三角函数tan公式总结
三角函数原函数公式大全

三角函数原函数公式大全1. 正弦函数的原函数:sin(x) = 1/2 + arcsin[1/(2√(1 - x²))] - arcsin[1/(2√(1 - x²))]2. 余弦函数的原函数:cos(x) = √(1 - sin²(x)) = √(cos²(x) - sin²(x)) - arccos(sin(x)) + arccos(sin(x))3. 正切函数的原函数:tan(x) = (1 + sin(x)cot(x)) / (1 - sin(x)cot(x))4. 余切函数的原函数:cot(x) = (1 - sin(x)cot(x)) / (1 + sin(x)cot(x))5. 正割函数的原函数:sec(x) = 1 / cos(x) + arccos(sin(x))6. 余割函数的原函数:csc(x) = 1 / sin(x) + arccsc(sin(x))7. 反正弦函数的原函数:arcsin(x) = x + arccos(-x)8. 反余弦函数的原函数:arccos(x) = x - arccos(-x)9. 反正切函数的原函数:arctan(x) = x - arctan(-x)10. 反余切函数的原函数:arccot(x) = x + arccot(-x)11. 反正割函数的原函数:arccsc(x) = 1 / (sin(x) + arccos(-x))12. 反余割函数的原函数:arccsc(x) = 1 / (sin(x) + arccos(-x))以上三角函数原函数公式仅供参考,需自己再仔细进行总结。
tanx的三角形公式

tanx的三角形公式tanx的三角形公式是数学中常见的三角函数公式之一,它描述了正切函数tan(x)与角度x之间的关系。
在三角学中,正切函数是一个重要的函数,它在实际问题中有广泛的应用。
正切函数是指在直角三角形中,对于一个角x,其对边与邻边的比值。
这个比值可以用tan(x)来表示,即tan(x) = 对边/邻边。
在三角形中,tan(x)的取值是有范围的,它不是在所有角度上都有定义的。
正切函数的定义域是所有不等于(2n + 1)π/2的实数,其中n是整数。
也就是说,tan(x)的定义域是(-∞, (2n + 1)π/2)∪(2nπ/2, +∞),其中n是整数。
正切函数的值域是所有实数,即(-∞, +∞)。
这意味着正切函数可以取任何实数作为它的函数值。
正切函数的图像是周期性的,它以π为一个周期。
也就是说,tan(x + π) = tan(x),对于任意实数x。
这意味着正切函数的图像在每个周期内都是重复的。
正切函数的图像有一些特点。
首先,当角度x等于0时,tan(x)等于0。
其次,在某些特定的角度上,tan(x)的值会变得无穷大。
例如,当角度x等于π/2时,tan(x)的值是正无穷大;当角度x等于-π/2时,tan(x)的值是负无穷大。
此外,tan(x)的图像还有一些对称性质,即tan(-x) = -tan(x),对于任意实数x。
在实际问题中,正切函数有许多应用。
例如,它可以用来计算物体的高度、角度的测量、天体的运动等。
在三角测量中,正切函数可以用来计算两个不相邻边之间的角度。
在物理学中,正切函数可以用来描述运动物体的位置与时间之间的关系。
在工程学中,正切函数可以用来计算斜坡的坡度、建筑物的高度等。
总结一下,tanx的三角形公式是数学中的一个重要公式,它描述了正切函数tan(x)与角度x之间的关系。
正切函数在数学和实际问题中都有广泛的应用,可以帮助我们解决各种问题。
了解和掌握正切函数的性质和应用,对于学习数学和应用数学是非常重要的。
三角函数弦切互化公式总结

三角函数弦切互化公式总结sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的.对边倍角公式sin2a=2sina?cosatan2a=(2tana)/(1-tana^2)(注:sina^2 是sina的平方 sin2(a) )sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中sint=b/(a^2+b^2)^(1/2)cost=a/(a^2+b^2)^(1/2)tant=b/aasinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=3sina-4sinacos3a=cos(2a+a)=cos2acosa-sin2asina=(2cosa-1)cosa-2(1-sina)cosa=4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4sina[(√3/2)-sina]=4sina(sin60°-sina)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa[cosa-(√3/2)]=4cosa(cosa-cos30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式较之可以得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(a/2)=(1-cosa)/sina=sina/(1+cosa);cot(a/2)=sina/(1-cosa)=(1+cosa)/sina.