压差控制的自动流体换向阀门的原理及设计

压差控制的自动流体换向阀门的原理及设计

压差控制的自动流体换向阀门的原理及设计

?今天为大家介绍一项国家发明授权专利——压差控制的自动流体换向阀门。该专利由重庆德运模具制造有限公司申请,并于2018年9月11日获得授权公告。

?

?

?内容说明

?

?本发明属于流体控制技术领域,尤其涉及一种在一定压力差值下自动调节流动方向的阀门。

?

?

?发明背景

?

?阀门是一种被广泛地应用于流体、气体类流体流动的阀门,常见的有截止阀、单向阀等,其中,单向阀是一种控制流体流动方向的控制元件,实现流体的单向流动控制,用于防止流体回流,而截止阀主要用于截断管道内流体通断的阀门。在实际应用中,需要在一定条件下截断流体的流动通道,停止流体的流动输送,且又需要在一定压差下实现流体的单向流动,如在流体管路系统中要求整个系统处于一定压强范围内的稳压状态,需要根据内外压强差来注入或者是放出流体,以达平衡。

?

压差平衡阀

压差平衡阀 压差平衡阀,亦称自力式压差控制阀,是一种不需外来能源依靠被调 介质自身压力变化进行自动调节的阀门,适用于分户计量或自动控制系统中。压差平衡阀为双瓣结构,阀杆不平衡力 河北平衡阀门制造有限公司压差平衡阀 小,结构紧凑,用于供热(空调)水系列中,恒定被控制系统的压差,并 有以下的特点: 1、恒定被控制系统压差; 2、支持被控系统内部自主调节; 3、吸收外网压差波动; 4、采用先进的无级调压结构,控制压差可调比可达25:1; 5、具备自动消除堵塞功能; 6、法兰尺寸符合中灰铸铁法兰尺寸。 压差平衡阀的使用方法: 1、介质流动方向应与阀体箭头方向一致; 2、压差平衡阀应安装在回水管上,阀上接导压管,导压管的另一端与供水管连接,建议在导压管供水端安装1/2"球阀,以便启动消除堵塞功能; 3、在导压管前的供水管上应安装过滤网,避免水质太差造成该阀失去自动调节功能; 4、供水管和该阀前的回水管应分别装设压力表,便于调节控制压差; 5、如发现该系统流量过大或过小,可能的原因是管道元件安装时的杂物卡阻在阀塞上,可将1/2"球阀关闭3—5分钟,这时如果是较轻堵塞,即可自动消除,如还不能消除,则要拆开阀门检查消除堵塞物; 6、控制压差调节方法:逆时针方向调节调压阀杆,观察压差。 [1]压差平衡阀选型说明: 按式KV=G/式中(G-M3/h),根据最大流量和可能的最小工作压差计算所需的最大KV值,应小于阀门的最大KV值;根据最小流量和可能的最大 工作压差计算所需的最小KV值,应大于阀门的最小KV值,如G=3-10M/h,

△P"最大=200KPa,△P"最小=20KPa,KV最大=10/=25,KV最小=3/=,选择DN50即符合要求,建议尽量不变径选用阀门。 压差平衡阀的用途: 为何室内安装自控装置必须安装压差平衡阀原因如下: 1.如果不安装压差平衡阀,近端用户由于压差过大,当近端用户室内温度达到设置值时,由于感温包的膨胀推力是有限的使恒温阀无法关断,使近端用户室内温度超标。 2.如果不安装压差平衡阀,近端用户压差过大,远端用户压差小,外网压差不平衡,造成近端和远端用户室内温度产生时序,如果采用间接性供暖方式,由于时序过长造成远端用户还未达到用户需求时就到了供暖的间歇时间,使远端用户无法达到供暖要求,如变频变流量调节时由于时序过长远端用户还未达到用户需求时即到了热源循环水泵的转数调小的时候,使变频装置无法发挥应有的功效。 3.如果不安装压差平衡阀当各用户调节时会相互干扰,如果一个或几个恒温阀调节时,会引起所有的恒温阀无谓的动作。 4.如果不安装压差平衡阀,室内温度达到需求时由于近端用户压差过大,会导致恒温阀产生噪音,影响舒适度。 5.如果不安装压差平衡阀,感温包长时间在高压差工资下还会简短恒温阀的使用寿命。

