各种滤波器及其典型电路

各种滤波器及其典型电路
各种滤波器及其典型电路

第一章滤波器

1.1 滤波器的基本知识

1、滤波器的基本特性

定义:滤波器是一种通过一定频率的信号而阻止或衰减其他频率信号的部件。

功能:滤波器是具有频率选择作用的电路或运算处理系统,具有滤除噪声和分离各种不同信号的功能。

类型:

按处理信号形式分:模拟滤波器和数字滤波器。

按功能分:低通、高通、带通、带阻、带通。

按电路组成分:LC无源、RC无源、由特殊元件构成的无源滤波器、RC有源滤波器

按传递函数的微分方程阶数分:一阶、二阶、…高阶。

如图1.1中的a、b、c、d图分别为低通滤波器、高通滤波器、带通滤波器、带阻滤波器传输函数的幅频特性曲线。

图1.1 几种滤波器传输特性曲线

.2、模拟滤波器的传递函数与频率特性

(一)模拟滤波器的传递函数

模拟滤波电路的特性可由传递函数来描述。传递函数是输出与输入信号电压或电流拉氏变换之比。经分析,任意个互相隔离的线性网络级联后,总的传递函数等于各网络传递函数的乘积。这样,任何复杂的滤波网络,可由若干简单的一阶与二阶滤波电路级联构成。

(二)模拟滤波器的频率特性

模拟滤波器的传递函数H(s)表达了滤波器的输入与输出间的传递关系。若滤波器的输入信号Ui是角频率为w的单位信号,滤波器的输出Uo(jw)=H(jw)表达了在单位信号输入情况下的输出信号随频率变化的关系,称为滤波器的频率特性函数,简称频率特性。频率特性H(jw)是一个复函数,其幅值A(w)称为幅频特性,其幅角∮(w)表示输出信号的相位相对于输入信号相位的变化,称为相频特性

(三)滤波器的主要特性指标

1、特征频率:

(1)通带截止频f p=wp/(2π)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。

(2)阻带截止频f r=wr/(2π)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。

(3)转折频率f c=wc/(2π)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。

(4)固有频率f0=w0/(2π)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。

2、增益与衰耗

(1)对低通滤波器通带增益Kp一般指w=0时的增益也用A(0)表示;高通指w→∞时的增益也用()

A∞表示;带通则指中心频率处的增益。

(2)对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数。

(3)通带增益变化量△Kp指通带内各点增益的最大变化量,如果△Kp以dB 为单位,则指增益dB值的变化量。

3、阻尼系数与品质因数

阻尼系数是表征滤波器对角频率为w0信号的阻尼作用,是滤波器中表示能量衰耗的一项指标我们用 表示。

阻尼系数的倒数称为品质因数,是评价带通与带阻滤波器频率选择特性的一个重要指标,Q= w0/△w。式中的△w为带通或带阻滤波器的3dB带宽,w0为中心频率,在很多情况下中心频率与固有频率相等。

4、灵敏度

滤波电路由许多元件构成,每个元件参数值的变化都会影响滤波器的性能。

滤波器某一性能指标y对某一元件参数x变化的灵敏度记作Sxy,定义为:Sxy=(dy/y)/(dx/x)。该灵敏度与测量仪器或电路系统灵敏度不是一个概念,该灵敏度越小,标志着电路容错能力越强,稳定性也越高。

5、群时延函数

当滤波器幅频特性满足设计要求时,为保证输出信号失真度不超过允许范围,对其相频特性∮(w)也应提出一定要求。在滤波器设计中,常用群时延函数d∮(w)/dw评价信号经滤波后相位失真程度。群时延函数d∮(w)/dw越接近常数,信号相位失真越小。

(四)二阶滤波器的传输特性

1、二阶低通滤波器

二阶低通滤波器的传递函数的一般形式为

(1-1)它的固有频率为a01/2,通带增益Kp=b0/a0,阻尼系数为a1/w0。其幅频特性与相频特性为:

(1-2)

(1-3)

2、二阶高通滤波器

二阶低通滤波器的传递函数的一般形式为

(1-4)其幅频特性与相频特性为

(1-5)

(1-6)3、二阶带通滤波器

二阶带通滤波器的传递函数的一般形式为

(1-7)其幅频特性与相频特性分别为

(1-8)

(1-9)

4、二阶带阻滤波器

二阶带阻滤波器的传递函数的一般形式为

(1-10)其幅频特性和相频特性为

(1-11 )

5、二阶全通滤波电路(移相电路)

二阶全通滤波电路的传递函数的一般形式为

(1-12)其幅频特性为常数,相频特性为

(1-13)

1.2 滤波器的逼近

低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想的低通滤波器幅度响应如图1.2.1,可以实现的近似理想特性的幅度响应如图1.2.2所示。在理想情况下,可以清楚的指出通带(0wc);但在实际情况下,必须定义截止角频率wc。Wc定义为当H(jw)下降到最大值的0.707倍时的频率。

图1.2 理想特性曲线图1.3 实际逼近曲线

当然理想低通滤波器要求幅频特性A(w)在通带内为一常数,在阻带内为零,没

有过渡带,还要求群延时函数在通带内为一常量,这在物理上是无法实现的。实践中往往选择适当逼近方法,实现对理想滤波器的最佳逼近。可以用下面的传递函数对理想特性加以逼近

1

10....o

n n i

n u Gb u s b s b --=

+++ (1-14)

上式表示一个n 阶全极点近似式,,其所以这样称呼是因为他的分母多项式为n 次幂而分子为常数(因而它没有有限零点,只有有限极点)。低通滤波器的增益是传递函数在s=0时的值,很明显在上式里增益就是G 。有许多种低通滤波器,它们的传递函数为上式的类型。如巴特沃兹逼近、切比雪夫逼近、贝塞尔逼近。而其它几种滤波器都可由低通滤波器变换得到,我们在这儿不赘述具体变换方法。

