξπsin lim 4∞→=0 例7 求23lim (sin )()x xx t f t dt t+→∞⎰,其中)(t f 可微,且已知lim ()1t f t →∞=解 由定理2.1得dt t f t t x x)()3(sin 2⎰+=)()3sin(2ξξξf ,其中)2,(+∈x x ξ所以233lim (sin )()lim 2sin ()x xx x t f t dt f t ξξξ+→∞→∞=⎰=3sin 6limlim ()63f ξξξξξ→∞→∞=4.4 估计定积分若定积分的值很难求出,可以通过推广的积分中值定理化难为易,很方便估计其值.下面来看几个实例.例8 试估计⎰+π20cos 5.01xdx的值解 由定理2.1得⎰+π20cos 5.01x dx=⎰+πξ201cos 5.011dx =ξπcos 5.012+其中]2,0[πξ∈,5.1cos 5.015.0,1cos 1≤+≤≤≤-ξξ.从而得ππξπππ45.012cos 5.0125.01234=-≤+≤+= 所以πππ4cos 5.013420≤+≤⎰xdx 例9 试估计dx xx ⎰+191的值解 因为()xx x f +=19在]1,0[上连续,在()1,0内可导,且()()()238121718x x x x f ++='在()1,0内无解,即]1,0[,0)('∈≥x x f ,等号仅在0=x 时成立.故()x f 在]1,0[内严格单调增,即()()()21100=<<=f x f f所以由积分第一中值定理有211019<+<⎰dx xx4.5 证明积分不等式含定积分式的极限的不等式的证明,关键是去掉定积分号,积分中值定理和推广的积分中值定理都有这个功能.下面来看几个实例.例10 设)(x f 在[a,b]上连续,单调增加,证明:⎰⎰+≥ba badx x f b a dx x xf )(2)( 证明 因为⎰⎰+-bab adx x f b a dx x xf )(2)(⎰⎰⎰+++-++-=+-=b b a ba ba a dx x f ba x dx x fb a x dx x f b a x 22)()2()()2()()2(dx b a x f dx b a x f b b a ba a⎰⎰+++-++-=2221)2()()2()(ξξ )2(21b ba a ≤≤+≤≤ξξ2)()(2)()(2221a b f a b f -+--=ξξ,2)()]()([212a b f f --=ξξ)(x f 单调增加所以⎰⎰+≥ba badx x f b a dx x xf )(2)( 例11 证明2241222e dx eexx ≤≤⎰--证明 本题等价于在区间]2,0[上求函数()xxe xf -=2的最大值M 和最小值m()()xxe x xf --='212,令()0='x f ,得驻点21=x . 比较⎪⎭⎫⎝⎛21f ,()0f ,()2f 知4121-=⎪⎭⎫ ⎝⎛e f 为()x f 在[]20,上的最小值,而()22e f =为()x f 在[]20,上的最大值.由积分中值定理得 ()()0202220412-≤≤-⎰--e dx e ex x ,即2241222e dx e exx≤≤⎰--.4.6 判断某些点的存在问题某些带积分式的函数,常常会有要求判定具有某些性质的点的存在的问题,如能巧妙的运用积分中值定理将使问题迎刃而解.下面来看几个实例.例12 设)(x f 函数在[0,1]上连续,在(0,1)内可导,且⎰=132)()(3a f dx x f证明存在0(c)),1,0('=∈f c 使。
积分第一中值定理及其应用

后再使用洛必达法则 . 但是对于此题来说,由于无法确定 f ¢(0) 是否存
在 ,因此不能直接用洛必达法则 ,但可以尝试积分第一中值定理来拓宽 思路 .
解令 x - t = u, 则
x
ò0
f
(x
- t ) dt
=
0
òx
f
(u)d (-u)
=
x
ò0
f
(t ) dt.
0
本题的函数极限是 型不定式,先使用洛必达法则,再结合积分中
思 考·探 索
积分第一中值定理及其应用
邹乐强 (河南工业和信息化职业学院基础部,河南 焦作) 摘 要:微积分学是高等数学中极其重要的一部分 . 在积分学中,最重要的理论之一就是积分中值定理,它建立了积分与被积 函数之间的联系。在这篇论文中 ,主要论述了积分第一中值定理的定义 、积分第一中值定理的推广 ,以及他们在解题上的一些应 用 ,比如证明中值点的存在性 、证明函数的单调性 ,比较定积分值大小 、估计积分值等。由此可见积分中值定理不仅有较高的理论 价值 ,在解题应用上 ,也有着优于其它解题方法的作用。 关键词:积分第一中值定理;推广应用
2.4 证明存在中值点
[ ] 例 5 设 f (x) 在 (0,1) 内 可 导 ,在 0,1 上 连 续 , 且
ò +¥ f ( x)dx 的敛散性等同 . 1 证
ò å ò ( ) ( ) an+1
n
ak +1
f x dx =
f x dx
1
ak
k =0
¥
( ) å = f (xk ) ak+1 - ak
x®0
2.2 判别级数是否收敛
¥
å 例 3 设 f ( x) 为非负函数 ,且单调递减 ,a > 1 ,证明 f (k ) 和 k =1
高等数学中积分中值定理的几个基本应用

高等数学中积分中值定理的几个基本应用作者:朱碧来源:《新教育时代》2014年第14期摘要:对于积分中值定理,在教材中提到的用法大多是去掉积分符号,把复杂的问题简单化,在解决积分不等式、含积分的极限等问题中,往往应用积分中值定理的这些作用,使得问题得到更容易的解决。
关键词:积分中值定理应用一、积分中值定理定理:若函数f(x)在[a,b]上是连续的。
那么至少存在一点,使得成立。
推论:如果上连续,并且g(x)在[a,b]上不变号,那么至少存在一点使得成立。
[1]二、积分中值定理的几个简单应用积分中值定理在定积分的计算应用中具有重要的作用,下面我们给出几个具体的常见的例子,通过实际应用来加深对积分中值定理的理解。
1.中值定理应用于定积分不等式的证明和积分估计(1)证明不等式 .证:由积分中值定理又因为可得.(2)估计的积分解:设,那么f(x)在区间[0,1]上连续可导,且有所以,又,则,所以而,所以2.中值定理应用于含有定积分的极限的计算(3)计算其中连续.解:因为连续,则由积分中值定理,可以得出所以3.积分中值定理在等式证明中的应用(4)证明:如果f(x)在[a,b]上连续,g是连续可微的单调函数,那么存在,有证:令,那么有由已知g(x)是单调函数,所以g`(x)不变号,根据积分中值定理,存在,使得三、结论:积分中值定理是积分学说中的一个重要结论,在数学学习中起到承前启后作用的重要枢纽。
对于定积分的计算,证明等都有着不可忽视的作用,文中所举的例子并不算多,对比现在的研究来说是比较少的,并且在讨论时所给定的条件也相对单一。
但是也给出了当今积分中值定理的大概研究方向。
参考文献[1]华东师范大学数学系.数学分析/上册[M].高等教育出版社.1981.4(2007再版)[2]刘宁. 强化积分中值定理结论,使其更具应用性.金华职业技术学院学报[J].2004.6[3]Walter Rudin. Principles of Mathematical Analysis[M].Mc Graw Hill Education.[4]龙爱芳,积分中值定理积分点研究的一个新结果[J].数学的实践与认知.2011.10[5]戴嘉尊.数学物理方程.东南大学出版社[M].2002.2(2008再版)[6]衡美芹.关于积分中值定理的进一步探讨[J]. 牡丹江教育学院学报,2011,02.[7]华东师范大学数学系.数学分析/下册[M].高等教育出版社.1981.4(2007再版)[8]季孝达,薛兴恒,陆英.数学物理方程[M].科学出版社.2005.7[9]周燕. 积分中值定理的推广与应用[J]. 林区教学,2008,10.作者简介:朱碧。
毕业论文拉格朗日中值定理分析
