(完整版)对顶角与邻补角练习题

合集下载

(完整版)余角、补角、对顶角的概念和习题答案

(完整版)余角、补角、对顶角的概念和习题答案

余角和补角和对顶角余角:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。

ZA + /C=90 °/A= 90 ° ZC , ZC 的余角=90 ° ZC 即:/A 的余角=90 ° ZA补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角ZA + /C=180 °Z A= 180 ° ZC , ZC 的补角=180 ° ZC 即:Z A 的补角=180 ° Z A对顶角: 一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。

两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。

两条直线相交,构成两对对顶角。

对顶角相等•对顶角与对顶角相等•对顶角是对两个具有特殊位置的角的名称;对顶角相等反映的是两个角间的大小关系。

补角的性质:同角的补角相等。

比如:Z A+ ZB=180 °Z A+ ZC=180 :则:Z C= Z。

等角的补角相等。

比如:Z A+ ZB=180 °/D+ ZC=180 °,ZA= ZD 贝U:Z C= /B。

余角的性质:同角的余角相等。

比如:Z A+ ZB=90 °,ZA+ ZC=90。

,则:Z C= /B。

A+ ZB=90 °,ZD+ ZC=90 °,ZA= ZD 贝U:Z C= Z B。

等角的余角相等。

比如:Z注意:①钝角没有余角;②互为余角、补角是两个角之间的关系。

如Z A+ ZB+ ZC=90 °,不能说ZA、/B、/C互余;同样:如Z A+ ZB+ZC=180 °,不能说ZA、Z B、Z C互为补角;③互为余角、补角只与角的度数相关,与角的位置无关。

只要它们的度数之和等于90 ° 或180 °,就一定互为余角或补角。

【初中数学】相交线(1)邻补角与对顶角讲练课件 2023—2024学年人教版数学七年级下册

【初中数学】相交线(1)邻补角与对顶角讲练课件 2023—2024学年人教版数学七年级下册

4. 如图,直线AB与CD相交于点O,若∠1+∠2=140°, 则∠1=_7_0__°,∠4=_1_1_0__°.
利用邻补角与对顶角的性质求角度 5. 如图,直线AB,CD相交于点O,∠BOD=40°,
OA平分∠COE,求∠DOE的度数. 解:∵∠BOD=40°,
∴∠AOC=∠BOD=40°, ∵OA平分∠COE, ∴∠COE=2∠AOC=80°,
同学们,再见!
பைடு நூலகம்
∴∠DOE=180°-∠COE=100°.
6. (2023·湛江霞山区一模)如图,直线AB,CD相交于点 O,OE是∠AOD的平分线,∠AOC=26°,求∠AOE 的度数.
解:∵∠AOC=26°, ∴∠AOD=180°-∠AOC=154°. 又∵OE是∠AOD的平分线, ∴∠AOE= 12∠AOD=77°.
新人教版初中七年级数学下学期
第五章 相交线与平行线
第1课 相交线(1) 邻补角与对顶角
邻补角与对顶角的定义及性质
定义
图例 性质 几何语言
邻 有一条公共边,另一 补 边互为反向延长线的 角 两个角
∵∠1与∠2 邻补角 是邻补角, 互__补___ ∴∠__1_+__∠__2__
=__1_8_0_°______
对 有公共顶点,一角的 顶 两边与另一角的两边 角 互为反向延长线
对顶角 _相__等__
∵∠1与∠2 是对顶角, ∴∠__1_=__∠__2__
1. 下列图形中,∠1与∠2互为邻补角的是
( D)
2. (2023·东莞月考)下列四个图形中,∠1与∠2是对顶角
的是
( B)
3. 如图,直线a,b相交于点O. (1)∠1的对顶角是_∠__3_,∠1的邻补角是_∠__2_,__∠__4___; (2)(2023·东莞月考)∠2=140°,则∠1=___4_0_°_,∠3 =__4_0_°__.

邻补角、对顶角

邻补角、对顶角

∠1=∠3
O
D
例一:如图,已知直线AB、CD相交 于点O,∠AOC=50°,求∠BOD、 ∠AOD、∠BOC的度数。
A
O
50
解:因为直线AB、CD相交于点O,(C已知)
B
所以∠BOD与∠AOC是对顶角,得: ∠BOD=∠AOC=50° (对顶角相等)
因为直线AB、CD相交于点O, (已知)
所以∠AOD与∠AOC是邻补角,得: ∠AOD=180°-∠AOC= 180°-50°=130°
的度数。
C
OB
A
D
课堂小结 :
角的 名称
特征
性质
邻补 角
①两条直线相交 而成的角
②有一个公共顶 点
邻补 角互 补
③有一条公共边
对顶 角
①两条直线相交 而成的角
②有一个公共顶 点
对顶 角相 等
③没有公共边
相同点
不同点
都是两直 对顶角没有 线相交而 公共边而邻 成的角, 补角有一条 都有一个 公共边; 公共顶点, 两条直线相 它们都是 交时,一个 成对出现。 角的对顶角
有一个,而
一个角的邻
补角有两个。
作业:第7页习题5.1 第1、2题(抄题)
一、创设情境
观察:取两根木条, 将它们用一枚钉子钉 在一起。
A
D 把这两根木条看作两条
O
直线,用一枚钉子钉起
来就相当于两条直线相
C
B 交。
思考:两条直线相交是不是只有一个交点呢?
两条直线相交,只有一个交点, 不可能有2个交点.
动手操作并思考
请在纸上画出两条相交的直线,得到四个 角,给这四个角编上∠1, ∠2, ∠3, ∠4.