(一)巴特沃斯逼近

这种逼近的基本原则是使幅频特性在通带内最为平坦,并且单调变化,但过渡带衰减较为缓慢。其幅频特性为

(1-15)

n 阶巴特沃斯低通滤波器的传递函数为

(1-16)

其中 (1-17) 其幅频特性与相频特性如图:

图1.4 巴特沃兹滤波器的幅频及相频特性曲线

(二)切比雪夫逼近

这种逼近方法的基本原则是允许通带内有一定的波动量△Kp,其特点为等起伏波动,但过渡带衰减陡峭。其幅频特性为

(1-18)幅频特性曲线如图:

图1.5 切比雪夫滤波器的幅频特性曲线

(三)贝赛尔逼近

这种逼近与前两种不同,它主要侧重于相频特性,其基本原则是使通带内相频特性线性度最高,群时延函数最接近于常量,从而使相频特性引起的相位失真最小。

其特点是各频率分量具有线性相移,即群延迟d /dw接近于常数,相位失真小,

但幅频特性过度带很长,带外衰减缓慢;

图1.6 贝塞尔滤波器的幅频及相频特性曲线

1.3 几种RC 滤波器的常见电路

1.3.1 低通滤波器 1、一阶RC 低通滤波器 下图所示RC 串联电路

图1.7 一阶RC 低通滤波器

其负载端开路时电容电压对输入电压的转移电压比即传输函数为:

RC C R C

U U H ωωωωj 11j 1j 1

)j (12+=

+

== (1-19)

截止频率:

01ωRC = (1-20)

幅频特性:

()H jw w =

? (1-21)

相频特性为:

()0arctan w

w w θ= (1-22)

2、二阶RC 低通滤波电路

图1.8 二阶RC 低通滤波器

传输函数:

)(|)j (|j311

)j (22212ωθωωωω∠=+-==H RC C R U U H

(1-23)

幅频特性:

|(j )|H ω

(1-24)

相频特性:

2223 ()arctan 1RC R C ωθωω??=- ?-?? (1-25)

3、一阶有源低通滤波器

图1.9 一阶有源低通滤波器

其传递函数为:0(0)

()1/A H jw jw w =-+ (1-26)

幅频特性:

()H jw (1-27)

其中021/w R C =。 (1-28) 相频特性:

2()arctan jw R C ?π=-- (1-29)

一阶低通滤波器的优点是简单,缺点是特性偏离理想特性过远,阻带区衰减太慢,衰减斜率仅为-20db/十倍频程,使用于要求不高的场所。

4、二阶有源低通滤波器

图1.10 二阶有源低通滤波器

传递函数为

2

022

00(0)()A w H s w

s s w Q =++ (1-30)

该传递函数有两个共轭极点而没有零点,上式中 R1=R2=R 、01w RC =

、43

1R

K R =+、13Q k =-。 二阶低通滤波器可增加阻带区得衰减速度,在阻带区,它能提供-4db/

十倍频程

的衰减。

1.3.2 高通滤波器

与低通滤波器相反,高通滤波器用来通过高频信号,抑制或衰减低频信号。理想高通滤波器的特性如图。实际特性只能接近理想特性如图。

图1.11 理想特性 图1.12 实际逼近

1、一阶RC 无源高通滤波电路

对下图所示 RC 串联电路,电阻电压对输入电压的转移电压比为

图1.13 无源高通滤波器

RC RC C R R U U H ωωωωj 1j j )j (12

+=+

==

(1-31)

01

ωRC =

= (1-32)

2、二阶R 无源高通滤波电路

图1.14 二阶无源高通滤波器 其传递函数为

RC C R C R U U H ωωωωj31)j (2222221

2

+--=

= (1-33)

3、一阶有源高通滤波器

图1.15 一阶有源高通滤波器

其传递函数为: 21

0/()1/R R H jw jw w =-

- (1-34)

式中 0111/w R C = (1-35)

幅频特性为:

()H jw =

(1-36)

相频特性为:

0()arctan(/)w w w ?π=-+ (1-37)

4、二阶有源高通滤波器

图1.16 二阶有源高通滤波器

其传递函数

200()

()1(/)2/A H jw w w j w w ε∞=

-- (1-38)

幅频特性:

()H jw (1-39)

相频特性:

0202/()arctan

1(/)w w

w w w ε?=- (1-40)

式中43()1/A R R ∞=+、12R R R ==、12C C C ==、01/w RC =

1/2(24/3)R R ε=-。.

1.3.3 带通滤波器

带通滤波器用来通过某一频段的信号,将此频段两端以外的信号加以抑制或衰减,带通滤波器的理想特性和实际特性可用下图说明

图1.17 理想特性 图1.18 实际特性

1、 RC 无源带通滤波器

图1.19 RC 无源带通滤波器

RC C R RC

U U H ωωωωj31j )j (22212+-== (1-41)

仿真得到他的幅频特性曲线为:

2、有源带通滤波器

图1.20 有源带通滤波器

其传递函数为

000()

()1(//)A w H jw iQ w w w w -=

+- (1-42)

幅频特性

()H jw = (1-43)

相频特性

00()arctan (//)w Q w w w w ?π=--- (1-44)

式中12C C C ==、031()/2A w R R =、

0w =

(1-45)

1/Q = (1-46)

:

1.3.4 带阻滤波器

与带通滤波器相反,带阻滤波器专门用来抑制或衰减某一频段的信号,而让该频段以外的所有信号通过,带阻滤波器抑制的频段带宽叫阻带带宽,简称频宽,用B表示,抑制频带中点所在角频率叫做中心角频率,用w0表示。B越窄,Q值越高,滤波器的抑制选择性越好。理想带阻特性在阻带内的增益为零,实际上,只能获得近似的抑制特性,带阻滤波器的理想特性与实际特性如下图