毕业论文题 目 拉格朗日中值定理 指导教师 王子华学生姓名 卢波 学 号 201200702049 专 业 信息与计算科学 教学单位 德州学院数学科学学院二O 一六年五月二十日德州学院毕业论文课题说明书德州学院毕业论文开题报告书德州学院毕业论文中期检查表院(系):数学科学学院专业:信息与计算科学 2016年 4备注:目录摘要 (1)关键字 (1)Abstract (1)KeyWord (1)0前言 (1)1对拉格朗日中值定理的理解 (1)1.1承上启下的定理 (1)1.2定理中的条件 (1)1.3定理中的 (2)1.4定理的意义 (2)2 拉格朗日中值定理的证明 (2)3 拉格朗日中值定理的应用 (3)3.1求极限 (3)3.2证明不等式 (5)3.3证明恒等式 (8)3.4证明等式 (9)3.5研究函数在区间上的性质 (10)3.6估值问题 (11)3.7判定级数的收敛性 (12)3.8证明方程根的存在性 (13)3.9误用拉格朗日中值定理 (14)结束语 (15)参考文献 (16)致谢 (16)拉格朗日中值定理的应用学生姓名:卢波学号:201200702049院系:数学科学学院专业:信息与还算科学指导老师:王子华职称:教授摘要:拉格朗日中值定理是微分学的基础定理之一,它是沟通函数及其导数之间关系的桥梁,课本中关于拉格朗日中值定理的应用并没有专门的讲解,而很多研究者也只是研究了它在某个方面的应用,并没有系统的总结。
本文首先进一步分析了定理的实质,以便使读者深入理解拉格朗日中值定理;然后从课本中证明拉格朗日中值定理的思想(构造辅助函数法)出发,提出了一个较简单的辅助函数,从而使拉格朗日中值定理的证明简单化;以此为理论依据并在别人研究的基础上,最后重点总结了拉格朗日中值定理在各个方面的应用。
这对于正确的理解掌握拉格朗日中值定理,以及以后进一步学习数学具有重要的作用和深远的意义。
关键词:拉格朗日中值定理;应用;极限;不等式;收敛;根的存在性The Application of Lagrange's mean value theoremAbstract:The Lagrange's mean value theorem is one of basic theorems of differential calculus and it also is communication function and its derivative bridge. There is no special ex plaination about the applications of Lagrange's mean value theorem and many resea rchers also just studied it in some applications and no systematic summary. In order t o make the reader understand Lagrange's mean value theorem, this paper first analy zed the essence of the theorem and then from textbook proof Lagrange's mean valu e theorem thoughts (structure method of auxiliary function), puts forwards a simpler auxiliary function. Thus make the proof of Lagrange's mean value theorem simplify. According to this theorem and the basis of others study, finally summarized all the as pects application of Lagrange's mean value theorem. It is quite important for underst anding and mastering Lagrange's mean value theorem and also have a significant an d profound significance for further study of mathematics.Keywords:Lagrange's mean value theorem; Application; Limit; Inequality; Convergence; Roots0前言函数与其导数是两个不同的的函数,而导数只是反映函数在一点的局部特征,如果要了解函数在其定义域上的整体性态,就需要在导数及函数间建立起联系,微分中值定理就是这种作用.微分中值定理,包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的工具。
积分中值定理 毕业论文
目录诚信声明---------------------------------------------------------------------------------------------------- 错误!未定义书签。
摘要 ---------------------------------------------------------------------------------------------------------------------------------- 2 1积分中值定理 ------------------------------------------------------------------------------------------------------------------- 21.1定积分中值定理及推广 ---------------------------------------------------------------------------------------------- 21.1.1定积分中值定理----------------------------------------------------------------------------------------------- 21.1.2定积分中值定理的推广 ------------------------------------------------------------------------------------- 21.2定积分第一中值定理及推广---------------------------------------------------------------------------------------- 31.2.1定积分第一中值定理----------------------------------------------------------------------------------------- 31.2.2定积分第一中值定理的推广 ------------------------------------------------------------------------------- 31.3定积分第二中值定理及推广---------------------------------------------------------------------------------------- 41.3.1定积分第二中值定理----------------------------------------------------------------------------------------- 41.3.2积分第二中值定理的推广 ---------------------------------------------------------------------------------- 61.4 重积分的中值定理 --------------------------------------------------------------------------------------------------- 71.4.1二重积分的中值定理----------------------------------------------------------------------------------------- 71.4.2三重积分的中值定理----------------------------------------------------------------------------------------- 81.5曲线积分中值定理 ---------------------------------------------------------------------------------------------------- 