七下数学每日一练:对顶角、邻补角练习题及答案_2020年压轴题版

七下数学每日一练:对顶角、邻补角练习题及答案_2020年压轴题版

七下数学每日一练:对顶角、邻补角练习题及答案_2020年压轴题版答案答案答案2020年七下数学:图形的性质_相交线与平行线_对顶角、邻补角练习题~~第1题~~(2019端州.七下期中) 如下图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD=25°,求∠COE、∠AOE 、∠AOG 的度数.考点: 角的平分线;对顶角、邻补角;垂线;~~第2题~~(2019成都.七下期中) 已知,如图,把直角三角形的直角顶点放在直线 上,射线平分.(1) 如图,若 ,求的度数.(2) 若 ,则的度数为.(3) 由(1)和(2),我们发现和 之间有什么样的数量关系?(4) 若将三角形 绕点 旋转到如图所示的位置,试问 和 之间的数量关系是否发生变化?请说明理由.考点: 角的平分线;对顶角、邻补角;~~第3题~~(2019江苏.七下期中) 在△ABC 中,∠ACB =90°,BD 是△ABC的角平分线,P 是射线AC 上任意一点 (不与A 、D 、C 三点重合),过点P 作PQ ⊥AB ,垂足为Q ,交线段BD 于E.(1) 如图①,当点P 在线段AC 上时,说明∠PDE =∠PED.(2) 画出∠CPQ 的角平分线交线段AB 于点F ,则PF 与BD 有怎样的位置关系?画出图形并说明理由.考点: 角的平分线;对顶角、邻补角;垂线;平行线的判定;~~第4题~~(2019长兴.七下期末) 如图1,直线MN 与直线AB ,CD 分别交于点E ,F ,∠1与∠2互补答案(1) 试判断直线AB 与直线CD 的位置关系,并说明理由(2) 如图2,∠BEF 与∠EFD 的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH ⊥EG ,求证:PF ∥GH(3) 如图3,在(2)的条件下,连结PH ,在GH 上取一点K ,使得∠PKG=2∠HPK ,过点P 作PQ 平分∠EPK 交EF 于点Q ,问∠HPQ 的大小是否发生变化?若不变,请求出其值;若变化,说明理由.(温馨提示:三角形的三个内角和为180°.)考点: 对顶角、邻补角;垂线;平行线的判定与性质;~~第5题~~(2017江阴.七下期中) 如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,∠1与∠2互补.(1) 试判断直线AB 与直线CD 的位置关系,并说明理由;(2) 如图2,∠BEF 与∠EFD 的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH ⊥EG ,求证:PF ∥GH ;(3) 如图3,在(2)的条件下,连接PH ,K 是GH 上一点使∠PHK=∠HPK ,作PQ 平分∠EPK ,问∠HPQ 的大小是否发生变化?若不变,请求出其值;若变化,说明理由.考点:角的平分线;对顶角、邻补角;平行线的判定与性质;三角形内角和定理;答案2020年七下数学:图形的性质_相交线与平行线_对顶角、邻补角练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。

131邻补角对顶角(分层练习)-2022-2023学年七年级数学下册(原卷版)2

131邻补角对顶角(分层练习)-2022-2023学年七年级数学下册(原卷版)2

13.1邻补角、对顶角(分层练习)【夯实基础】一、单选题1.(2021春·上海徐汇·七年级校考期末)下列各图中,∠1和∠2是对顶角的是( )A .B .C .D .2.(2020春·七年级校考课时练习)下列说法中:①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.不正确的有( )A .①②B .②③C .②④D .④③二、填空题3.(2022春·七年级单元测试)如图,直线AB 和直线CD 相交于点O ,∠AOC =50°,OE 平分∠BOD ,那么∠BOE =_____度.4.(2023春·七年级单元测试)如图,直线a 、b 相交,若1231∠∠=::,则直线a 、b 的夹角为______°.5.(2022春·上海宝山·七年级校考阶段练习)如图,直线CD EF 、相交于点O ,若95COF ∠=︒,那么直线CD与EF 的夹角大小为_____________.6.(2022春·上海·七年级校考期末)如图,直线AB 与直线CD 交于点O ,OE 平分AOC ∠,已知∠100AOD =︒,那么EOB ∠=__度.7.(2023春·七年级单元测试)如图,AB 、CD 交于点O ,若170=︒∠,射线OE 平分∠AOC ,那么∠EOD =__________度.8.(2023春·七年级单元测试)如图,直线AB 与CD 相交于点O ,若∠AOD =150°,则∠BOC =_____度.9.(2023春·七年级单元测试)如图,直线AB 和CD 相交于点O ,∠BOE =90°,∠DOE =130°,则∠AOC =______.10.(2022春·上海宝山·七年级校考阶段练习)互为邻补角的两个角的大小相差60︒,这两个角的大小分别为_____________11.(2022春·上海·七年级专题练习)如图,AB ,CD 相交于点O ,OE ⊥AB ,垂足为O ,∠COE=44°,则∠AOD=______.三、解答题12.(2020春·七年级校考课时练习)如图所示,直线AB 、CD 相交于点O ,OE 平分∠AOD ,∠AOE=30°,求∠BOD 和∠BOC 的度数.【能力提升】一、单选题1.(2023春·七年级单元测试)如图AB ,CD 交于点O ,OE AB ⊥,90DOF ∠=︒,OB 平分DOG ∠,则下列结论:①图中DOE ∠的余角有四个;②∠AOF 的补角有2个;③OD 为EOG ∠的平分线;④COG AOD EOF ∠=∠-∠.其中结论正确的序号是( )A .①②④B .①③④C .①④D .②③④2.(2022春·上海·七年级专题练习)如图,将长方形ABCD 沿线段EF 折叠到EB C F ''的位置,若100EFC '∠=,则DFC '∠的度数为( )A .20B .30C .40D .503.(2022春·七年级单元测试)如图,直线AB ,CD 相交于点O ,∠2-∠1=15°,∠3=130°.则∠2的度数是( )A .37.5°B .75°C .50°D .65°4.(2022春·上海宝山·七年级校考阶段练习)下列说法:①对顶角相等;②相等的两角一定是对顶角;③如果两个角不是对顶角,那么它们一定不相等;其中正确的说法有( )A .0B .1C .2D .3二、填空题5.(2023春·七年级单元测试)9条不重合的直线相交于一点,构成的对顶角共有______对.6.(2021春·上海宝山·七年级统考期末)如图,直线AB 和直线CD 相交于点O ,50AOC ∠=︒,OE 平分BOD ∠,那么BOE ∠=_______度.7.(2022春·上海闵行·七年级上海市七宝中学校考期中)如图,直线AB CD 、相交于点O .已知75,BOD OE ∠=︒把AOC ∠分成两个角,且23AOE EOC ∠=∠,将射线OE 绕点O 逆时针旋转()0360αα︒︒<<︒到OF ,若120AOF ∠=︒时,α的度数是___________.8.(2022春·上海·七年级专题练习)如图直线AB ,CD 相交于O ,直线FE ⊥AB 于O ,∠BOD =75°,则∠COF 的度数为_____度.9.(2022春·上海·七年级专题练习)如图,已知∠1+∠2=180°,则图中与∠1相等的角共有_____个.10.(2022春·上海·七年级专题练习)如图,直线AB 、CD 相交于点O ,OE 平分∠BO C .如果∠BOE =65°,那么∠AOC =___度.三、解答题11.(2021秋·上海·七年级校考期末)如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,求∠BON的度数;(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系,并说明理由.12.(2022春·上海闵行·七年级上海市七宝中学校考期中)小明同学做一道几何题时,不小心漏了一些内容,请你把空缺之处填完整:题目如下:如图,直线AB EF 、交于O ,90,COB OA ∠=︒平分,58DOE COF ∠∠=︒,求DOE ∠的度数.小徐的解答如下:解:∵90COB ∠=︒,58COF ∠=︒(已知)∴________32COB COF =∠-∠=︒(等式性质)∵AOE FOB ∠=∠( )∴__________________(等量代换)∵OA 平分DOE ∠(已知)∴AOE ∠=____________(角平分线的意义)∴64DOE ∠=︒( )。