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tana+tanb=sin(a+b)/cosacosb=tan(a+b)(1-tanatanb) tana-tanb=sin(a-b)/cosacosb=tan(a-b)(1+tanatanb)积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ= [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtana= sina/cosatan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可 (4)对于任意非直角三角形,总有tana+tanb+tanc=tanatanbtanc证:a+b=π-ctan(a+b)=tan(π-c)(tana+tanb)/(1-tanatanb)=(tanπ-tanc)/(1+tanπtanc)整理可得tana+tanb+tanc=tanatanbtanc得证同样可以初等矩阵,当x+y+z=nπ(n∈z)时,该关系式也设立由tana+tanb+tanc=tanatanbtanc可得出以下结论(5)cotacotb+cotacotc+cotbcotc=1(6)cot(a/2)+cot(b/2)+cot(c/2)=cot(a/2)cot(b/2)cot(c/2)(8)(sina)^2+(sinb)^2+(sinc)^2=2+2cosacosbcosc(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanatanbtan(a+b)+tana+tanb-tan(a+b)=0三角形与三角函数1、正弦定理:在三角形中,各边和它面元的角的正弦的比成正比,即a/sina=b/sinb=c/sinc=2r 。
tan角和公式

tan角和公式一、什么是tan角?在数学中,tan角是三角函数中的一种,表示一个角的正切值。
tan 角的定义如下:tan角 = 相对于直角边的长度之比,即tan角 = 直角边的长度/邻边的长度。
在直角三角形中,tan角可以用来表示斜边与邻边之间的关系。
它是一个比值,可以帮助我们计算角度的大小。
二、tan角的性质1. 周期性:tan角的值在每个周期内重复。
一个周期的长度是180°或π弧度。
因此,tan(θ) = tan(θ ± n × 180°)或tan(θ) = tan(θ ± n × π),其中n为整数。
2. 正负性:tan角的值可以是正数、负数或零,具体取决于角度所在的象限。
- 在第一象限(0° < θ < 90°)和第三象限(180° < θ < 270°)中,tan角是正数。
- 在第二象限(90° < θ < 180°)和第四象限(270° < θ < 360°)中,tan角是负数。
3. 无定义点:当角度为90°或270°时,tan角的值无定义。
这是因为此时邻边的长度为零,无法计算比值。
三、tan角的计算方法tan角的计算可以通过查表或使用计算器来完成,但也有一些常见的tan角公式可以帮助我们快速计算。
1. tan(A + B)的公式:tan(A + B) = (tanA + tanB) / (1 - tanA * tanB)这个公式可以帮助我们计算两个角的和的tan值,其中A和B为任意角度。
2. tan(2A)的公式:tan(2A) = 2 * tanA / (1 - tan^2A)这个公式可以帮助我们计算一个角的两倍角的tan值。
3. tan(A - B)的公式:tan(A - B) = (tanA - tanB) / (1 + tanA * tanB)这个公式可以帮助我们计算两个角的差的tan值。
正切余切正弦余弦公式

正切余切正弦余弦公式
正切tanA=对边/邻边;余切cotA=邻边/对边;正弦sinA=对边/斜边;余弦cosA=邻边/斜边。三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数相关公式
积化和差
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+anB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
三角函数公式大全

三角函数十组诱导公式公式一公式二sin(2kπ+x)=sin x cos(2kπ+x)=cos x tan(2kπ+x)=tan x cot(2kπ+x)=cot x sec(2kπ+x)=sec x csc(2kπ+x)=csc x sin(π+x)=-sin x cos(π+x)=-cos x tan(π+x)=tan x cot(π+x)=cot x sec(π+x)=-sec x csc(π+x)=-csc x公式三公式四sin(-x)=-sin x cos(-x)=cos x tan(-x)=-tan x cot(-x)=-cot x sec(-x)=sec x csc(-x)=-csc x sin(π-x)=sin x cos(π-x)=-cos x tan(π-x)=-tan x cot(π-x)=-cot x sec(π-x)=-sec x csc(π-x)=csc x公式五公式六sin(x-π)=-sin x cos(x-π)=-cos x tan(x-π)=tan x cot(x-π)=cot x sec(x-π)=-sec x csc(x-π)=-csc x sin(2π-x)=-sin x cos(2π-x)=cos x tan(2π-x)=-tan x cot(2π-x)=-cot x sec(2π-x)=sec x csc(2π-x)=-csc x公式七公式八sin(π/2+x)=cosx cos(π/2+x)=−sinx tan(π/2+x)=-cotx cot(π/2+x)=-tanx sec(π/2+x)=-cscx csc(π/2+x)=secx sin(π/2-x)=cosx cos(π/2-x)=sinx tan(π/2-x)=cotx cot(π/2-x)=tanx sec(π/2-x)=cscx csc(π/2-x)=secx公式九公式十sin(3π/2+x)=-cosx cos(3π/2+x)=sinx tan(3π/2+x)=-cotx cot(3π/2+x)=-tanx sec(3π/2+x)=cscx csc(3π/2+x)=-secx sin(3π/2-x)=-cosx cos(3π/2-x)=-sinx tan(3π/2-x)=cotx cot(3π/2-x)=tanx sec(3π/2-x)=-cscx csc(3π/2-x)=-secx两角和差设A(cosα,sinα),B (cosβ,sinβ),O(0,0)∴=(cosα,sinα),=(cosβ,sinβ)∴·=|| || cos (α-β) =coα cosβ + sinα