81.5.1第一曲线积分中值定理 ------------------------------------------------------------------------------------- 81.5.2第二曲线积分中值定理 ------------------------------------------------------------------------------------- 81.6 曲面积分中值定理 -------------------------------------------------------------------------------------------------- 101.6.1第一曲面积分中值定理 ------------------------------------------------------------------------------------ 101.6.2第二曲面积分中值定理 ------------------------------------------------------------------------------------ 10 2中值点的渐进性 --------------------------------------------------------------------------------------------------------------- 102.1第一积分中值定理中值点的渐进性 ----------------------------------------------------------------------------- 102.2第二积分中值定理中值点的渐进性 ----------------------------------------------------------------------------- 13 3积分中值定理的应用--------------------------------------------------------------------------------------------------------- 143.1估计积分值------------------------------------------------------------------------------------------------------------- 143.2求含定积分的极限 --------------------------------------------------------------------------------------------------- 153.3确定积分值符号 ------------------------------------------------------------------------------------------------------ 153.4比较积分大小---------------------------------------------------------------------------------------------------------- 163.5证明函数的单调性 --------------------------------------------------------------------------------------------------- 163.6证明定理---------------------------------------------------------------------------------------------------------------- 16 结论 ------------------------------------------------------------------------------------------------------------------------------- 18 参考文献--------------------------------------------------------------------------------------------------------------------------- 19 英文摘要---------------------------------------------------------------------------------------------------- 错误!未定义书签。
积分中值定理的推广及应用
㊀㊀㊀㊀数学学习与研究㊀2022 31积分中值定理的推广及应用积分中值定理的推广及应用Һ丁建华㊀(甘肃有色冶金职业技术学院教育系,甘肃㊀金昌㊀737100)㊀㊀ʌ摘要ɔ本文首先对积分中值定理的几何特征进行详细介绍,并对该定理中f(x)在[a,b]上恒为常数㊁f(x)在[a,b]上不为常数函数做出一定的补充,并证明此结论也是成立的;其次,对第一积分中值定理和第二积分中值定理进行了推广,并进一步证明了结论的准确性;最后,通过不等式的证明㊁极限的求值进一步验证了改进结论的正确性.ʌ关键词ɔ中值定理;连续性;不等式一㊁积分中值定理的几何特征与补充积分中值定理的几何意义可以理解为:若函数f(x)在闭区间[a,b]上非负连续时,定积分ʏbaf(x)dx在几何上可以表示为y=f(x),x=a,x=b及x轴所围成的曲边梯形面积(如图1,定积分ʏbaf(x)dx表示曲边梯形AabB的面积).根据闭区间上连续函数的性质,f(x)在[a,b]上存在最大值M和最小值m,即∀xɪ[a,b],有mɤf(x)ɤM,从而m(b-a)ɤʏbaf(x)dxɤM(b-a).它可以化为mɤ1b-aʏbaf(x)dxɤM.由连续函数的介值定理,则至少有这样的一个点ξɪ[a,b],使得f(ξ)=1b-aʏbaf(x)dx,则ʏbaf(x)dx=f(ξ)(b-a).根据上面知识点,我们可以获得数学分析中常用的重要积分学性质和定理.积分中值定理㊀若函数f(x)在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得ʏbaf(x)dx=f(ξ)(b-a)(aɤξɤb).这里要求函数f(x)在[a,b]上连续即可,对函数没有严格要求.进一步地,我们可将f(x)在[a,b]上连续的这一条件更改为f(x)在[a,b]上可积,其结论仍然成立.当f(x)在[a,b]上连续且非负时,积分公式ʏbaf(x)dx=f(ξ)(b-a)有着明显的几何意义,即y=f(x)在[a,b]上的曲边梯形面积等于以图1所示的f(ξ)为高㊁[a,b]为底的矩形面积,即以f(ξ)为高的矩形AabD的面积.㊀图1通过对上面图1进一步分析,我们可以发现定理中的ξɪ[a,b]可以改为ξɪ(a,b),事实上,若ξ仅取在[a,b]的端点上,不妨设ξ=a,则可从图2中看出,曲边梯形AabB的面积ʏbaf(x)dx与矩形AabD的面积不可能相等.㊀图2本文给出如下两种证明.证法一:若函数f(x)在闭区间[a,b]上恒为常数,则ξ取(a,b)内任意一点,结论都是成立的.若f(x)在[a,b]上为一个变量函数,设M,m分别为f(x)在[a,b]上的最大值与最小值,则存在x0ɪ(a,b),使得mɤf(x0)ɤM.事实上,若这样的x0不存在,则在[a,b]上必存在一点x1,使得f(x)在a,x1[]上恒有f(x)=m或f(x)=M(),在[x1,b]上恒有f(x)=M(或f(x)=m).这样一来,x1是间断点,与f(x)在区间[a,b]上连续矛盾.又f(x)在x0连续,则存在δ>0,x0-δ,x0+δ()⊂[a,b],当x-x0<δ时,有f(x)-f(x0)<M-f(x0)2和f(x)-f(x0)<f(x0)-m2,从而M-f(x0)>M-f(x0)2>0,f(x0)-m>f(x0)-m2>0,于是ʏx0+δx0-δ[M-f(x)]dxȡʏx0+δx0-δM-f(x0)2éëêùûúdx,即ʏx0+δx0-δf(x)dxɤM-f(x0)2ʏx0+δx0-δdx,又f(x0)<M,ʏx0+δx0-δf(x)dx<Mʏx0+δx0-δdx,同理有ʏx0+δx0-δf(x)dx>mʏx0+δx0-δdx,于是ʏbaf(x)dx=ʏx0-δaf(x)dx+ʏx0+δx0-δf(x)dx+ʏbx0+δf(x)dx<Mʏx0-δadx+Mʏx0+δx0-δdx+Mʏbx0+δdx=M(b-a).