图1.21 理想特性曲线

图1.22 实际特性曲线

1、带阻滤波器可以由一个带通滤波器与一个减法器组成原理如下:

图1.23 带阻滤波器实现方法

图1.24 带阻滤波器 它的传输函数为:

02

2

00

()

()1w A w s Q

H s w s s w Q =+

++ (1-47)

式中0()A w =-1,则:

22

22

00

()s w H s w s s w Q +=

++ (1-48)

其中:0w =

1.3.5 全通滤波器

全通滤波器又叫移相器,它能通过所有频率的信号,其增益幅度为常数,仅相位是频率的函数。常见得有一阶全通滤波器,二阶全通滤波器如图和图所示

A B

图1.25 一阶全通滤波器

上面为两个一阶移相滤波器,它们能提供180度得相移。电路A 的移相范围可这样看出,当输入信号频率为零时,电容C 相当于开路,同相端电压为输入电压,电路成为电压跟随器,相移为零;当信号频率很高时,C 几乎短路,同相端电压为零,电路成为反相比例运算放大器,相移为-180度。同理,信号频率为零时,图b 电路的电容C 开路,电路为反相比例运算放大器,相移-180度。当信号频率很高时,C 几乎短路,电路成为电压跟随器相移为零即-360度。

A 图的传输函数为: 2

2

1()1jwcR H jw jwcR -=

+ (1-49)

幅频特性为 :

()1

H j w = (1-50)

相频特性为: 2()2a r c t a n j w R c ?=- (1-51)

图b 的传输函数为: 2

21()1jwcR H jw jwcR -=-

+ (1-52)

幅频特性为:

()1

H j w = (1-53)

相频特性为: 2()2a r c t a n j w R c ?π=-- (1-54) 二阶全通滤波器

图1.26 二阶全通滤波器 图中C1=C2,R3/R4=4R1/R2

传输函数为:200200

1()()1()1()()1w w

A j j w Q w H jw w w j j w Q w ??-+??

??=-+ (1-55)

幅频特性为:()H jw A = (1-56)

相频特性为:001

()2arctan (//)w Q w w w w ???=-??

-?? (1-57)

式中1/Q =01/w =

=22

1Q A Q =+。 二阶移相滤波器它的优点是简单,移相较好,它的移相范围为0——-360度。

1.4 几种典型RC 滤波电路

1、压控电压源型滤波电路

压控电压源,又叫萨-伦电路。1955年由MIT 林肯实验室的R. P. Sallen 和 E. L. Key 最先发表,是应用最为广泛的滤波器结构之一,如图下所示。它流行的其中一

带通带阻数字滤波器

以下两个滤波器都是切比雪夫I型数字滤波器,不是巴特沃尔滤波器,请使用者注意! 1.带通滤波器 function y=bandp(x,f1,f3,fsl,fsh,rp,rs,Fs) %带通滤波 %使用注意事项:通带或阻带的截止频率与采样率的选取范围是不能超过采样率的一半%即,f1,f3,fs1,fsh,的值小于Fs/2 %x:需要带通滤波的序列 % f 1:通带左边界 % f 3:通带右边界 % fs1:衰减截止左边界 % fsh:衰变截止右边界 %rp:边带区衰减DB数设置 %rs:截止区衰减DB数设置 %FS:序列x的采样频率 % f1=300;f3=500;%通带截止频率上下限 % fsl=200;fsh=600;%阻带截止频率上下限 % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值 % Fs=2000;%采样率 % wp1=2*pi*f1/Fs; wp3=2*pi*f3/Fs; wsl=2*pi*fsl/Fs; wsh=2*pi*fsh/Fs; wp=[wp1 wp3]; ws=[wsl wsh]; % % 设计切比雪夫滤波器; [n,wn]=cheb1ord(ws/pi,wp/pi,rp,rs);

[bz1,az1]=cheby1(n,rp,wp/pi); %查看设计滤波器的曲线 [h,w]=freqz(bz1,az1,256,Fs); h=20*log10(abs(h)); figure;plot(w,h);title('所设计滤波器的通带曲线');grid on; y=filter(bz1,az1,x); end 带通滤波器使用例子 %-------------- %带通滤波器测试程序 fs=2000; t=(1:fs)/fs; ff1=100; ff2=400; ff3=700; x=sin(2*pi*ff1*t)+sin(2*pi*ff2*t)+sin(2*pi*ff3*t); figure; subplot(211);plot(t,x); subplot(212);hua_fft(x,fs,1); % y=filter(bz1,az1,x); y=bandp(x,300,500,200,600,0.1,30,fs); figure; subplot(211);plot(t,y); subplot(212);hua_fft(y,fs,1); %调用到的hua_fft()函数代码如下 function hua_fft(y,fs,style,varargin) %当style=1,画幅值谱;当style=2,画功率谱;当style=其他的,那么花幅值谱和功率谱

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

带通滤波器的设计

目录 一.设计概述 二.设计任务及要求 2.1 设计任务 2.2 设计要求 三.设计方案 3.1设计结构 3.2元件参数的理论推导 3.3仿真电路构建 3.4仿真电路分析四.所用器件 五.实验结果 5.1 实验数据记录 5.2 实验数据分析六.实验总结 6.1 遇到的主要问题 6.2 解决问题的措施 6.3 实验反思与收获 附图 参考文献