对顶角、邻补角概念性质考察

对顶角、邻补角概念性质考察

邻补角、对顶角概念性质考察邻补角、对顶角的概念 【典型例题】1、下面各图中,∠1与∠2是邻补角的是( ) A.B.C.D.【答案】 D 【考点】 对顶角、邻补角 【解析】根据对顶角的定义进行解答即可.难度:2【解答】解:A .不是两条直线相交组成的角,故A 错误; B .是对顶角而不是邻补角;C .不是两条直线相交组成的角,故C 错误;D .符合题意,故D 正确. 故选:D .2、下列各图中,∠1与∠2是对顶角的是( ) A.B. C.D.【答案】 B 【考点】 对顶角、邻补角难度:2【解析】根据对顶角的定义对各选项分析判断后利用排除法求解. 【解答】解:A 、∠1与∠2不是对顶角,故A 选项错误; B 、∠1与∠2是对顶角,故B 选项正确; C 、∠1与∠2不是对顶角,故C 选项错误; D 、∠1与∠2不是对顶角,故D 选项错误. 故选:B .【巩固练习】1. 下面四个图形中,∠1与∠2是邻补角的是()A.B.C.D.【答案】D【考点】对顶角、邻补角难度:2【解析】根据邻补角的定义,相邻且互补的两个角互为邻补角进行判断.【解答】解:A、B选项,∠1与∠2没有公共顶点且不相邻,不是邻补角;C选项∠1与∠2不互补,不是邻补角;D选项互补且相邻,是邻补角.故选D .2、下列各图中,∠1与∠2互为邻补角的是( ) A.B.C.D.【答案】 D 【考点】 对顶角、邻补角难度:3【解析】根据邻补角的定义作出判断即可. 【解答】根据邻补角的定义可知:只有D 图中的是邻补角,其它都不是.3、下列各图中,∠1与∠2是对顶角的是( ) A.B.C.D.【答案】C【考点】对顶角、邻补角难度:2【解析】根据对顶角的定义作出判断即可.【解答】解:根据对顶角的定义可知:只有丙图中的是对顶角,其它都不是.故选:C.4、如图,∠1和∠2是对顶角的图形个数有()A.1个B.2个C.3个D.4个【答案】 A 【考点】 对顶角、邻补角难度:3【解析】一个角的两边分别是另一个角两边的反向延长线,那么这两个角是对顶角.据此作答即可. 【解答】解:只有丙图中的两个角是对顶角, 故选:A .5、如图所示,∠1和∠2是对顶角的是( ) A.B.C.D.【答案】 C 【考点】 对顶角、邻补角【解析】根据对顶角的两边互为反向延长线进行判断.【解答】解:图形中从左向右A,B,D个图形中的∠1和∠2的两边都不互为反向延长线,故不是对顶角,只有C个图中的∠1和∠2的两边互为反向延长线,是对顶角.故选:C.6、下列图形中∠1和∠2是对顶角的是()A.B.C.D.【答案】D对顶角、邻补角难度:2【解析】一个角的两边分别是另一个角的反向延伸线,这两个角是对顶角.依据定义即可判断.【解答】解:互为对顶角的两个角:一个角的两边分别是另一个角的反向延伸线.满足条件的只有D.故选D.7、下列图形中,∠1与∠2不是对顶角的有()A.1个B.2个C.3个D.0个【答案】C【考点】对顶角、邻补角难度:2根据对顶角的定义进行判断,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.【解答】解:根据对顶角的定义可知:图中只有第二个是对顶角,其它都不是.故选C8、下列说法中正确的有()个.①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1B.2C.3D.4【答案】B【考点】对顶角、邻补角难度:3【解析】根据对顶角的定义和性质判断.【解答】解:②对顶角要符合两直线相交构成的没有公共边的两个相对的角是对顶角,但相等的角不一定是对顶角;④例如30∘与30∘的角不一定是对顶角,但这两个角一定相等,故②④错误;正确的有①③两个.故选:B.【课后作业】1、如图,∠1与∠2是对顶角的是()A.B.C.D.【答案】C【考点】对顶角、邻补角难度:2【解析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,依次判定即可得出答案.【解答】解:A 、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故A 选项错误;B 、∠1与∠2没有公共顶点,不是对顶角,故B 选项错误;C 、∠1与∠2的两边互为反向延长线,是对顶角,故C 选项正确;D 、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故D 选项错误.故选:C .2、在下图中,∠1,∠2是对顶角的图形是( )A.B.C.D.【答案】C【考点】对顶角、邻补角难度:2【解析】此题在于考查对顶角的定义,作为对顶角,首先是由两条直线相交形成的,其次才是对顶角相等.【解答】解:根据两条直线相交,才能构成对顶角进行判断,A、B、D都不是由两条直线相交构成的图形,错误;C是由两条直线相交构成的图形,正确.故选C.3、如图,∠1和∠2是对顶角的图形有()个.A.1B.2C.3D.4【答案】A【考点】对顶角、邻补角难度:3【解析】根据对顶角的两边互为反向延长线进行判断.【解答】解:图形中从左向右第1,2,4个图形中的∠1和∠2的两边都不互为反向延长线,故不是对顶角,只有第3个图中的∠1和∠2的两边互为反向延长线,是对顶角.故选:A.邻补角、对顶角的性质【典型例题】1、如图,直线a、b相交于点O,若∠1等于40∘,则∠2等于()A.50∘B.60∘C.140∘D.160∘【答案】C【考点】对顶角、邻补角【解析】因∠1和∠2是邻补角,且∠1=40∘,由邻补角的定义可得∠2= 180∘−∠1=180∘−40∘=140∘.难度:1【解答】解:∵∠1+∠2=180∘又∠1=40∘∴∠2=140∘.故选C.2、如图,直线a和直线b相交于点O,∠1=50∘,则∠2=________.【答案】50∘【考点】对顶角、邻补角难度:1【解析】根据对顶角相等即可求解.【解答】解:∵∠2与∠1是对顶角,∴∠2=∠1=50∘.故答案为50∘.3、如图,∠1=∠2是对顶角,∠1=180∘−α,∠2=35∘,则α的度数是()A. 155∘B. 35∘C. 135∘D. 145∘[答案]D[知识点]对顶角、邻补角难度:2[解答]解:∵∠1与∠2是对顶角,∠2=35∘,∴∠1=∠2=35∘,∵∠1=180∘−α,∴35∘=180∘−α,∴α=145∘.故选D.4、如图,已知AB、CD相交于点O,OE⊥AB,∠EOC=28∘,则∠AOD=________度.[答案]62[知识点]角的计算对顶角、邻补角[解答]难度:3解:∵OE⊥AB,∠EOC=28∘,∴∠COB=90∘−∠EOC=62∘,∴∠AOD=62∘(对顶角相等).故答案为:62.【巩固练习】1、如图,图中∠α的度数等于()A.135∘B.125∘C.115∘D.105∘【答案】A【考点】对顶角、邻补角【解析】根据邻补角互补解答即可.难度:2【解答】解:∠α的度数=180∘−45∘=135∘.故选A.2、如图,直线AB和OC相交于点O,∠AOC=100∘,则∠1=________度.【答案】80【考点】对顶角、邻补角难度:1【解析】根据邻补角互补,可得答案.【解答】解:由邻补角互补,得∠1=180∘−∠AOC=180∘−100∘=80∘,故答案为:80.3、已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3=________度.【答案】180【考点】对顶角、邻补角难度:3【解析】根据对顶角、邻补角的性质,可得∠1=∠2,∠1+∠3=180∘,则∠2+∠3=∠1+∠3=180∘.【解答】解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠1与∠3是邻补角,∴∠1+∠3=180∘,等角代换得∠2+∠3=180∘.4、若∠1的对顶角是∠2,∠2的邻补角是∠3,∠3=45∘,则∠1的度数为________.【答案】135∘【考点】对顶角、邻补角难度:3【解析】根据对顶角相等、邻补角互补的性质求解.【解答】解:∵∠2的邻补角是∠3,∠3=45∘,∴∠2=180∘−∠3=135∘.∵∠1的对顶角是∠2,∴∠1=∠2=135∘.5、如图,直线l1与l2相交于点O,OM⊥l1,若α=44∘,则β=( )A.56∘B.46∘C.45∘D.44∘【答案】B【考点】垂线对顶角、邻补角难度:2【解析】由题意可得α+β=90∘,把α=44∘代入求解即可.【解答】解:∵OM⊥l1,∴β+90∘+α=180∘,把α=44∘代入,得β=46∘.故选:B.6、如图,∠1=15∘,∠AOC=90∘,点B,O,D在同一直线上,则∠2的度数为()A.75∘B.15∘C.105∘D.165∘【答案】C【考点】垂线对顶角、邻补角难度:2【解析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2.【解答】解:∵∠1=15∘,∠AOC=90∘,∴∠BOC=75∘,∵∠2+∠BOC=180∘,∴∠2=105∘.故选:C.7、如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70∘,则∠BOD的度数等于()A.40∘B.35∘C.30∘D.20∘【答案】B【考点】对顶角、邻补角角平分线的定义难度:3【解析】根据角平分线的定义求出∠AOC,再根据对顶角相等解答即可.【解答】解:∵OA平分∠EOC,∠EOC=70∘,∴∠AOC=12∠EOC=12×70∘=35∘,∴∠BOD=∠AOC=35∘.故选B.8、如图,CD⊥AB,垂足为C,∠1=130∘,则∠2=________度.【答案】40【考点】垂线对顶角、邻补角难度:2【解析】利用相交线寻找已知角∠1的对顶角,可以建立已知角∠1与所求角∠2之间的等量关系,可求∠2.【解答】解:由图知,∠1和∠ACE是对顶角,∴∠1=∠ACE=130∘,即∠ACD+∠2=130∘,∵CD⊥AB,∴∠ACD=90∘,∴130∘=90∘+∠2,解得∠2=40∘.9、如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20∘,则∠COE等于________度.【答案】70【考点】垂线对顶角、邻补角难度:2【解析】根据对顶角相等求出∠AOC,根据垂直求出∠AOE,相减即可求出答案.【解答】解:∵∠BOD=20∘,∴∠AOC=∠BOD=20∘,∵OE⊥AB,∴∠AOE=90∘,∴∠COE=90∘−20∘=70∘,故答案为:70.【课后作业】1、. 若∠1与∠2是对顶角,且∠1+∠2=130°,则∠1=________,∠2=________.考点:对顶角难度:2分析:题目已知∠1+∠2=130°,要求∠1和∠2的度数,首先需要确定∠1与∠2之间的大小关系;通过回想对顶角的定义,根据∠1与∠2是对顶角可得∠1=∠2,想想看接下来该怎么做?接下来根据∠1+∠2=130°以及∠1=∠2,即可求出∠1和∠2的大小.解答:答案:65°,65°.因为∠1与∠2是对顶角,所以∠1=∠2.又因为∠1+∠2=130°,所以∠1=∠2=65°.故答案为65°,65°.2、如图,直线AB、CD、EF相交于点O,∠AOE的对顶角是,∠COF的邻补角是,若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC= 。