同理可得ʏbaf(x)dx>m(b-a),㊀㊀㊀㊀㊀数学学习与研究㊀2022 31因此m(b-a)<ʏbaf(x)dx<M(b-a),即m<1b-aʏbaf(x)dx<M.由介值定理,存在ξɪ(a,b),使得f(ξ)=1b-aʏbaf(x)dx,即ʏbaf(x)dx=f(ξ)(b-a),其中ξɪ(a,b).证法二:作辅助函数F(x)=ʏxaf(t)dt,xɪ[a,b],则F(x)是[a,b]上的可微函数,且Fᶄ(x)=f(x),由微分中值定理,至少存在一点ξɪ(a,b),使得F(a)-F(b)=Fᶄ(ξ)(b-a).注意到,F(b)=ʏbaf(x)dx,F(a)=0,则有ʏbaf(x)dx=f(ξ)(b-a),ξɪ(a,b).于是,我们可以进一步将积分中值定理进行推广.设f(x),g(x)在[a,b]上连续,g(x)在[a,b]上不能等于零,同时符号不会改变,在这样特殊的情形下,可以得到如下的结论,ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx,ξɪ(a,b).令F(x)=ʏxaf(t)g(t)dt,G(x)=ʏxag(t)dt,则由微分学的柯西中值定理知,F(b)-f(a)G(b)-G(a)=Fᶄ(ξ)G(ξ),ξɪ(a,b),即有ʏbaf(x)g(x)dxʏbag(x)dx=f(ξ)g(ξ)g(ξ),ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx,ξɪ(a,b).但当g(x)在[a,b]只是可积分,并且恒为正或恒为负时,前面我们进行推导的思路完全行不通,即不可能成立,因为可积不变号时,g(x)可以等于零,我们就不能使用上面的结论了.二㊁第一㊁第二积分中值定理的推广及其证明积分第一中值定理设函数f(x)在[a,b]上连续,g(x)在[a,b]上可积不变号,则在[a,b]存在一点ξ,使得ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx.积分第二中值定理设(ⅰ)g(x)在[a,b]上连续;(ⅱ)f(x)在[a,b]上单调递增且连续;(ⅲ)f(x)ȡ0,则必有ξɪ[a,b],使得ʏbaf(x)g(x)dx=f(b)ʏbξg(x)dx.推论1.若积分第二中值定理中的递增改为递减,其他条件不变的情况下,则必有ξɪ[a,b],使得ʏbaf(x)g(x)dx=f(a)ʏξag(x)dx.2.若积分第二中值定理中的f(x)ȡ0去掉,则必有ξɪ[a,b],使得ʏbaf(x)g(x)dx=f(a)ʏξag(x)dx+f(b)ʏbξg(x)dx.当ξ所在区间[a,b]变为(a,b),其余条件㊁结论不变,我们就可以将积分中值定理进一步推广.接下来,我们进一步证明积分中值定理的推广定理,先验证积分第一中值定理的推广.证明㊀由于f(x)在[a,b]上连续.设M为f(x)在[a,b]上的最大值,m为f(x)在[a,b]上的最小值,即有mɤf(x)ɤM,又由于g(x)在[a,b]上定号,不妨令g(x)ȡ0(g(x)ɤ0的情况同理),从而有mf(x)ɤf(x)g(x)ɤMg(x),即mʏbag(x)dxɤMʏbag(x)dx.(1)ʏbag(x)dx=0,由上面不等式的结论可知,ʏbaf(x)g(x)dx=0,因此有ξɪ(a,b),使得ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx.(2)ʏbag(x)dx>0.(ⅰ)如果mʏbag(x)dx<ʏbaf(x)g(x)dx<Mʏbag(x)dx,即m<ʏbaf(x)g(x)dxʏbag(x)dx<M时,由闭区间上连续函数的介值定理我们可以知道,有一ξɪ(a,b),使得f(ξ)=ʏbaf(x)g(x)dxʏbag(x)dx,即ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx.(ⅱ)如果mʏbag(x)dx=ʏbaf(x)g(x)dx,(a)假如有一ξɪ(a,b),都有f(ξ)=m,我们可以得到mʏbag(x)dx=f(ξ)ʏbag(x)dx结论成立.(b)除此之外,对任意的xɪ(a,b),都有f(x)>m,而由ʏbag(x)dx>0,必定存在充分小的数η,使得ʏb-ηa+ηg(x)dx>0(倘若不然的话,对于任意的正数η,都有ʏb-ηa+ηg(x)dxɤ0,从而ʏbag(x)dx=limηң0ʏb-ηa+ηg(x)dxɤ0与ʏbag(x)dx>0矛盾).于是得到0=ʏba[f(x)-m]g(x)dxȡʏb-ηa+η[f(x)-m]g(x)dx.利用原积分中值定理,得ʏb-ηa+η[f(x)-m]g(x)dx=[f(ξᶄ)-m]ʏb-ηa+ηg(x)dx>0,ξᶄɪ[a+η,b-η]⊂(a,b).与之比较,知矛盾.(ⅲ)Mʏbag(x)dx=ʏbaf(x)g(x)dx,这个证明类似于证㊀㊀㊀㊀数学学习与研究㊀2022 31明(ⅱ)的过程.综上所述,存在ξɪ(a,b),使得ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx成立.证毕!根据积分第一中值定理的推广证明,我们同样可以对积分第二中值定理的推广进行证明.接下来,我们试证积分第二中值定理的推广结果.证明㊀由f(x)在[a,b]上连续,F(x)=ʏxaf(t)dt在[a,b]上可导,从而有ʏbaf(x)g(x)dx=ʏbag(x)dF(x)=g(b)F(b)-ʏbaF(x)gᶄ(x)dx-g(a)F(a)=g(b)ʏbaf(x)dx-ʏbaF(x)gᶄ(x)dx.对于ʏbaF(x)gᶄ(x)dx应用推广的第一积分中值定理,得到ʏbaF(x)gᶄ(x)dx=F(ξ)[g(b)-g(a)],其中ξɪ(a,b),从而有ʏbaF(x)gᶄ(x)dx=g(b)ʏbaf(x)dx-F(ξ)[g(b)-g(a)]=g(b)ʏξaf(x)dx+ʏbξf(x)dx[]-ʏξaf(x)dx[g(b)-g(a)]=ʏbaf(x)g(x)dx=f(a)ʏξag(x)dx+f(b)ʏbag(x)dx.证毕!三㊁积分中值定理的应用例1㊀证明下列积分不等式:(1)π2<ʏπ2011-12sin2xdx<π2;(2)2e-14<ʏ20ex2-xdx<2e2.证明㊀(1)由积分中值定理,有π2<ʏπ2011-12sin2xdx=11-12sin2ξ㊃π2,其中ξɪ0,π2(),当ξɪ0,π2()时,有0<sin2ξ<1,从而1<11-12sin2ξ<2,因此有π2<ʏπ2011-12sin2ξdx<π2.证毕.(2)由定积分性质,有ʏ20ex2-xdx=ʏ120ex2-xdx+ʏ212ex2-xdx=12eξ21-ξ1+32eξ22-ξ2,其中ξ1ɪ0,12(),ξ2ɪ12,2(),又ex在-ɕ,+ɕ()上严格单调递增,而f(x)=x2-x在0,12[]上严格单调递减,在12,2[]上严格单调递增,所以,当ξ1ɪ0,12()时,e-14<eξ21-ξ1<1;当ξ2ɪ12,2()时,e-14<eξ22-ξ2<e2.从而12eξ21-ξ1+32eξ22-ξ2>12e-14+32e-14=2e-14,12eξ21-ξ1+32eξ22-ξ2<12+32e2<2e2,因此2e-14<ʏ20ex2-xdx<2e2.如果ξ取自任意闭区间,使得积分中值定理成立,则需要将例1的证明结果做进一步的讨论.由此可见,对积分中值定理进行改进或者推广对我们的学习很有帮助,当然,我们也要合理使用该定理,否则就会出现错误的结论.例2㊀证明:limnңɕʏ10xn1+xdx=0.如果利用积分中值定理,得ʏ10xn1+xdx=ξn1+ξ,其中ξɪ0,1(),从而limnңɕʏ10xn1+xdx=limnңɕʏ10ξn1+ξdx=0,这是错误的,因为ξ与n有关.正确的解法是:因为0ɤxn1+xɤxn,xɪ0,1[],所以0ɤʏ10xn1+xdxɤʏ10xndx,而ʏ10xndx=11+n,limnңɕ11+n=0,因此limnңɕʏ10xn1+xdx=0.证毕!ʌ参考文献ɔ[1]华东师范大学数学系.数学分析(第四版)[M].北京:高等教育出版社,2010.[2]黎金环,刘丽霞,朱佑彬.积分中值定理在一道极限题的应用分析[J].高等数学研究,2021(2).[3]同济大学数学教研室.高等数学[M].北京:高等教育出版社,1993.[4]郝玉芹,时立文,欧阳占瑞.对积分中值定理结论的一点改动[J].河北能源职业技术学院学报,2007(3).[5]周冰洁.巧用积分中值定理[J].现代职业教育,2019(31).[6]余小飞.积分中值定理在积分不等式中的应用[J].当代教育实践与教学研究,2017(8).。