一.设计概述 根据允许的通过的频率范围,可以将滤波器分为低通滤波器,高通滤波器,带通滤波器和带阻滤波器4种。其中,带通滤波器是指允许某一频率范围内的频率分量通过,其他范围的频率分量衰减到极低水平的滤波器。 在滤波器中,信号能够通过的范围成为通频带或通带,信号受到很大衰减或完全被抑制的频率范围成为阻带,通带和阻带之间的界限称为截止频率。对于一个理想的带通滤波器,通带范围内则完全平坦,对传输信号基本没有增益的衰减作用,其次,通带之外的所有频率均能被完全衰减掉,通带和阻带之间存在一定的过渡带。 在带通滤波器的实际设计过程中,主要参数包括中心频率f0,频带宽度BW,上限截止频率fH和下限截止频率fL。一般情况下,为使滤波器在任意频段都具有良好的频率分辨能力,可采用固定带宽带通滤波器(如收音机的选频)。所选带宽越窄,则频率选择能力越高。但为了覆盖所要检测的整个频率范围,所需要的滤波器数量就很大。因此,在很多场合,固定带宽带通滤波器不一定做成固定中心频率的,而是利用一个参考信号,使滤波器中心频率跟随参考信号的频率而变化,其中,参考信号是由信号发生器提供的。上述可便中心频率的固定带宽带通滤波器,经常用于滤波和扫描跟踪滤波应用中。 二.设计任务及要求 1)设计任务 带通滤波器的设计方案有很多,本实验将采用高通滤波器和低通滤波器级联的设计方案实现一个带通滤波器,通过多级反馈,减少干扰信号对滤波器的影响。为了检测滤波电路的通带特性,设计一个带宽检测电路,通过发光二极管的亮灭近似检测电路的带宽范围。 设计要求 2)设计要求 (1)性能指标要求 1.输入信号:有效值为1V的电压信号。 2.输出信号中心频率f0通过开关切换,分别为500Hz 1.5KHz 3KHz 10KHz 误差10%。 3.带通滤波器带宽BW

matlab程序之——滤波器(带通-带阻)教学内容

m a t l a b程序之——滤波器(带通-带阻)

matlab程序之——滤波器(带通,带阻) 以下两个滤波器都是切比雪夫I型数字滤波器,不是巴特沃尔滤波器,请使用者注意! 1.带通滤波器 function y=bandp(x,f1,f3,fsl,fsh,rp,rs,Fs) %带通滤波 %使用注意事项:通带或阻带的截止频率与采样率的选取范围是不能超过采样率的一半 %即,f1,f3,fs1,fsh,的值小于 Fs/2 %x:需要带通滤波的序列 % f 1:通带左边界 % f 3:通带右边界 % fs1:衰减截止左边界 % fsh:衰变截止右边界 %rp:边带区衰减DB数设置 %rs:截止区衰减DB数设置 %FS:序列x的采样频率 % f1=300;f3=500;%通带截止频率上下限 % fsl=200;fsh=600;%阻带截止频率上下限 % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值 % Fs=2000;%采样率 % wp1=2*pi*f1/Fs; wp3=2*pi*f3/Fs; wsl=2*pi*fsl/Fs; wsh=2*pi*fsh/Fs; wp=[wp1 wp3]; ws=[wsl wsh]; % % 设计切比雪夫滤波器; [n,wn]=cheb1ord(ws/pi,wp/pi,rp,rs); [bz1,az1]=cheby1(n,rp,wp/pi); %查看设计滤波器的曲线 [h,w]=freqz(bz1,az1,256,Fs); h=20*log10(abs(h));

figure;plot(w,h);title('所设计滤波器的通带曲线');grid on; y=filter(bz1,az1,x); end 带通滤波器使用例子 %-------------- %带通滤波器测试程序 fs=2000; t=(1:fs)/fs; ff1=100; ff2=400; ff3=700; x=sin(2*pi*ff1*t)+sin(2*pi*ff2*t)+sin(2*pi*ff3*t); figure; subplot(211);plot(t,x); subplot(212);hua_fft(x,fs,1); % y=filter(bz1,az1,x); y=bandp(x,300,500,200,600,0.1,30,fs); figure; subplot(211);plot(t,y); subplot(212);hua_fft(y,fs,1); %调用到的hua_fft()函数代码如下 function hua_fft(y,fs,style,varargin) %当style=1,画幅值谱;当style=2,画功率谱;当style=其他的,那么花幅值谱和功率谱 %当style=1时,还可以多输入2个可选参数 %可选输入参数是用来控制需要查看的频率段的 %第一个是需要查看的频率段起点 %第二个是需要查看的频率段的终点 %其他style不具备可选输入参数,如果输入发生位置错误 nfft= 2^nextpow2(length(y));%找出大于y的个数的最大的2的指数值(自动进算最佳FFT步长nfft) %nfft=1024;%人为设置FFT的步长nfft y=y-mean(y);%去除直流分量 y_ft=fft(y,nfft);%对y信号进行DFT,得到频率的幅值分布 y_p=y_ft.*conj(y_ft)/nfft;%conj()函数是求y函数的共轭复数,实数的共轭复数是他本身。

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

带通滤波电路设计

带通滤波电路设计一.设计要求 (1)信号通过频率范围 f 在100 Hz至10 kHz之间; (2)滤波电路在 1 kHz 电路的幅频衰减应当在 的幅频响应必须在± 1 kHz 时值的± 3 dB 1 dB 范围内,而在 范围内; 100 Hz至10 kHz滤波 (3)在10 Hz时幅频衰减应为26 dB ,而在100 kHz时幅频衰减应至少为16 dB 。 二.电路组成原理 由图( 1)所示带通滤波电路的幅频响应与高通、低通滤波电路的幅频响应进行比较, 不难发现低通与高通滤波电路相串联如图(2),可以构成带通滤波电路,条件是低通滤波电路的截止角频率 W H大于高通电路的截止角频率 W L,两者覆盖的通带就提供了一个带通响应。 V I V O 低通高通 图( 1) 1 W H低通截止角频率 R1C1 1 W L高通截止角频率 R2C2 必须满足W L