邻补角、对顶角、同位角、内错角、同旁内角经典习题-一对一专用

邻补角、对顶角、同位角、内错角、同旁内角一、学习目标1、了解两条直线相交所构成的角,理解并掌握邻补角、对顶角的概念和性质;2、理解并掌握垂线的概念和性质;3、了解同位角、内错角、同旁内角的概念并会辨别二、主要内容1、邻补角:两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。

2、对顶角:两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为对顶角;对顶角的性质:对顶角相等。

注意:1、对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;2、如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角3、如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

4、两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

习题巩固1.下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0 B.1 C.2 D.3121212122、下面各图中∠1和∠2是对顶角的是()A.B.C.D.3、下列语句正确的是().A、相等的角是对顶角B、相等的两个角是邻补角C、对顶角相等D、邻补角不一定互补,但可能相等4、下列语句错误的有()个.(1)两个角的两边分别在同一条直线上,这两个角互为对顶角(2)有公共顶点并且相等的两个角是对顶角(3)如果两个角相等,那么这两个角互补(4)如果两个角不相等,那么这两个角不是对顶角A、1B、2C、3D、45、已知∠1与∠2是邻补角,∠2是∠3的邻补角,那么∠1与∠3的关系是().A、对顶角B、相等但不是对顶角C、邻补角D、互补但不是邻补角6、下列说法正确的是().A、有公共顶点的两个角是对顶角B、两条直线相交所成的两个角是对顶角C、有公共顶点且有一条公共边的两个角是邻补角D、两条直线相交所成的无公共边的两个角是对顶角7、已知:如图所示,AB⊥CD,垂足为点O,EF为过点O•的一条直线,则∠1与∠2的关系一定成立的是()A.相等 B.互余 C.互补 D.互为对顶角8、下列判断正确的个数是_____个。

余角、补角、对顶角(基础训练)(原卷版)