二元函数的积分中值定理的探究
目录摘要 (I)关键词 (I)Abstract (II)Key words (II)前言 (1)1预备知识 (1)1.1相关定理 (1)2 多元函数积分中值定理的各种形式 (2)2.1 曲线积分中值定理的推广 (2)2.1.1第一型曲线积分中值定理 (2)2.1.2第二型曲线积分中值定理 (4)2.2二重积分中值定理的探究及推广 (5)2.3曲面积分中值定理的探究及推广 (7)2.3.1第一型曲面积分中值定理 (7)2.3.2第二型曲面积分中值定理 (7)结论 (9)参考文献 (10)致谢 (11)摘要:积分中值定理是数学分析的重要定理,我们主要讨论了二元函数的曲线、重积分、曲面的各种形式中值定理,而且还给出了这些定理的证明过程,最后总结出各类积分中值定理的形式.关键词:积分中值定理;第二中值定理;曲线积分中值定理;二重积分中值定理;曲面积分中值定理Study on mean-value theorems for Riemann-Stieltjes integrals offunctions of two variablesAbstract: Mean-value theorems for integrals are one of theorems in mathematical analysis. In this paper mean-value theorem for Riemann-Stieltjes integrals of functions of two variables are discussed. We obtain all kinds of mean-value theorems for integrals which include curvilinear, multiple and surface integrals. Finally, the proofs of mean-value theorems are given.Key word s: mean-value theorem integral; second mean-value theorems; curvilinear integral; multiple integrals; surface integrals二元函数的积分中值定理的探究前言积分中值定理是微积分中的一个重要定理,主要包含一元函数及多元函数的积分中值定理,它在数学分析中占有很重要的地位.但是许多文献,对于多元函数的曲线积分、曲面积分、重积分的中值定理的探究相对较少或相对浅略.基于这个理由,我们将借鉴一元函数的第一、第二积分中值定理的研究方法及思想,在文献[1-6]的基础上,主要讨论二元函数的积分中值定理在曲线、曲面、重积分情形上是否成立,通过研究该课题,进一步完善积分中值定理的相关理论.1预备知识1.1相关定理定理1[5]假设M 和m 分别为函数()f x 在区间[,]a b 上的最大值和最小值,且()f x 在区间[,]a b 上可积,则有()()()bam b a f x dx M b a -≤≤-⎰ ()a b <成立. 定理2[5](一元函数的介值性定理 ) 设函数()f x 在闭区间[,]a b 上连续.并且函数()f a 与()f b 函数不相等.如果μ是介于()f a 和()f b 之间的任何实数()()f a f b μ<<或()()f a f b μ>>,则至少存在一点0x ,使得0()f x μ=成立,其中0(,)x a b ∈. 定理3[5](二元函数的介值性定理)设函数f 在区域2D R ⊂上连续,若12,P P 为D 中任意两点,且12()()f P f P <,则对任何满足不等式12()()f P f P μ<<的实数μ,必存在点0p D ∈,使得0()f P μ=.定理4]3[(定积分中值定理)如果函数()f x 在闭区间[,]a b 上连续,则在区间[,]a b 上至少存在一个点ξ,使下式()()()baf x dx f b a ξ=-⎰()a b ξ≤≤成立.定理5]3[(推广的第一积分中值定理)如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在[,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰ ()a b ξ≤≤成立. 定理6]3[(积分第二中值定理)如果函数()f x 在闭区间[,]a b 上可积,而()g x 在区间(,)a b 上单调,则在[,]a b 上至少存在一点ξ,使下式成立()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰定义1[6]设平面光滑曲线L :(),(),[,]x x t y y t t αβ==∈,两端点为((),())A x y αα和((),())B x y ββ.若()x t 在[,]αβ上不变号,称曲线L 关于坐标x 是无反向的. 若()y t 在[,]αβ上不变号,称曲线L 关于坐标y 是无反向的.2 多元函数积分中值定理的各种形式受文献[1],文献[2]的启发,本文主要对曲线积分的三种形式,二重积分及曲面积分的三种形式的中值定理进行探讨.2.1 曲线积分中值定理的推广首先对曲线积分中值定理进行探讨,在本文中只讨论曲线C :(),(),[,]x x t y y t t αβ==∈为参数方程的情形,而对于曲线C 为直角坐标形式及其它形式的积分中值定理类似地可得到. 2.1.1(第一型曲线积分中值定理)定理7 如果函数(,)f x y 在光滑有界曲线C :(),(),[,]x x t y y t t αβ==∈上连续,则在曲线C 上至少存在一点(,)ξη.使(,)(,)Cf x y ds f S ξη=⎰成立,其中Cds ⎰为曲线C 的弧长,并且Cds S =⎰.证明 因为函数(,)f x y 在光滑有界闭曲线C 上连续,所以22(,)((),())()()Cf x y ds f x t y t x t y t dt βα''=+⎰⎰记 22()((),()),()()()F t f x t y t G t x t y t ''==+由已知条件知()F t 在[,]αβ上连续,()G t 在[,]αβ上连续且非负,则根据推广的第一积分中值定理,0[,]t αβ∃∈,00(,)((),())x t y t ξη=使2222(,)((),())()()(,)()()(,)Cf x y ds f x t y t x t y t dt f x t y t dt f S ββααξηξη''''=+=+=⎰⎰⎰成立.即(,)(,)Cf x y ds f S ξη=⎰从而命题得证.在数学分析等文献中仅仅阐述了定理7,而对两个函数乘积的曲线积分中值定理未提到,下面我们将对其探究证明,并进行推广.定理8]1[如果函数(,),(,)f x y g x y 在光滑有界曲线C (),(),[,]x x t y y t t αβ==∈上连续,(,)g x y 在C 上不变号,则在曲线C 上至少存在一点(,)ξη,使(,)(,)(,)(,)CCf x yg x y ds f g x y ds ξη=⎰⎰成立.证明 由于22(,)(,)((),())((),())()()Cf x yg x y ds f x t y t g x t y t x t y t dt βα''=+⎰⎰,由条件知,(,)g x y 在C 上不变号,则22((),())()()g x t y t x t y t ''+在[,]αβ上不变号,(,),(,)f x y g x y 又在C 上连续,由此可知22((),())((),())()()f x t y t g x t y t x t y t ''+在[,]αβ上也连续. 由定理7可知0[,]t αβ∃∈,使得00(,)((),())x t y t ξη=,有以下式子222200((),())((),())()()((),())((),())()()f x t y t g x t y t x t y t dt f x t y t g x t y t x t y t dt ββαα''''+=+⎰⎰成立. 