│A│ O │A│ O │A│ O 低通 W w H 高通 W w L 带通 W W w L H 图( 2) 三.电路方案的选择 参照教材 10.3.3 有源带通滤波电路的设计。这是一个通带频率范围为100HZ-10KHZ的带通滤波电路,在通带内我们设计为单位增益。根据题意,在频率低端f=10HZ 时,幅频响应至少衰减 26dB。在频率高端 f=100KHZ 时,幅频响应要求衰减不小于16dB。因此可以选择一个二阶高通滤波电路的截止频率fH=10KHZ,一个二阶低通滤波电路的fL=100HZ,有源器件仍选择运放 LF142,将这两个滤波电路串联如图所示,就构成了所要求的带通滤波电路。 由教材巴特沃斯低通、高通电路阶数n 与增益的关系知 A vf1 =1.586 ,因此,由两级串联的带通滤波电路的通带电压增益(Avf1 ) 2=( 1.586 )2=2.515, 由于所需要的通带增益为0dB, 因此在低通滤波器输入部分加了一个由电阻R1、 R2组成的分压器。

(整理)带通滤波器设计

实验八 有源滤波器的设计 一.实验目的 1. 学习有源滤波器的设计方法。 2. 掌握有源滤波器的安装与调试方法。 3. 了解电阻、电容和Q 值对滤波器性能的影响。 二.预习要求 1. 根据滤波器的技术指标要求,选用滤波器电路,计算电路中各元件的数值。设计出 满足技术指标要求的滤波器。 2. 根据设计与计算的结果,写出设计报告。 3. 制定出实验方案,选择实验用的仪器设备。 三.设计方法 有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。 巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 21)(??? ? ??+= ωωω , n=1,2,3,. . . (1) 写成: n c uo u A j A 211) (??? ? ??+=ωωω (2) )(ωj A u 其中A uo 为通带内的电压放大倍数,ωC A uo 为截止角频率,n 称为滤波器的阶。从(2) 式中可知,当ω=0时,(2)式有最大值1; 0.707A uo ω=ωC 时,(2)式等于0.707,即A u 衰减了3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性越接近于理想特性。如图1所示。ω 当 ω>>ωC 时, n c uo u A j A ??? ? ??≈ωωω1 )( (3) 图1低通滤波器的幅频特性曲线

两边取对数,得: lg 20c uo u n A j A ωω ωlg 20)(-≈ (4) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为衰减估算式。 表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。 在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = c s ω,ωC 是低通 滤波器的截止频率。 对于一阶低通滤波器,其传递函数: c c uo u s A s A ωω+= )( (5) 归一化的传递函数: 1 )(+= L uo L u s A s A (6) 对于二阶低通滤波器,其传递函数:2 22)(c c c uo u s Q s A s A ωωω++ = (7) 归一化后的传递函数: 1 1)(2 ++= L L uo L u s Q s A s A (8) 由表1可以看出,任何高阶滤波器都可由一阶和二阶滤波器级联而成。对于n 为偶数的高阶滤波器,可以由2n 节二阶滤波器级联而成;而n 为奇数的高阶滤波器可以由2 1-n 节二

基于matlab的带通、带阻滤波器设计实例

基于matlab的带通、带阻滤波器设计实例 以下两个滤波器都是切比雪夫I型数字滤波器,不是巴特沃尔滤波器,请使用者注意! 1.带通滤波器 function y=bandp(x,f1,f3,fsl,fsh,rp,rs,Fs) %带通滤波 %使用注意事项:通带或阻带的截止频率与采样率的选取范围是不能超过采样率的一半%即,f1,f3,fs1,fsh,的值小于 Fs/2 %x:需要带通滤波的序列 % f 1:通带左边界 % f 3:通带右边界 % fs1:衰减截止左边界 % fsh:衰变截止右边界 %rp:边带区衰减DB数设置 %rs:截止区衰减DB数设置 %FS:序列x的采样频率 % f1=300;f3=500;%通带截止频率上下限 % fsl=200;fsh=600;%阻带截止频率上下限 % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值 % Fs=2000;%采样率 % wp1=2*pi*f1/Fs; wp3=2*pi*f3/Fs; wsl=2*pi*fsl/Fs; wsh=2*pi*fsh/Fs; wp=[wp1 wp3]; ws=[wsl wsh]; % % 设计切比雪夫滤波器; [n,wn]=cheb1ord(ws/pi,wp/pi,rp,rs); [bz1,az1]=cheby1(n,rp,wp/pi); %查看设计滤波器的曲线 [h,w]=freqz(bz1,az1,256,Fs); h=20*log10(abs(h)); figure;plot(w,h);title('所设计滤波器的通带曲线');grid on; y=filter(bz1,az1,x); end 带通滤波器使用例子 %-------------- %带通滤波器测试程序 fs=2000; t=(1:fs)/fs; ff1=100;

低通滤波器的设计

低通滤波器的设计 模拟滤波器在各种预处理电路中几乎是必不可少的,已成为生物医学仪器中的基本单元电路。有源滤波器实质上是有源选频电路,它的功能是允许指定频段的信号通过,而将其余频段上的信号加以抑制或使其急剧衰减。各种生物信号的低噪声放大,都是首先严格限定在所包含的频谱范围之内。 最常用的全极点滤波器有巴特沃斯滤波器和切比雪夫滤波器。就靠近ω=0处的幅频特性而言,巴特沃斯滤波器比切比雪夫滤波器平直,即在频率的低端巴特沃斯滤波器幅频特性更接近理想情况。但在接近截止频率和在阻带内,巴特沃斯滤波器则较切比雪夫滤波器差得多。本设计中要保证低频信号不被衰减,而对高频要求不高,因此选择了巴特沃斯滤波器。巴特沃思滤波电路(又叫最平幅度滤波电路)是最简单也是最常用的滤波电路,这种滤波电路对幅频响应的要求是:在小于截止频率ωc。的范围内,具有最平幅度响应,而在ω>ωc。后,幅频响应迅速下降。 因为本设计中要保证低频信号不被衰减,而对高频要求不高,所以选择 二阶滤波器即可。本系统采用二阶Butterworth低通滤波器,截止频率f H=100HZ,其电路原理图如1: 图1 低通滤波器图 根据matlab软件算得该设计适合二阶低通滤波器,FSF=628选Z=10000,则