6.3 余角、补角、对顶角【基础训练】一、单选题1.如图,1∠与2∠是对顶角的是( )A .B .C .D . 2.如图,∠1、∠2是对顶角的图形是( )A .B .C .D .3.下列各图中,1∠和2∠是对顶角的是( )A .B .C .D .4.下列各图中,∠1和∠2是对顶角的是( )A .B .C .D .5.下列图形中1∠与2∠是对顶角的是( )A .B .C .D .6.如图所示,∠1和∠2是对顶角的图形是( )A .B .C .D .7.下列图中,∠1和∠2属于对顶角的是( )A .B .C .D .8.下列四个图形中,1∠与2∠是对顶角的是( )A .B .C .D .9.下列各图中,1∠与2∠是对顶角的是( )A .B .C .D .10.如图,将一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β均为锐角且相等的是() A . B .C .D .11.设两个互余的锐角分别为α∠和β∠,( )A .若30αβ∠-∠=︒,则2βα∠>∠B .若30αβ∠-∠=︒,则2βα∠<∠C .若40αβ∠-∠=︒,则2βα∠>∠D .若40αβ∠-∠=︒,则2βα∠<∠12.若54A ∠=︒,则A ∠的余角为( )A .36°B .46°C .126°D .146° 13.如图是一副三角板摆放在一起的示意图,若1∠比2∠大20︒,则1∠等于( )度.A .35B .55C .60D .7014.下列说法错误的是( )A .两个互余的角都是锐角B .锐角的补角大于这个角本身C .互为补角的两个角不可能都是锐角D .锐角大于它的余角15.如图,直线m 和n 相交于点O ,若∠1=40°,则∠2的度数是( )A .40°B .50°C .140°D .150°16.已知50.5α︒∠=,则α∠的余角等于( )A .3930︒'B .3950︒'C .4930︒'D .12930︒'17.如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,如果104AOD ∠=︒,那么MOC ∠等于( )A .38°B .37°C .36°D .52°18.如图,直线AB 、CD 相交于点O ,下列描述:∠∠1和∠2互为对顶角;∠∠1和∠2互为邻补角;∠∠1=∠2,∠13∠=∠,其中正确的是( )A .∠∠B .∠∠C .∠∠D .∠∠19.下面四个图形中,12∠=∠一定成立的是( )A .B .C .D .20.如图,直线AB ,CD 相交于点O ,分别作∠AOD ,∠BOD 的平分线OE ,OF . 将直线CD 绕点O 旋转,下列数据与∠BOD 大小变化无关的是( )A .∠AOD 的度数B .∠AOC 的度数 C .∠EOF 的度数D .∠DOF 的度数21.下面1∠与2∠不是对顶角的是( )A .B .C .D .22.如图,射线,AB DC 交于点O ,射线OM 平分AOC ∠,若80BOD ∠=︒,则COM ∠的度数为( )A .80°B .60°C .50°D .40°23.如图,直线AB ,CD 相交于点O ,射线OM 平分BOD ∠,若42BOD ∠=︒,则AOM ∠等于()A .138︒B .148︒C .159︒D .169︒24.如图,直线AB 、CD 相交于点O ,OE 平分AOC ∠,若70BOD ∠=︒,则COE ∠的度数是()A .70︒B .50︒C .40︒D .35︒25.如图,直线a 、b 被直线c 所截,则下列说法错误的是( )A .1∠与2∠是邻补角B .1∠与3∠是对顶角C .2∠与4∠是同位角D .3∠与4∠是内错角26.下列各图中,∠1与∠2是对顶角的是 ( )A .B .C .D .27.下列说法正确的是( )A .如果∠1+∠2+∠3=90º,那么∠1、∠2、∠3三个互余B .过一点有且只有一条直线与已知直线平行C .不相等的两个角一定不是对顶角D .若两条直线被第三条所截,则同位角相等28.下列四个图形中,∠1与∠2是对顶角的是( )A .B .C .D .29.如图,125∠=︒,90AOC ∠=︒,点B 、O 、D 在同一直线上,则2∠的度数为( )A .115°B .105°C .65°D .25°30.若45n α∠=︒-︒,45n β∠=︒+︒,则α∠与β∠的关系是( )A .互补B .互余C .和为钝角D .和为周角31.将一副三角尺按不同位置摆放,下列摆放中∠1与∠2互为余角的是( )A .B .C .D .32.下列说法不正确的是( )∠3a b 的系数是3,次数是3;∠平角是一条直线;∠多项式2561x x -+-是二次三项式;∠射线MN 与射线NM 是同一条射线;∠一个角的补角不是锐角就是钝角.A .∠∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠33.已知A 、B 两地的位置如图所示,且∠BAC =60°,那么下列语句正确的是()A .A 地在B 地的北偏东60°方向 B .A 地在B 地的北偏东30°方向C .B 地在A 地的北偏东60°方向D .B 地在A 地的北偏东30°方向34.如图,三条直线相交于点O ,则∠1+∠2+∠3的度数等于( )A .210°B .180°C .150°D .120°35.下列各图中,∠1与∠2是对顶角的是( )A .B .C .D .第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题36.如图,点O 是直线AB 上一点,∠1=∠2,写出图中一对互补的角______,图中共有______对互补的角.37.如图,如果∠1+∠2=280°,则∠3的度数是________;38.如图所示:直线AB 与CD 相交于O ,已知130∠=︒,OE 是BOC ∠的平分线,则2∠的度数为________.39.