即(,)(,)(,)(,)CCf x yg x y ds f g x y ds ξη=⎰⎰从而命题得证.定理9如果函数(,),(,)f x y g x y 在光滑有界闭曲线(,)C A B :(),()x x t y y t ==,[,]t αβ∈上连续可积,(,)g x y 在C 上不变号,其中min (,)m f x y =,max (,)M f x y =,其中(,)x y C ∈.则在曲线(,)C A B 上至少存在一点O ,把曲线(,)C A B 分为曲线1(,)C A O 和曲线2(,)C O B ,使得12(,)(,)(,)(,)(,)(,)CC A O C O B f x y g x y ds m g x y ds M g x y ds =+⎰⎰⎰成立.证明 由定理8知(,)(,)(,)(,)CCf x yg x y ds f g x y ds ξη=⎰⎰,记(,)f k ξη=,则有m k M <<.记12(,)(,)(,)(,)(,)C A O C O B CQ k g x y ds m g x y ds M g x y ds =--⎰⎰⎰Q 是关于点(,)O x y 的函数. (1)当(,)0Cg x y ds =⎰时,显然成立.(2)当(,)0Cg x y ds >⎰,当1C C =时, 则有1(,)(,)(,)()(,)C A O CCQ k g x y ds m g x y ds k m g x y ds =-=-⎰⎰⎰;由于0k m ->,,于是有1(,)(,)(,)()(,)0C A O CCQ k g x y ds m g x y ds k m g x y ds =-=->⎰⎰⎰即12(,)(,)(,)(,)(,)0C A O C O B CQ k g x y ds m g x y ds M g x y ds =-->⎰⎰⎰.当2C C =时, 则有1(,)(,)(,)()(,)C A O CCQ k g x y ds M g x y ds k M g x y ds =-=-⎰⎰⎰;由于0k M -<,(,)0Cg x y ds >⎰,于是有1(,)(,)(,)()(,)0C A O CCQ k g x y ds M g x y ds k M g x y ds =-=-<⎰⎰⎰,即12(,)(,)(,)(,)(,)0C A O C O B CQ k g x y ds m g x y ds M g x y ds =--<⎰⎰⎰.(3)当(,)0Cg x y ds <⎰,类似可讨论.综上由零点存在定理,则至少有一点O C ∈,使得0Q =,即12(,)(,)(,)(,)(,)0C A O C O B CQ k g x y ds m g x y ds M g x y ds =--=⎰⎰⎰即12(,)(,)(,)(,)(,)(,)CC A O C O B f x y g x y ds m g x y ds M g x y ds =+⎰⎰⎰从而命题得证.以上给出了二元函数的第一型曲线积分中值定理的三种形式及证明,而我们仅仅讨论了曲线C 形如(),(),[,]x x t y y t t αβ==∈的情形,对于直角坐标的情形,是否也能得到类似的三个定理,类似可讨论.2.1.2(第二型曲线积分中值定理)第二型曲线积分中值定理定理是否成立,接下来我们对其进行探讨. 如果成立,则有如下命题.函数(,)f x y 在光滑有向曲线C 上连续,其中I 为光滑有向曲线C 在x 轴正向上的投影,其中符号“±”是由曲线C 的方向确定的,则在曲线C 上至少存在一点(,)ξη,使得(,)(,)Cf x y dx f I ξη=±⎰(1)成立.但有如下例子,设(,)f x y y =,曲线C 为圆,方程为222x y y +=.如图1图1 由积分的对称性知0C I dx -==⎰,可得(,)0f I ξη±=,而0Cy d x π=-≠⎰,故不可能存在点(,)C ξη∈使(1)成立.于是第二型曲线积分中值定理在此不成立.由此可见第二型曲线积分中值定理一般不成立,下面我们探讨特殊形式的第二型曲线积分中值定理. 定理10]1[设(,)P x y ,(,)Q x y 在定向光滑曲线L 上连续,曲线L 上任意一点(,)x y 处与L 方向一致的切线方向与x 轴余弦为cos α,且(,)Q x y 在曲线L 上不变号,则在L 至少存在一点(,)ξη,O X Y 1使得(,)(,)(,)(,)LLP x y Q x y dx P Q x y dx ξη=⎰⎰证明 因为(,)(,)(,)(,)cos LLP x y Q x y dx P x y Q x y ds α=⎰⎰且(,)P x y ,(,)Q x y 在L 上连续,(,)cos Q x y α在曲线L 上不变号,由于曲线L 光滑,从而cos α在线L 上连续,由定理8知,存在(,)L ξη∈,使得(,)(,)cos (,)(,)cos (,)(,)LLLP x y Q x y ds P Q x y ds P Q x y dx αξηαξη==⎰⎰⎰即(,)(,)(,)(,)LLP x y Q x y dx P Q x y dx ξη=⎰⎰从而命题得证. 定理11[6]设曲线L 关于坐标x 是无反向的,(,)f x y ,(,)g x y 为定义在L 上的二元函数,满足(,)f x y ,(,)g x y 沿曲线L 从A 到B 关于坐标x 第二型可积,(,)f x y 在L 上是可介值的,(,)g x y 在L 上不变号.则至少存在一点(,)P L ξη∈,,P A B ≠,使得(,)(,)(,)(,)LLf x yg x y dx f g x y dx ξη=⎰⎰成立.证明过程参考文献[6].推论1设曲线L 关于坐标x 是无反向的,(,)f x y 为定义在L 上的二元函数, (,)f x y 在L 上是可介值的.则至少存在一点(,)P L ξη∈,,P A B ≠,使得(,)(,)LLf x y dx f dx ξη=⎰⎰成立.即(,)(,)Cf x y dx f I ξη=±⎰I 为光滑有向曲线C 在x 轴正向上的投影.类似的,可以推广到对坐标y 的曲线积分以及空间曲线积分上的情形.2.2二重积分中值定理的探究及推广下面给出二重积分中值定理的三种形式.定理12假设函数(,)f x y 在有界是D 的面积,则在D 上至少存在一点(,)ξη使得(,)(,)DDf x y ds f ds ξη=⎰⎰⎰⎰成立.证明 由于函数(,)f x y 在闭区域D 上连续,假设(,)f x y 在闭区域D 上的最大值和最小值分别为,M m ,即(,)m f x y M ≤≤.对不等式在区域D 上进行二重积分可得,(,)DDDmds f x y ds Mds ≤≤⎰⎰⎰⎰⎰⎰即(,)DDDm ds f x y ds M ds ≤≤⎰⎰⎰⎰⎰⎰其中Dds ⎰⎰为闭区域D 的面积,我们不妨记Dds σ=⎰⎰.有 (,)Dm f x y ds M σσ≤≤⎰⎰由于0σ≠,将不等式除以σ可得1(,)Dm f x y ds M σ≤≤⎰⎰ 由于函数(,)f x y 在闭区域D 上连续,由二元函数的介值性定理知,则在D 上至少存在一点(,)ξη使得1(,)(,)Df x y ds f ξησ=⎰⎰ 成立.将上式两边同乘以σ即可得到(,)(,)DDf x y ds f ds ξη=⎰⎰⎰⎰从而命题得证.定理13假设函数(,)f x y 在闭区域D 上连续,(,)g x y 在D 上可积且不变号,其中σ是D 的面积,则在D 上至少存在一点(,)ξη使得(,)(,)(,)(,)DDf x yg x y ds f g x y d ξησ=⎰⎰⎰⎰成立.证明 不妨设(,)0((,))g x y x y D ≥∈由于函数(,)f x y 在闭区域D 上连续,(,)f x y 在闭区域D 上的最大值和最小值分别为,M m ,即(,)m f x y M ≤≤,从而(,)(,)(,)(,)DDDm g x y dxdy f x y g x y dxdy M g x y dxdy ≤≤⎰⎰⎰⎰⎰⎰若 (,)0Dg x y dxdy =⎰⎰则(,)(,)0Df x yg x y dxdy =⎰⎰成立.即对任意(,)D ξη∈,等式成立; 若(,)0Dg x y dxdy >⎰⎰(,)(,)(,)DDf x yg x y dxdym M g x y dxdy≤≤⎰⎰⎰⎰由二元函数的介值性定理,存在(,)D ξη∈. 