Z R R FSF Z ?=?=的归一值的归一值 C C 3.2脉象信号的的前置放大 由于人体信号的频率和幅度都比较低,很容易受到空间电磁波以及人体其它生理信号的干扰,因此在对其进行变换、分析、存储、记录之前,应该进行一些预处理,以保证测量结果的准确性。因此需要对信号进行放大,“放大”在信号预处理中是第一位的。根据所测参数和所用传感器的不同,放大电路也不同。用于测量生物电位的放大器称为生物电放大器,生物电放大器比一般放大器有更严格的要求。 在本研究中放在传感器后面的电路就是前置放大电路,由于从传感器取得的信号很微弱,且混杂了一些其他的干扰信号。因此前置放大电路的主要功能是,滤除一些共模干扰信号,同时进行一定的放大。该电路由4部分构成:并联型双运放仪器放大器,阻容耦合电路,由集成仪用放大器构成的后继放大器和共模信号取样电路。并联型双运放仪器放大器的优点是不需要精密的匹配电阻,理论上它的共模抑制比为无穷大,且与其外围电阻的匹配程度无关。集成仪用放大器将由并联型双运放仪器放大器输出的双端差动信号转变为单端输出信号,并采用阻容耦合电路隔离直流信号,可以使集成仪用放大器取得较高的差模增益,从而得到很高的共模抑制比。共模取样驱动电路由两个等值电阻和一只由运放构成的跟随器构成,能够使共模信号不经阻容耦合电路的分压直接加在集成放大器的输入端,避免了由于阻容耦合电路的不匹配而降低电路整体的共模抑制比。此电路中也采用了右腿驱动电路来抑制位移电流的影响。前置放大电路参数选择:此部分总的增益取为1000,其中并联型双运放仪器放大器的增益为5,集成仪用放大器的增益为200。具体设计电路如图2所示

有源带通滤波器设计

二阶有源模拟带通滤波器设计 摘要 滤波器是一种具有频率选择功能的电路,它能使有用的频率信号通过。而同时抑制(或衰减)不需要传送频率范围内的信号。实际工程上常用它来进行信号处理、数据传送和抑制干扰等,目前在通讯、声纳、测控、仪器仪表等领域中有着广泛的应用。 以往这种滤波电路主要采用无源元件R、L和C组成,60年代以来,集成运放获得迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。 通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。 滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。文中结合实例,介绍了设计一个二阶有源模拟带通滤波器。 设计中用RC网络和集成运放组成,组成电路选用LM324不仅可以滤波,还可以进行放大。 关键字:带通滤波器 LM324 RC网络

目录 目录 (2) 第一章设计要求 (3) 1.1基本要求 (3) 第二章方案选择及原理分析 (4) 2.1.方案选择 (4) 2.2 原理分析 (5) 第三章电路设计 (7) 3.1 实现电路 (7) 3.2参数设计 (7) 3.3电路仿真 (9) 1.仿真步骤及结果 (9) 2.结果分析 (11) 第四章电路安装与调试 (12) 4.1实验安装过程 (12) 4.2 调试过程及结果 ..................................................................................................... 错误!未定义书签。 4.2.1 遇到的问题 .................................................................................................. 错误!未定义书签。 4.2.2 解决方法 ...................................................................................................... 错误!未定义书签。 4.2.3 调试结果与分析 (12) 结论 (13) 参考文献 (14)

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1理论分析 (3) 1.2电路组成 (4) 1.3一阶无源RC低通滤波电路性能测试 (5) 1.3.1正弦信号源仿真与实测 (5) 1.3.2三角信号源仿真与实测 (10) 1.3.3方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2电路组成 (22) 2.3二阶无源LC带通滤波电路性能测试 (23) 2.3.1正弦信号源仿真与实测 (23) 2.3.2三角信号源仿真与实测 (28)

2.3.3方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1结论 (39) 3.2误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

低通滤波器电路设计与实现

低通滤波器电路设计与实现 摘要 滤波器是一种二端口网络。它具有选择频率的特性,即可以让某些频率顺利通过,而对其它频率则加以阻拦。目前由于在雷达、微波、通讯等部门,多频率工作越来越普遍,对分隔频率的要求也相应提高,所以需用大量的滤波器。再则,微波固体器件的应用对滤波器的发展也有推动作用,像参数放大器、微波固体倍频器、微波固体混频器等一类器件都是多频率工作的,都需用相应的滤波器。低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用有源二阶巴特沃斯低通滤波器可达到本次设计要求的指标,可调增益部分通过电压跟随器和反相放大器来实现可调增益。 关键词:低通滤波器,巴特沃斯滤波器,频率响应