如图,AB 、CD 相交于点O ,OB 平分DOE ∠.若30AOC ∠=︒,则DOE ∠的度数是________.40.如图是某城市一座古塔底部平面图,在不能进入塔内测量的情况下,学习兴趣小组设计了如图所示的一种测量方案,学习兴趣小组认为测得COD ∠的度数就是AOB ∠的度数.其中的数学原理是__________.三、解答题41.如图所示,AB 和CD 相交于点O ,OM 平分∠AOC ,ON 平分∠BOD ,试说明OM 和ON 成一条直线.42.(1)如图(1),已知直线a 、b 相交于点 O ,则(1)图中共有几对对顶角?几对邻补角?(2)如图(2),已知直线a 、b 、c 、d 是经过点O 的四条直线,则图(2)中共有几对对顶角(不含平角)?几对邻补角?43.如图,直线AB ,CD 相交于点O ,∠AOC =120°,OE 平分∠BOC .(1)求∠BOE 的度数;(2)若OF 把∠AOE 分成两个角,且∠AOF :∠EOF =2:3,判断OA 是否平分∠DOF ?并说明理由.44.如图,点O 在直线AB 上,∠AOC =∠DOE =90°(1)图中除∠AOC ,∠DOE 外还有哪个角是直角?请写出计算过程.(2)若OE 是∠BOC 的角平分线,求∠BOE ,∠AOD 的度数45.一个角的补角比它的余角的2倍大40º,求这个角的度数.46.如图,点M ,O ,N 顺次在同一条直线上,射线OB 平分AOM ∠,射线OC 平分AON ∠. (1)填空:BOC ∠= °;(2)在BOM ∠内部引一条射线OD ,使得90AOD ∠=°,若27BOD ∠=°,求MOD ∠的度数.47.如图,点O 是直线AB 上一点,120BOC ∠=︒,OD 平分AOC ∠.求COD ∠的度数.48.如图,直线,AB CD 相交于点,O OB 平分,100EOD COE ∠∠=︒,求:(1)AOD ∠的度数.(2)AOC ∠的度数.49.如图,COE ∠与EOD ∠互余,OE 平分AOD ∠,已知140AOB ∠=︒.(1)若40COE ∠=︒,则DOE ∠=___________,BOD ∠=____________.(2)设COE α∠=,BOD β∠=,请探究α与β之间的数量关系.50.如图,直线,AB CD 相交于点,O OE 平分,90,365AOD FOC ∠∠=︒∠=︒,求 1∠和2∠的度数.51.如图,直线AB 、CD 相交于点O ,∠BOD =40°,按下列要求画图并解答问题:(1)利用三角尺,在直线AB 上方画射线OE ,使∠BOE =90°;(2)利用量角器,画∠AOD 的平分线OF ;(3)在你所画的图形中,求∠AOD 与∠EOF 的度数.52.如图,直线AB 与CD 相交于点O ,90AOE ∠=︒.(1)如果20AOC ∠=︒,求COE ∠和BOD ∠的度数.(2)如果2COE BOD ∠=∠,求BOC ∠的度数.53.如图,直线AB 、CD 相交于点O ,90AOE COF ∠=∠=︒.(1)DOE ∠的余角是______(填写所有符合要求的角);(2)若71DOE ∠=︒,求BOF ∠的度数.54.已知,如图直线AB 与CD 相交于点O ,OE AB ⊥,过点O 作射线OF ,30AOD ∠=︒,FOB EOC ∠=∠.(1)求EOC ∠度数;(2)求DOF ∠的度数;(3)直接写出图中所有与AOD ∠互补的角.55.如图,已知直线AB 和CD 相交于点O ,OE 平分AOC ∠,30AOD BOD ∠-∠=︒,试求AOE ∠的度数.56.如图1,点A 、O 、B 在同一条直线上,∠BOC=40°,OD 平分∠AOC .从点O 出发画一条射线OE ,使得∠COE=90°.请画出满足条件的射线OE ,并求出∠DOE 的度数.(1)如图2,已画出射线OE 的第一种位置,请将解题过程补充完整:(解析)解:因为∠AOB=180°,∠BOC=40°,所以∠AOC=∠________−∠________=________°.因为OD 平分∠AOC ,所以∠COD=12∠________=________°. 因为∠COE=90°,所以∠DOE=∠________−∠________=________°.(2)请在图3中画出射线OE 的第二种位置,并直接写出此种情况下∠DOE 的度数.57.如图,直线AB ,CD 相交于点O ,OE 平分∠AOD ,OF∠OC ,(1)图中∠AOF 的余角是________ (把符合条件的角都填出来);(2)如果∠AOC=140°,那么根据________,可得∠BOD=________;(3)如果∠1=31°,求∠2和∠3的度数.58.如图,O 是直线CE 上一点,以O 为顶点作90AOB ∠=︒,且OA ,OB 位于直线CE 两侧,OB 平分COD ∠.(1)当50AOC ∠=︒时,求DOE ∠的度数;(2)通过(1)的计算,请你猜想AOC ∠和DOE ∠的数量关系,并说明理由.59.如图1,已知OB 平分AOC ∠.(1)若AOC ∠的余角比BOC ∠小30.∠求COB ∠的度数﹔∠过点О作射线OD ,使得∠AOC =4∠AOD ,求BOD ∠的度数.(2)如图2,COE ∠与AOC ∠互为补角,在COE ∠的内部作射线OD ,使得∠COE =4∠COD ,请探究BOD ∠与DOE ∠之间的数量关系,写出你的结论并说明理由.60.已知:如图,O 是直线AB 上的一点,∠COD =90°,OC 平分∠AOE ,∠BOD =30°,求∠DOE 的度数.61.如图,已知直线AB ,CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠.若100AOD ∠=︒, 求:(1)EOD ∠的度数;(2)AOF ∠的度数.62.如图,点O是直线AB上一点,OD,OE分别平分∠AOC和∠BOC.(1)若∠AOC=40°,求∠DOE的度数.(2)若∠AOC=α,求∠DOE的度数.。