使得(,)(,)(,)(,)DDf x yg x y dxdyf g x y dxdyξη=⎰⎰⎰⎰即(,)(,)(,)(,)DDf x yg x y ds f g x y d ξησ=⎰⎰⎰⎰从而命题得证.定理14假设函数(,)f x y 在闭区域D 上连续,(,)g x y 在D 上可积且不变号,其中σ是D 的面积,存在两个区域满足12D D D ⋃=,12D D ⋂=∅,(,)f x y 在1D ,2D 上都可积,记min (,)m f x y =,max (,)M f x y =,其中(,x y D ∈).则有12(,)(,)(,)(,)DD D f x y g x y ds m g x y d M g x y d σσ=+⎰⎰⎰⎰⎰⎰成立.证明参照定理9的方法及思想即可以得到.2.3曲面积分中值定理的探究及推广下面分别给出第一型曲面积分与第二型曲面积分中值定理的几种形式. 2.3.1(第一型曲面积分中值定理)定理15设D 为xoy 平面上的有界闭区域,其中(,)z z x y =为光滑曲面S ,并且函数(,,)f x y z ,(,,)g x y z 在S 上连续,(,,)g x y z 在S 上不变号,则在曲面S 上至少存在一点(,,)ξηζ,使(,,)(,,)(,,)(,,)SSf x y zg x y z dS f g x y z ds ξηδ=⎰⎰⎰⎰成立,其中A 是曲面S 的面积.证明 因为22(,,)(,,)(,,(,))(,,(,))1x y SDf x y zg x y z dS f x y z x y g x y z x y z z d σ''=++⎰⎰⎰⎰因为(,,)f x y z ,(,,)g x y z 在曲面S 上连续,可得22(,,(,))(,,(,))1x y f x y z x y g x y z x y z z ''++在D 上也连续,由于(,,)g x y z 在S 上不变号,所以22(,,(,))1x y g x y z x y z z ''++在D 上不变号.由二重积分的中值定理(定理13),可知存在(,)D ξη∈,使得(,)z δξη=,且2222(,,(,))(,,(,))1(,,(,))(,,(,))1x y x y DDf x y z x yg x y z x y z z d f z g x y z x y z z d σξηξησ''''++=++⎰⎰⎰⎰(,,(,)(,,)(,,)(,,)SSf zg x y z ds f g x y z ds ξηξηξηδ==⎰⎰⎰⎰从而命题得证.推论2 设D 为xoy 平面上的有界闭区域,其中(,)z z x y =为光滑曲面S ,并且函数(,,)f x y z ,在S 上连续,在S 上不变号,则在曲面S 上至少存在一点(,,)ξηζ,使(,,)(,,)Sf x y z dS f A ξηδ=⎰⎰成立,其中A 是曲面S 的面积.定理16设D 为xoy 平面上的有界闭区域,其中(,)z z x y =为光滑曲面S ,并且函数(,,)f x y z ,(,,)g x y z 在S 上连续,(,,)g x y z 在S 上不变号,存在两个光滑曲面满足12S S S ⋃=,12S S ⋂=∅,(,,)f x y z 在1S ,2S 上都可积,记m i n (,,m f x y z =,max (,,)M f x y z =.其中(,,)x y z S ∈则有12(,,)(,,)(,,)(,,)SS S f x y z g x y z dS m g x y z ds M g x y z ds =+⎰⎰⎰⎰⎰⎰成立.证明方法参照定理9.在这里我们证明了第一型曲面积分的积分中值定理的几种类型,并进行了推广探究,得到了相关的定理.2.3.2(第二型曲面积分中值定理)接下来我们对第二型曲面积分的积分中值定理是否成立?以及有几种类型进行探讨. 若成立,则有如下面命题.若有光滑曲面:(,),(,)yz S z x y x y D ∈,其中yz D 是有界闭区域,函数(,,)f x y z 在S 上连续,A 是S 的投影yz D 的面积,由此在曲面S 上至少存在一点(,,)ξηζ,使(,,)(,,)S f x y z dydz f A ξηζ=±⎰(2)成立.但有如下例子, 设S 是2221x y z ++=在0z ≥的部分,并取球面外侧为正,把曲面表示为参量方程sin cos x ϕθ=,sin sin y ϕθ=,cos z ϕ= ,02)2πϕθπ≤≤≤≤(0可得 2(,)sin cos (,)yy y z A zz ϕθϕθϕθϕθ∂∂∂∂∂===∂∂∂∂∂ 他们在yz 平面上的投影区域如图2,图2可知222200(,)sin cos sin cos 0(,)S D D y z A dydz d d d d d d ϕθϕθππϕθϕθϕθϕϕθθϕθ-∂=====∂⎰⎰⎰⎰⎰⎰⎰⎰,从而(,,)0f A ξηζ±=,取3(,,)f x y z x =,则有254542002(,,)sin cos sin cos 05S D f x y z dydz d d d d ϕθππϕθϕθϕϕθθπ===≠⎰⎰⎰⎰⎰⎰. 故曲面S 上不存在一点(,,)ξηζ,使(2)成立. 于是第二型曲面积分中值定理在此不成立.由此可见第二型曲面积分中值定理一般不成立,下面我们探讨特殊形式的第二型曲面积分中值定理.定理17[1]设(,,)F x y z ,(,,)Q x y z 在定侧光滑曲面S :(,)z z x y =,(,)x y D ∈上连续,(,,)Q x y z 在S 上不变号,则在S 上至少存在一点(,,)ξηζ,使得(,,)(,,)(,,)(,,)S SF x y z Q x y z dxdy F Q x y z dxdy ξης=⎰⎰⎰⎰ 证明 不妨设曲面S :(,)z z x y =,(,)x y D ∈取上侧,曲面S 上点(,,(,))x y z x y 处外法向量的方向角为α,β,γ,则221cos 1x y z z γ=''++,(,,)(,,)(,,)(,,)cos S SF x y z Q x y z dxdy F x y z Q x y z dS λ=⎰⎰⎰⎰ 由于(,,)F x y z ,(,,)Q x y z 在定侧光滑曲面S 上连续,(,,)Q x y z 在S 上不变号,曲面S 光滑,从而(,,)cos Q x y z γ在曲面S 上连续不变号,由定理15知,在曲面S 上至少存在一点(,,)ξηζ,使得(,,)(,,)cos (,,)(,,)cos S SF x y z Q x y z dS F Q x y z dS γξηςγ=⎰⎰⎰⎰ 又由于 (,,)(,,)cos (,,)(,,)S S F Q x y z dS F Q x y z dxdy ξηςγξης=⎰⎰⎰⎰即(,,)(,,)(,,)(,,)S SF x y z Q x y z dxdy F Q x y z dxdy ξης=⎰⎰⎰⎰ 从而命题得证. 结论本论文主要介绍了二元函数的曲线、曲面以及重积分的各类积分中值定理.另外,曲线积分中值定理的坐标形式,三元及三元以上函数的积分中值定理在此论文中未进行探究,望大家继续研究这些问题,进一步完善积分中值定理.参考文献[1]杜红霞.曲线积分与曲面积分中值定理[J].赣南师范学院报,2006,6:1-2.[2]冯美强.关于积分中值定理的改进[J].北京机械工业学院学报,2007,22(4):1-4.[3]皱成.二重积分中值定理的改进[J].石河子大学学报,2006,24(5):1-4.[4]王旭光.二重积分中值定理的推广[J].徐州师范大学,2007,23(4):1-6.[5]华东师范大学数学系.数学分析下册[M].高等教育出版社,2001:197-288.[6]唐国吉.第二型曲线积分中值定理[J].广西民族大学,2008,23:1-6.致谢本论文是在我的导师李云霞教授的亲切关怀和悉心指导下完成的,她严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我 .在论文即将完成之际,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚的谢意!最后我还要感谢培养我长大含辛茹苦的父母,谢谢你们!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n n
x
解 利用中值定理,得
因为 f x sin x 在 n, n p上连续,由积分中值定理得
x
n p sin xdx sin p, n, n p
nx
当 n 时, ,而| sin | 1.