Low-pass filter circuit design and Achieve Author: Shang Shiwei Tutor: Song Jiayou Abstract Filter is a kind of two-port network. It has the characteristics of frequency choice, that can make some frequency pass, but to other frequency is to stop, because now in radar, microwave, communication, and other departments, more work frequency is becoming more and more common, the requirements of the frequency of space also increase; So need a lot of filter. Moreover, the application of microwave solid device for the development of the filter can boost, as parameters amplifiers, microwave solid times frequency device, microwave solid mixers, kind of device is working frequency, need corresponding filter. Low pass filter is a through the low frequency signal and attenuation or inhibit the high frequency signal components. Ideal filter circuit frequency response in bandpass should have certain amplitude and linear phase shift, and in which the amplitude with inner resistance should be zero. Active filter is to point to by amplifying circuit and network structure of RC filter circuit, it is actually a particular frequency response of the amplifier. The order number of filter, the higher amplitude frequency characteristics of the attenuation rate faster, but RC network's day, more component parameters are calculated the more detailed, the more difficult the commissioning of the circuit. According to the index, the design choose active second order bart wo low-pass filter can achieve the design requirements of the index, adjustable gain through the voltage of follow and reversed-phase amplifier to achieve adjustable gain. Key words:Low-pass filter,Butterworth filter,Frequency response

带通滤波器工作原理与带通滤波器原理图详解

带通滤波器工作原理与带通滤波器原理图详解 带通滤波器(band-pass filter)是一个允许特定频段的波通过同时屏蔽其他频段的设备。比如RLC振荡回路就是一个模拟带通滤波器。 带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。这些滤波器也可以用低通滤波器同高通滤波器组合来产生。 工作原理 一个理想的带通滤波器应该有一个完全平坦的通带,在通带内没有放大或者衰减,并且在通带之外所有频率都被完全衰减掉,另外,通带外的转换在极小的频率范围完成。 实际上,并不存在理想的带通滤波器。滤波器并不能够将期望频率范围外的所有频率完全衰减掉,尤其是在所要的通带外还有一个被衰减但是没有被隔离的范围。这通常称为滤波器的滚降现象,并且使用每十倍频的衰减幅度的dB数来表示。通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。然而,随着滚降范围越来越小,通带就变得不再平坦,开始出现“波纹”。这种现象在通带的边缘处尤其明显,这种效应称为吉布斯现象。 除了电子学和信号处理领域之外,带通滤波器应用的一个例子是在大气科学领域,很常见的例子是使用带通滤波器过滤最近3到10天时间范围内的天气数据,这样在数据域中就只保留了作为扰动的气旋。 在频带较低的剪切频率f1和较高的剪切频率f2之间是共振频率,这里滤波器的增益最大,滤波器的带宽就是f2和f1之间的差值。 典型应用 许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。这种有源带通滤波器的中

带通滤波器设计

LC椭圆函数带通滤波器设计 要求带通滤波器,在15kHz~ZOkHz的频率范围内,衰减最大变化1dB,低于14.06kHz和高于23kHz频率范围,最小衰减为50dB,Rs=RL=10kΩ。 ③运行Filter Solutions程序。点击“阻带频率”输人框,在“通带波纹(dB)”内输人0.18,在“通带频率”内输人1,在“阻带频率”内输人1.456,选中“频率单位-弧度”逻辑框。在“源阻抗”和“负载阻抗”内输人1。 ④点击“确定阶数”控制钮打开第二个面板。在“阻带衰减(dB)”内输人50,点击“设置最小阶数”按钮并点击“关闭”,主控制面板上形式出“6阶”,选中“偶次阶模式”逻辑框。 ⑤点击“电路”按钮。Filter s。lutions提供了两个电路图。选择“无源滤波器1”,如图1(a)所示。 ⑥这个滤波器必须变换为中心频率ω0=1的归一化带通滤波器。带通滤波器的Q 值为: 把所有的电感量和电容值都乘以Qbp°然后用电感并联每一个电容、用电容串联每一个电感使其谐振频率为ω0=1,该网络被变换为带通滤波器。使用的谐振元仵是原元件值的倒数,如图1(b)所示。 ⑦按照图1的方式转换Ⅱ型支路。

变换后的滤波器见图1(c)。在原理图下标出了以rad/s为单位的谐振频率。 ⑧用中心频率fo=17.32kHz和阻抗10kΩ对滤波器进行去归一化以完成设计。将所有的电感乘以Z/FSF,所有的电容除以z×FSF,其中z=104, FSF=2πfe=1.0882×105。最终的滤波器见图1(d)。图1(c)中的归一化谐振频率直接乘以几何中心频率fo=17.32kHz即可得到谐振频率。频率响应见图1(e)。

设计数字低通滤波器(用matlab实现)

DSP 设计滤波器报告 姓名:张胜男 班级:07级电信(1)班 学号:078319120 一·低通滤波器的设计 (一)实验目的:掌握IIR 数字低通滤波器的设计方法。 (二)实验原理: 1、滤波器的分类 滤波器分两大类:经典滤波器和现代滤波器。 经典滤波器是假定输入信号)(n x 中的有用成分和希望取出的成分各自占有不同的频带。这样,当)(n x 通过一个线性系统(即滤波器)后可讲欲去除的成分有效的去除。 现代滤波器理论研究的主要内容是从含有噪声的数据记录(又称时间序列)中估计出信号的某些特征或信号本身。 经典滤波器分为低通、高通、带通、带阻滤波器。每一种又有模拟滤波器(AF )和数字滤波器(DF )。对数字滤波器,又有IIR 滤波器和FIR 滤波器。 IIR DF 的转移函数是: ∑∑=-=-+==N k k k M r r r z a z b z X z Y z H 10 1)()()( FIR DF 的转移函数是: ∑-=-=10)()(N n n z n h z H FIR 滤波器可以对给定的频率特性直接进行设计,而IIR 滤波器目前最通用的方法是利用已经很成熟的模拟滤波器的设计方法进行设计。 2、滤波器的技术要求 低通滤波器: p ω:通带截止频率(又称通带上限频率) s ω:阻带下限截止频率 p α:通带允许的最大衰减 s α:阻带允许的最小衰减 (p α,s α的单位dB ) p Ω:通带上限角频率 s Ω:阻带下限角频率 (s p p T ω=Ω,s s s T ω=Ω)即 C p p F ωπ2=Ω C s s F ωπ2=Ω 3、IIR 数字滤波器的设计步骤:

带通滤波器设计步骤

带通滤波器设计步骤 1、根据需求选择合适的低通滤波器原型 2、把带通滤波器带宽作为低通滤波器的截止频率,根据抑制点的频率距离带通滤波器中心频点距离的两倍作为需要抑制的频率,换算抑制频率与截止频率的比值,得出m 的值,然后根据m 值选择低通滤波器的原型参数值。 滤波器的时域特性 任何信号通过滤波器都会产生时延。Bessel filter 是特殊的滤波器在于对于通带内的所有频率而言,引入的时延都是恒定的。这就意味着相对于输入,输出信号的相位变化与工作的频率是成比例的。而其他类型的滤波器(如Butterworth, Chebyshev,inverse Chebyshev,and Causer )在输出信号中引入的相位变化与频率不成比例。相位随频率变化的速率称之为群延迟(group delay )。群延迟随滤波器级数的增加而增加。 模拟滤波器的归一化 归一化的滤波器是通带截止频率为w=1radian/s, 也就是1/2πHz 或约0.159Hz 。这主要是因为电抗元件在1弧度的时候,描述比较简单,XL=L, XC=1/C ,计算也可以大大简化。归一化的无源滤波器的特征阻抗为1欧姆。归一化的理由就是简化计算。 Bessel filter 特征:通带平坦,阻带具有微小的起伏。阻带的衰减相对缓慢,直到原理截止频率高次谐波点的地方。原理截止频率点的衰减具有的经验公式为n*6dB/octave ,其中,n 表示滤波器的阶数,octave 表示是频率的加倍。例如,3阶滤波器,将有18dB/octave 的衰减变化。正是由于在截止频率的缓慢变化,使得它有较好的时域响应。 Bessel 响应的本质截止频率是在与能够给出1s 延迟的点,这个点依赖于滤波器的阶数。 逆切比雪夫LPF 原型参数计算公式(Inverse Chebyshev filter parameters calculate equiations ) ) (cosh )(cosh 11Ω=--Cn n 其中 1101.0-=A Cn , A 为抑制频率点的衰减值,以dB 为单位;Ω为抑制频率与截止频率的比值 例:假设LPF 的3dB 截止频率为10Hz,在15Hz 的频点需要抑制20dB,则有: 95.91020*1.0==Cn ;Ω=15/10=1.5 1.39624.0988.2) 5.1(cosh )95.9(cosh 11===--n ,因此,滤波器的阶数至少应该为4

基于matlab的FIR低通高通带通带阻滤波器设计

基于matlab的FIR低通-高通-带通-带阻滤波器设计

————————————————————————————————作者:————————————————————————————————日期:

北京师范大学 课程设计报告 课程名称: DSP 设计名称:FIR 低通、高通带通和带阻数字滤波器的设计姓名: 学号: 班级: 指导教师: 起止日期: 课程设计任务书

学生班级: 学生姓名: 学号: 设计名称: FIR 低通、高通带通和带阻数字滤波器的设计 起止日期: 指导教师: 设计目标: 1、采用Kaiser 窗设计一个低通FIR 滤波器 要求: 采样频率为8kHz ; 通带:0Hz~1kHz ,带内波动小于5%; 阻带:1.5kHz ,带内最小衰减:Rs=40dB 。 2、采用hamming 窗设计一个高通FIR 滤波器 要求: 通带截至频率wp=rad π6.0, 阻带截止频率ws=rad π4.0, 通带最大衰减dB p 25.0=α,阻带最小衰减dB s 50=α 3、采用hamming 设计一个带通滤波器 低端阻带截止频率 wls = 0.2*pi ; 低端通带截止频率 wlp = 0.35*pi ; 高端通带截止频率 whp = 0.65*pi ; 高端阻带截止频率 whs = 0.8*pi ; 4、采用Hamming 窗设计一个带阻FIR 滤波器 要求: 通带:0.35pi~0.65pi ,带内最小衰减Rs=50dB ; 阻带:0~0.2pi 和0.8pi~pi ,带内最大衰减:Rp=1dB 。

FIR 低通、高通带通和带阻数字滤波器的设计 一、 设计目的和意义 1、熟练掌握使用窗函数的设计滤波器的方法,学会设计低通、带通、带阻滤波器。 2、通过对滤波器的设计,了解几种窗函数的性能,学会针对不同的指标选择不同的窗函数。 二、 设计原理 一般,设计线性相位FIR 数字滤波器采用窗函数法或频率抽样法,本设计采用窗函数法,分别采用海明窗和凯泽窗设计带通、带阻和低通。 如果所希望的滤波器的理想频率响应函数为)(jw d e H ,如理想的低通,由信号系统的知识知道,在时域系统的冲击响应h d (n)将是无限长的,如图2、图3所示。 H d (w) -w c w c 图2 图3 若时域响应是无限长的,则不可能实现,因此需要对其截断,即设计一个FIR 滤波器频率响应∑-=-=1 0)()(N n jwn jw e n h e H 来逼近)(jw d e H ,即用一个窗函数w(n)来 截断h d (n),如式3所示: )()()(n w n h n h d = (式1)。 最简单的截断方法是矩形窗,实际操作中,直接取h d (n)的主要数据即可。 )(n h 作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数为: ∑-=-=1 0)()(N n jwn jw e n h e H (式2) 令jw e z =,则 ∑-=-=1 0)()(N n n z n h z H (式3), 式中,N 为所选窗函数)(n w 的长度。

相关文档
最新文档