sinβ∴cos(α-β)=cosαcosβ+sinαsinβ取β=-β,可得cos(α+β)=cosαcosβ-sinαsinβ和差化积积化和差二倍角公式三倍角公式sin(3α)=3sinα-4sin3α=4sinα·sin(60°+α)sin(60°-α)cos(3α)=4cos3α-3cosα=4cosα·cos(60°+α)cos(60°-α)tan(3α)=(3tanα-tan3α)/(1-3tan²α)=ta nα·tan(π/3+α)tan(π/3-α)cot(3α)=(cot3α-3cotα)/(3cot²α-1)倍角公式根据欧拉公式(cosθ+isinθ)n=cosnθ+isinnθ将左边用二项式定理展开分别整理实部和虚部可以得到下面两组公式sin(nα)=ncos n-1α·sinα-Cn 3cos n-3α·sin3α+Cn5cos n-5α·sin5α-…cos(nα)=cos nα-Cn 2cos n-2α·sin2α+Cn4cos n-4α·sin4α-…半角公式sin(α/2)=±√[(1-cosα)/2]cos(α/2)=±√[(1+cosα)/2]tan(α/2)=±√[(1-cosα)/(1+cosα)]=sinα/(1+cosα)=(1-cosα)/sinα=cscα-cotαcot(α/2)=±√[(1+cosα)/(1-cosα)]=(1+cosα)/sinα=sinα/(1-cosα)=cscα+cotαsec(α/2)=±√[(2secα/(secα+1)]csc(α/2)=±√[(2secα/(secα-1)]辅助角公式万能公式sinα=[2tan(α/2)]/[1+tan²(α/2)]cosα=[1-tan²(α/2)]/[1+tan²(α/2)]tanα=[2tan(α/2)]/[1-tan²(α/2)]三角函数降幂公式sin²α=[1-cos(2α)]/2cos²α=[1+cos(2α)]/2tan²α=[1-cos(2α)]/[1+cos(2α)]三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·ta nα)泰勒展开式sin x = x-x3/3!+x5/5!-……+(-1)(k-1)(x(2k-1))/(2k-1)!+…… (-∞<x<∞)cos x = 1-x2/2!+x4/4!-……+(-1)k(x(2k))/(2k)!+…… (-∞<x<∞)arcsinx=x+x3/(2·3)+(1·3)x5/(2·4·5)+1·3·5(x7)/(2·4·6·7)……(2k+1)/(2k!!(2k+1))+……(|x|<1) (!!表示双阶乘) +(2k+1)!!·xarccosx=π/2-(x+x3/(2·3)+(1·3)x5/(2·4·5)+1·3·5(x7)/(2·4·6·7)……)(|x|<1)arctan x = x - x3/3 + x5/5 -……(x≤1)sinh x = x+x3/3!+x5/5!+……+(x(2k-1))/(2k-1)!+…… (-∞<x<∞)cosh x = 1+x2/2!+x4/4!+……+(x(2k))/(2k)!+……(-∞<x<∞)arcsinh x =x - x3/(2·3) + (1·3)x5/(2·4·5) -1·3·5(x7)/(2·4·6·7)……(|x|<1)arctanh x = x + x3/3 + x5/5 + ……(|x|<1)导数y=sinx→y'=cosxy=cosx→y'=-sinxy=tanx→y'=1/cos²x =sec²xy=cotx→y'= -1/sin²x= - csc²xy=secx→y'=secxtanxy=cscx→y'=-cscxcotxy=arcsinx→y'=1/√(1-x²)y=arccosx→y'= -1/√(1-x²)y=arctanx→y'=1/(1+x²)y=arccotx→y'= -1/(1+x²)三角函数指数形式sinz=[e iz-e-iz]/(2i)cosz=[e iz+e-iz]/2tanx=[e iz-e-iz]/[ie iz+ie-iz]复数三角函数sin(a+bi)=sinacosbi+sinbicosa =sinachb+ishbcosacos(a-bi)=cosacosbi+sinbisina =cosachb+ishbsinatan(a+bi)=sin(a+bi)/cos(a+bi) cot(a+bi)=cos(a+bi)/sin(a+bi) sec(a+bi)=1/cos(a+bi)csc(a+bi)=1/sin(a+bi)正弦定理S=½absinC=½bcsinA=½acsinB余弦定理a² = b² + c²- 2bc·cosAb² = a² + c² - 2ac·cosBc² = a² + b² - 2ab·cosCcosC=(a² +b² -c²)/ 2abcosB=(a² +c² -b²)/ 2accosA=(c² +b² -a²)/ 2bc延伸定理:第一余弦定理a=b·cos C+c·cos B, b=c·cos A+a·cos C, c=a·cos B+b·cos A 正切定理(a+b)/(a-b) = tan[(A+B)/2]/tan[(A-B)/2]三角恒等式tanA+tanB+tanC=tanAtanBtanC (A+B+C=π)当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ 三角函数记忆口诀三角函数是函数,象限符号坐标注。
关于高中数学《三角函数》公式总结(优秀5篇)
关于高中数学《三角函数》公式总结(优秀5篇)三角函数公式篇一tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosα()sin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0高中数学反三角函数公式总结篇二y=arccot(x),定义域(-∞,+∞),值域(0,π)。
三角函数公式大全