故
lim n p sin xdx = lim sin .p =0.
n n
x
例 7 求 lim 2 sin n xdx . n 0
解 若直接用中值定理
lim
2
sin n xdx
=
sin n
,
n 0
2
因为 0 而不能严格断定 sin n x 0 ,其症结在于没有排除,故采取下列措施 2
第 5 页 共 10 页
lim
n
2 sin n xdx =
0
2
sin
n
xdx
+
0
2
sin
n
xdx
.
2
其中 为任意小的正数.
对第一积分中值定理使用推广的积分第一中值定理,有
lim
2
s
in
n
xdx
.
n 0
= lim sin n 0 , 0 .
n 2
2
2
而第二个积分
2
sin n
xdx
2
sin n
x dx
2
dx
=
,
2
2
2
由于 得任意性知其课任意小.
所以
lim
n
2 ቤተ መጻሕፍቲ ባይዱin n xdx =
b
a
f xdx
f
b a, a
b.
证明 由于 f x 在区间[a,b]上连续,因此存在最大值 M 和最小值 m .由
使用积分不等式性质得到 或
m f x M , x [a,b] ,
mb
a
b
a
f
xdx
M
b
a,
m
b
1
a
b
a
f
xdx
M
.
再由连续函数的介值性,至少存在一点 a,b,使得
f
b
1
a
1 引言
积分中值定理是数学分析中的主要定理之一,同时也是定积分的一个主要性质,它建立了积分和被 积函数之间的关系,从而我们可以通过被积函数的性质来研究部分的性质,有较高的理论价值和广泛应 用.本文就其在解题中的应用进行讨论.
2 预备知识
定理 2.1[1] (积分第一中值定理) 若 f x 在区间[a,b]上连续,则在[a,b]上至少存在一点 使得
可考虑用广义积分中值定理.如果在证明如 11 和 12 例题时,可以根据估计定积分的值在证明比较简
单方便.
3.7 证明函数的单调性
例
14
设函数
f
x
在
0,
上连续,
F
x
k
0
x
2t
f
t
dt
,试证:在
0,
内,若
f x
为非减函数,则 Fx 为非增函数.
证明
Fx
k
0
x
2t f
t dt
k
x0
f
t dt
k
20
tf
3.5 证明中值 的存在性命题
例 9 设函数 f x 在0,1上连续,在 0,1内可导,且
第 6 页 共 10 页
1
32
f
xdx
f
0,证明
0,1,使
f
0,
3
证明 由积分中值定理得
f
0
1
32
3
f xdx
31
2 f
3
f ,(其中 2
3
1)
又因为 f x 在0,1上连续,在 0,1内可导.
第 7 页 共 10 页
若 gx 0 ,则
本题中令
b
ma
gxdx
b
a
f
xgxdx
M
b
a
gxdx
.
f x 1 , gx x9 0
1 x
0 x 1.
因为
1 1 1 2 1 x
x 0,1
所以
1 1 1 x9dx 1 x9 dx 1 x9dx 1 .
10 2 2 0
0 1 x
0
0 x3e xdx +
3 x3e x dxx =
3
t
3
et d
t
+
3 x3e xdx =
0 t 3et dt +
3 x3e xdx
3
3
0
0
0
3
0
=- 3 t 3et dt + 3 x3e x dx
0
0
= 3 x3 e x ex dx 0
利用积分中值定理,得
3 x3e x dx = 3 3 e e 0.(其中 0 3) 3
毕业论文题目积分中值定理在数学分析中的应用学生姓名李正邦学号0609014168所在院系数学系专业班级数学与应用数学专业2006级5班指导教师李金龙完成地点陕西理工学院2010年5月30日数学分析优秀论文之中值定理的讨论徐晓萌云南师范大学学院数学系数学与应用数学专业2011级5班云南昆明084080034指导老师
0
2
sin
n
xdx
+
0
2
sin
n
xdx
=0.
2
注 求解其类问题的关键是使用积分中值定理去掉积分符号.在应用该定理时,要注中值 不仅依
赖于积分区间,而且还依赖于根式中自变量 n 的趋近方式.
3.4 确定积分的符号
例 8 确定积分 3 x3e x dx 的符号. 3
解
3 x3e xdx =
20
证明
1 x19 dx 1
1 x19dx 1
1.
0 3 1 x6
3 1 6 0
20 3 1 6
其中 0,1,于是由 1 1 1 即可获证.
3 2 3 1 6
例 11 证明 2 1
dx
1.
3 0 2 x x2 2
证明
m ,则
因为
估计连续函数的积分值 b f xdx 的一般的方法是求 f x 在 a,b的最大值 M 和最小值 a
故 f x 在0,上满足罗尔定理条件,可存在一点 0, 0,1 ,使 f 0 .
注 在证明有关题设中含有抽象函数的定积分等式时,一般应用积分中值定理求解,掌握积分中 值定理在解此类问题时至关重要,是我们必须要好好掌握的. 3.6 证明不等式
例 10 求证
1
1
x19 dx 1 .
203 2 0 3 1 x6
2
2 0
a1 cos d
a 2
sin |02
a.
注 在解某区间上一个函数的平均值时,我们只需要在这个区间上对这个函数进行积分,然后积
分结果除以区间的差值.在这里主要是应用了积分第一中值定理,所以求解其类问题时,一定要理解
积分中值定理的定义.
3.2 估计定积分的值
例 3 估计 1 x19 dx 的值.
下面就就其应用进行讨论.
3.1 求函数在一个区间上的平均值
例 1 试 f x sin x 求在0, 上的平均值.
解
平均值 f 1
0
sin
xdx
1
c os x
|0
2
.
例 2 试求心形线 r a1 cos ,0 2 上各点极经的平均值.
第 3 页 共 10 页
解
平均值 r 1
mb
a
b
a
f
xdx
M
b
a.
2 2 x x2 9 x 1 2 3 x 0,1,
4 2 2
所以
2 1
dx
1.
3 0 2 x x2 2
例 12 证明
1
1
x9
dx 1 .
10 2 0 1 x 10
证明 估计积分 b f xgxdx 的一般的方法是:求 f x 在 a,b的最大值 M 和最小值 m ,又 a
0,
2
g xdx
2
sin
xdx
0,
2
2
2
,
2
,
使
2
f xgxdx
f
2
gxdx.
2
2
(3) 定理中所指出的 并不一定是唯一的,也不一定必须是 a,b的内点.
例如
令 f x 1, x a,b,则对 a,b, 都有
b
a
f xdx
f b a,
这也说明了 未必在区间 a,b的内点.
但
4
,
4
在上,
f
x
0 ,所以,对任何
4
,
4
都不能使
4
f xdx
2 f .
4
(2) 定理中的在区间上不变号这个条件也不能去掉.
例如 令
由于 但 所以,不存在
f
x
sin
x,
gx
sin
x,
x
2
,
2
,
2 2
f xgxdx
2 2
sin 2 xdx
1 2
x
sin
x cosx |2 2
mgx f xgx Mgx,
其中 m , M 分别为 f x 在 a,b上的最小值和最大值,则有
b
ma
gxdx
b
a
f
xgxdx
M