5.1 对顶角、邻补角 考点训练(含答案解析)

【考点训练】对顶角、邻补角-1一、选择题(共6小题)1.(2012•北京)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()38°B.104°C.142°D.144°A.(第1题) (第2题) (第3题)2.如图,AB是一条直线,OC是∠AOD的平分线,OE在∠BOD内,∠DOE=∠BOD,∠COE=72°,则∠EOB=()36°B.72°C.108°D.120°A.3.(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()∠2=∠4+∠7 B.∠3=∠1+∠6 C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°A.4.(2012•梧州)如图,直线AB和CD相交于点O,若∠AOC=125°,则∠AOD=()50°B.55°C.60°D.65°A.(第4题) (第6题)(第7题)5.(2013•贺州)下面各图中∠1和∠2是对顶角的是().AB.C.D..6.(2012•柳州)如图,直线a与直线c相交于点O,∠1的度数是()A60°B.50°C.40°D.30°.二、填空题(共3小题)(除非特别说明,请填准确值)7.(2012•泉州)如图,在△ABC中,∠A=60°,∠B=40°,点D、E分别在BC、AC的延长线上,则∠1=_________°.8.(2013•湘西州)如图,直线a和直线b相交于点O ,∠1=50°,则∠2_________.(第8题) (第9题)9.(2013•曲靖)如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE=_________.三、解答题(共2小题)(选答题,不自动判卷)10.(2011•泉州)如图,直线a、b相交于点O,若∠1=30°,则∠2=_________.(第10题) (第11题)11.(2012•泉州)(2)如图,点A、O、B在同一直线上,已知∠BOC=50°,则∠AOC=_________°.参考答案与试题解析一、选择题(共6小题)1.(2012•北京)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°考点:对顶角、邻补角;角平分线的定义.专题:常规题型.分析:根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.解答:解:∵∠BOD=76°,∴∠AOC=∠BOD=76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选C.点评:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.2.如图,AB是一条直线,OC是∠AOD的平分线,OE在∠BOD内,∠DOE=∠BOD,∠COE=72°,则∠EOB=()A.36°B.72°C.108°D.120°考点:角平分线的定义;对顶角、邻补角.专题:计算题.分析:设∠DOE=x,根据题意得到∠BOE=2x,∠AOC=∠COD=72°﹣x,再根据平角为180度,得到2×(72°﹣x)+3x=180°,解得x=36°,即可得到∠BOE的度数.解答:解:如图,设∠DOE=x,∵∠DOE=∠BOD,∴∠BOE=2x,又∵OC是∠AOD的平分线,∠COE=72°,∴∠AOC=∠COD=72°﹣x;∴2×(72°﹣x)+3x=180°,解得x=36°,∴∠BOE=2x=2×36°=72°.故选B.点评:本题考查了角的有关计算以及角平分线的性质和平角的定义,是基础知识比较简单.3.(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A.∠2=∠4+∠7 B.∠3=∠1+∠6 C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°考点:三角形内角和定理;对顶角、邻补角;三角形的外角性质.分析:根据对顶角的性质得出∠1=∠AOB,再用三角形内角和定理得出∠AOB+∠4+∠6=180°,即可得出答案.解答:解:∵四条互相不平行的直线L1、L2、L3、L4所截出的七个角,∵∠1=∠AOB,∵∠AOB+∠4+∠6=180°,∴∠1+∠4+∠6=180°.故选C.点评:此题主要考查了对顶角的性质以及三角形的内角和定理,正确的应用三角形内角和定理是解决问题的关键.4.(2012•梧州)如图,直线AB和CD相交于点O,若∠AOC=125°,则∠AOD=()A.50°B.55°C.60°D.65°考点:对顶角、邻补角.分析:根据邻补角的和等于180°列式进行计算即可得解.解答:解:∵∠AOC=125°,∴∠AOD=180°﹣125°=55°.故选B.点评:本题考查了邻补角的两个角的和等于180°的性质,是基础题.5.(2013•贺州)下面各图中∠1和∠2是对顶角的是()A.B.C.D.考点:对顶角、邻补角.分析:根据对顶角的定义对各选项分析判断后利用排除法求解.解答:解:A、∠1和∠2不是对顶角,故本选项错误;B、∠1和∠2是对顶角,故本选项正确;C、∠1和∠2不是对顶角,故本选项错误;D、∠1和∠2不是对顶角,是邻补角,故本选项错误.故选B.点评:本题考查了对顶角、邻补角,熟记概念并准确识图是解题的关键.6.(2012•柳州)如图,直线a与直线c相交于点O,∠1的度数是()A.60°B.50°C.40°D.30°考点:对顶角、邻补角.分析:根据邻补角的和等于180°列式计算即可得解.解答:解:∠1=180°﹣150°=30°.故选D.点评:本题主要考查了邻补角的和等于180°,是基础题,比较简单.二、填空题(共3小题)(除非特别说明,请填准确值)7.(2012•泉州)如图,在△ABC中,∠A=60°,∠B=40°,点D、E分别在BC、AC的延长线上,则∠1=80°.考点:三角形内角和定理;对顶角、邻补角.专题:探究型.分析:先根据三角形内角和定理求出∠ACB的度数,再根据对顶角相等求出∠1的度数即可.解答:解:∵△ABC中,∠A=60°,∠B=40°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣60°﹣40°=80°,∴∠1=∠ACB=80°.故答案为:80.点评:本题考查的是三角形的内角和定理,即三角形内角和是180°.8.(2013•湘西州)如图,直线a和直线b相交于点O,∠1=50°,则∠2=50°.考点:对顶角、邻补角.分析:根据对顶角相等即可求解.解答:解:∵∠2与∠1是对顶角,∴∠2=∠1=50°.故答案为=50°.点评:本题考查了对顶角的识别与对顶角的性质,牢固掌握对顶角相等的性质是解题的关键.9.(2013•曲靖)如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE=40°.考点:对顶角、邻补角;角平分线的定义.分析:根据对顶角相等求出∠AOC,再根据角平分线的定义解答.解答:解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°.故答案为:40°.点评:本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.三、解答题(共2小题)(选答题,不自动判卷)10.(2011•泉州)如图,直线a、b相交于点O,若∠1=30°,则∠2=30°.考点:对顶角、邻补角.专题:计算题;压轴题.分析:直接根据对顶角相等得到∠2的度数.解答:解:∵直线a、b相交于点O,∴∠1=∠2,而∠1=30°,∴∠2=30°.故答案为:30°.点评:本题考查了对顶角的性质:对顶角相等.11.(2012•泉州)(1)方程x﹣5=0的解是5.(2)如图,点A、O、B在同一直线上,已知∠BOC=50°,则∠AOC=130°.考点:对顶角、邻补角;解一元一次方程.专题:计算题;压轴题.分析:(1)观察或直接移项可得方程的解;(2)根据邻补角互补直接求出∠AOC的值.解答:解:(1)移项得,x=5;(2)∵∠BOC=50°,∴∠A0C=180°﹣50°=130°.点评:(1)本题考查了一元一次方程的解法,熟悉等式的性质是解题的关键;(2)本题考查了对顶角、邻补角,知道邻补角的和为180°是解题的关键.。