三角函数公式大全三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA2-Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A+tan(2A )=AA cos 1cos 1+- cot(2A )=AAcos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb =21[cos(a+b)+cos(a-b)] sinacosb =21[sin(a+b)+sin(a-b)] cosasinb =21[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sinasin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan2a a+ cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a - 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sinh(a)=2e -e -a acosh(a)=2e e -a a tg h(a)=)cosh()sinh(a a 公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -co tα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosαcos (2π+α)= -sinα tan (2π+α)= -cotαcot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinαπ-α)= cotα tan(2π-α)= tanα cot(23π+α)= -cosα sin(23π+α)= sinα cos(23π+α)= -cotα tan(23π+α)= -tanα cot(23π-α)= -cosα sin(23π-α)= -sinα cos(23π-α)= cotα tan(23π-α)= tanα cot(2(以上k∈Z)。
三角函数公式大全
三角函数公式大全三角函数是数学中重要的一个分支,主要研究三角形和三角形函数的相关性质。
下面总结了一些常用的三角函数公式,以便记忆和应用。
1. 正弦函数(Sine Function):正弦是三角函数中最基本的一个函数,记为sin(x)。
其定义域为所有实数,值域为[-1, 1]。
常用公式:sin(α ± β) = sinαcosβ ± cosαsinβsin(2α) = 2sinαcosα1 + sin^2α = cos^2α2. 余弦函数(Cosine Function):余弦是正弦的补函数,记为cos(x)。
其定义域为所有实数,值域为[-1, 1]。
常用公式:cos(α ± β) = cosαcosβ ∓ sinαsinβcos(2α) = cos^2α - sin^2α1 + cos^2α = sin^2α3. 正切函数(Tangent Function):正切是正弦与余弦的比值,记为tan(x)。
其定义域为除去使得cos(x) = 0的所有实数,值域为(-∞, +∞)。
常用公式:tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)tan(2α) = 2tanα / (1 - tan^2α)4. 余切函数(Cotangent Function):余切是正切的倒数,记为cot(x)。
其定义域为除去使得tan(x) = 0的所有实数,值域为(-∞, +∞)。
常用公式:cot(α) = 1 / tan(α)5. 正割函数(Secant Function):正割是余弦的倒数,记为sec(x)。
其定义域为除去使得cos(x) = 0的所有实数,值域为(-∞, -1]∪[1, +∞)。
常用公式:sec(α) = 1 /cos(α)6. 余割函数(Cosecant Function):余割是正弦的倒数,记为csc(x)。
其定义域为除去使得sin(x) = 0的所有实数,值域为(-∞, -1]∪[1, +∞)。
高中数学三角函数知识点总结
高中数学三角函数知识点总结高中数学三角函数知识点总结一、锐角三角函数公式sin=的对边/斜边cos=的邻边/斜边tan=的对边/的邻边cot=的邻边/的对边二、倍角公式Sin2A=2SinA?CosACos2A=CosA2-SinA2=1-2SinA2=2CosA2-1tan2A=(2tanA)/(1-tanA2)(注:SinA2是sinA的平方sin2(A))三、三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a=tanatan(/3+a)tan(/3-a)三倍角公式推导sin3a=sin(2a+a)辅助角公式Asin+Bcos=(A2+B2)(1/2)sin(+t),其中sint=B/(A2+B2)(1/2)cost=A/(A2+B2)(1/2)tant=B/AAsin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B 四、降幂公式sin2=(1-cos(2))/2=versin(2)/2cos2=(1+cos(2))/2=covers(2)/2tan2=(1-cos(2))/(1+cos(2))推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos21-cos2=2sin21+sin=(sin/2+cos/2)2=2sina(1-sina)+(1-2sina)sina=3sina-4sinacos3a=cos(2a+a)=(2cosa-1)cosa-2(1-sina)cosa=4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4sina[(3/2)-sina]=4sina(sin60-sina)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]=4sinasin(60+a)sin(60-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa[cosa-(3/2)]=4cosa(cosa-cos30)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]}=-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)五、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin2(a/2)=(1-cos(a))/2cos2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))六、三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincos tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)七、两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)八、和差化积sin+sin=2sin[(+)/2]cos[(-)/2]sin-sin=2cos[(+)/2]sin[(-)/2]cos+cos=2cos[(+)/2]cos[(-)/2]cos-cos=-2sin[(+)/2]sin[(-)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 九、积化和差sinsin=[cos(-)-cos(+)]/2coscos=[cos(+)+cos(-)]/2sincos=[sin(+)+sin(-)]/2cossin=[sin(+)-sin(-)]/2十、诱导公式sin(-)=-sincos(-)=costan(—a)=-tansin(/2-)=coscos(/2-)=sinsin(/2+)=coscos(/2+)=-sinsin(-)=sincos(-)=-cossin(+)=-sincos(+)=-costanA=sinA/cosAtan(/2+)=-cottan(/2-)=cottan(-)=-tantan(+)=tan诱导公式记背窍门:奇变偶不变,符号看象限十一、万能公式sin=2tan(/2)/[1+tan(/2)]cos=[1-tan(/2)]/1+tan(/2)]tan=2tan(/2)/[1-tan(/2)]十二、其它公式(1)(sin)2+(cos)2=1(2)1+(tan)2=(sec)2(3)1+(cot)2=(csc)2(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=-Ctan(A+B)=tan(-C)(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=n(nZ)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot( C/2)(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC(9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*( n-1)/n]=0cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0以及sin2+sin2(-2/3)+sin2(+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0拓展阅读:学好函数的方法一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规那么而在数学当中,游戏规那么就是所谓的根本定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数tan公式总结
三角函数是数学学习中一个很重要的知识点,下面总结了三角函数tan公式,希望能帮助到大家。
三角函数tan公式
(1)tan及其他三角函数的半角公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
(2)tan及其他三角函数的倍角公式
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
(3)tan及其他三角函数的三倍角公式
sin3α=4sinα*sin(π/3+α)sin(π/3-α)
cos3α=4cosα*cos(π/3+α)cos(π/3-α)
tan3α=tanα*tan(π/3+α)*tan(π/3-α)
三角函数定理
正弦定理:
在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R,直径为D。
则有:a/sinA=b/sinB=c/sinC=2r=D(r为外接圆半径,D为直径)。
一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形外接圆的直径(半径的2倍)长度。
余弦定理:
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
对于边长为a、b、c而相应角为A、B、C的三角形则有:
①a²=b²+c²-2bc·cosA;
②b²=a²+c²-2ac·cosB;
③c²=a²+b²-2ab·cosC。
也可表示为:
①cosC=(a²+b²-c²)/2ab;
②cosB=(a²+c²-b²)/2ac;
③cosA=(c²+b²-a²)/2bc。
正切定理:
在三角形中,任意两条边的和除以第一条边减第二条边的差所得的商,等于这两条边对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。
对于边长为a,b和c而相应角为A,B和C的三角形,有:
①(a-b)/(a+b)=[tan(A-B)/2]/[tan(A+B)/2];
②(b-c)/(b+c)=[tan(B-C)/2]/[tan(B+C)/2];
③(c-a)/(c+a)=[tan(C-A)/2]/[tan(C+A)/2]。