(完整版)邻补角-对顶角-垂线练习

邻补角,对顶角,垂线习题1.若点O是直线AB上的一点,AB⊥OD,OC⊥OE,则图中互余的角有 ( )A。

3对 B.4对 C。

5对 D.6对2.下列说法中错误的个数是( )(1)一个角的邻补角只有一个(2)一个角的邻补角一定大于这个角(3)如果两个角互为邻补角,则两个角必定一个是锐角,一个是钝角(4)钝角的邻补角一定为锐角A.1个B.2个 C。

3个 D。

4个3.下列说法中正确的是()A.因为对顶角相等,所以相等的角是对顶角B.互为对顶角的两个角度数之和不会超过1800C.有着公共顶点的两个角不一定是对顶角D.有一条公共边的两个角是邻补角4.画一条线段的垂线,垂足在()A.线段上 B。

线段的端点 C.线段的延长线上 D。

以上都有可能5.点到直线的距离是指这点到这条直线的 ( )A。

垂线段 B。

垂线的长 C。

长度 D.垂线段的长6.下列语句正确的是( )A.直线外一点到这条直线的垂线段叫做点到直线的距离B.直线外一点与直线上的各点连接的所有线段中,垂线最短C.平分线段的直线只有一条D.在平面内过一点有且只有一条直线垂直于已知直线7.下列作图语句正确的是()A.作直线MN的中垂线B.过点P作线段AB的垂直平分线C.过点O 作OC⊥直线AB,点C为垂足D.过点P作直线PQ,使它平分线段AB8。

若点A在直线l外,点B在直线l上,AB两点之间的距离记作a, 点A到直线l的距离记作b,则a和b之间大小关系是( )A. a<bB. a>b C。

a≤b D。

a≥b9.若点P到直线l的距离为3,则直线l上到点P 距离为4的点的个数为()A。

0个 B。

1个 C.2个 D.3个10。

若点A,B分别位于直线l的两侧,点A到直线l的距离为5cm,点B到直线l的距离为8cm,则AB两点间的距离()A.等于13cmB.大于13cmC.不小于13cmD.小于13cm11。

两条直线相交所成的四个角中,下列条件中能判定两条直线垂直的是()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 1. 观察下列图形,并解答问题:
(1)图①中,有_____条直线,_____对对顶角;
(2)图②中,有_____条直线,_____对对顶角;
(3)图③中,有_____条直线,_____对对顶角;
(4)猜想:n条直线交于一点时,可形成_____对对顶角;
(5)若有2004条直线交于一点,可形成_____对对顶角.
• 2. 三条相交直线交于一点得6个角,每隔1个角的3个角的和是_____度.
• 3. 如图:
在下列括号中填写推理理由
∵∠1=135°(_____)
∴∠3=∠135°(_____)
又∵∠2=45°(_____)
∴∠2+∠3=45°+135°=180°
∴a∥b(_____)
• 4. 如图,已知直线AB和CD相交于O点,∠DOE是直角,OF平分∠AOE,∠BOD=22°,求∠COF的度数.
• 5. 如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()
A.70°
B.100°
C.110°
D.120°
• 6. 如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥CD,∠AOC=55°,∠BOE的度数是()
A.125°
B.135°
C.145°
D.155°
•7. 下列图形∠1与∠2不是邻补角的是()
A.
B.
C.
D.
•8. 如图,直线a与b相交于点O,∠1+∠2=100°,则∠3的度数为()
A.80°
B.100°
C.120°
D.130°
•9. 顶点相同、大小相等的两个角是对顶角._____.(判断对错) •10. 如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC=_____°.。

相关文档
最新文档