差压变送器工作原理及常见故障分析

差压变送器工作原理及常见故障分析 差压变送器工作原理及常见故障分析 差压变送器在工业自动化生产中对压力、压差流量的测最应用愈见广泛,生产中遇到的问题也越来越多,故障的及时判定分析和处理,对正在进行的生产来说是至关重要的。本文介绍日常维护中的经验和故障判定分析方法,供参考。 一、差压变送器工作原理 来自双侧导压管的差压直接作用于变送器传感器双侧隔离膜片上,通过膜片内的密封液传导至洲量元件上,测最元件将测得的差压信号转换为与之对应的电信号传递给转换器,经过放大等处理变为标准电信号输出。差压变送器的几种应用测最方式: 1 .与节流元件相结合,利用节流元件的前后产生的差压值测量液体流量. 2 .利用液体自身重力产生的压力差,测是液体的高度。 3 .直接测量不同管道、魄休液体的压力差值。 二、差压变送器故障诊断方法 除了回顾故障发生前的打火、冒烟、异味、供电变化、雷击、潮湿、误操作、误维修等情况;以及观察回路的外部损伤、导压管的泄漏,回路的过热,供电开关状态等现象外,还应通过检测来诊断故障。 1 .断路检侧:将怀疑有故障的部分与其他部分分割开来,查看故障是否消失,如果消失,则可确定故障在此处。否则可进行下一步查找,如:智能差压变送器不能正常Ha 性远程通讯,可将电源从仪表本体中断开 用现场另加电源的方法为变送器通电进行通讯,以查看是否叠加有约Zk - HZ 的电磁信号而干扰通讯。 2 .短接检测:在保证安全的情况下,将相关部分回路直接短接,如:差压变送器输出值偏小,可将导压管断开,从一次取压阀外将差压信号直接引到差压变送器双侧,观察变送器输出,以判断导压管路有无堵、漏及连通性。 3 .替换检测:更换怀疑有故障的部分,判断故障部位。如:怀疑变送器电路板发生故障,可临时更换一块,以确定原因。 4 .分部检侧:将测皿回路分割成几个部分(如:供电电源、信号输出、信号变送、信号检测),按各部分分别检查,由简至繁,由表及里,缩小范围,找出故障位置。 三、常见故障检修 1 .输出过大的可能原因和解决方法: ( l )导压管。检查导压管是否泄漏或堵塞;检查截止阀是否全开;检查气体导压管内是否有液体,液体导压管内是否有气休;检查变送器压力容室内有无沉积物. ( 2 )变送器的电气连接。检查变送器的传感器组件连接情况.保证接插件接触处清洁;检查8 号插针是否可靠接表壳地. . ( 3 )变送器电路故障。用备用电路板代换检查、判断有故障的电路板及更换有故障的电路板. ( 4 )检查电源的输出是否符合所需的电压值. 2 .输出过小或无输出的可能原因和解决方法: ( 1 )导压管。检查导压管是否泄漏或堵塞;检查液体导压管内是否有气体;检查变送器压力容室内有无沉积物;检查截止阀是否开全,平衡阀是否关严。 ( 2 )变送器的电气连接。检查变送器传感器组件的引出线是否短接;保证接插件接触处清洁;检查各调节螺钉是否在控制范围内。

气动电磁阀工作原理

气动电磁阀工作原理 “十五”期间全国新发现大型矿产地529处 国土资源部最新统计表明,“十五”期间,全国新发现和评价的大型规模及大型规模以上的矿产地共529处,其中,达到特大型规模的矿产地145处。 在529处大型及以上矿产地中,属于国家重点矿种的有358处,占总数的67.67%,涉及煤、铁、铜、铝、铅、锌、锰、镍、钨、锡、钾盐和金12个矿种。 此外,“十五”期间,我国找矿还呈现以下特点:529处大型矿产地涉及矿种51个,其中,煤炭占总数的46.31%;有色金属矿占总数的14.93%;黑色金属矿占总数的1.7%;贵金属矿占总数的8.13 铜阀门>>铜电磁阀>>黄铜丝口电磁阀 产品名 称: 黄铜丝口电磁阀 产品型 号: 2L 产品口 径: DN20-65 产品压 力: 1.6-6.4Mpa 产品材 质: 铸钢、不锈钢、合金钢等 产品概括:生产标准:国家标准GB、机械标准JB、化工标准HG、美标API、ANSI、德标DIN、日本JIS、JPI、英标BS生产。阀体材质:铜、铸铁、铸钢、碳钢、WCB、WC6、WC9、20#、25#、锻钢、A105、F11、F22、不锈钢、304、304L、316、316L、铬钼钢、低温钢、钛合金钢等。工作压力1.0Mpa-50.0Mpa。工作温度:-196℃-650℃。连接方式:内螺纹、外螺纹、法兰、焊接、对焊、承插焊、卡套、卡箍。驱动方式:手动、气动、液动、电动。 产品详细信息■型号规格说明

■电磁阀技术参数 型号2W16 0-10 2W16 0-15 2W20 0-20 2W25 0-25 2W35 0-35 2W40 0-40 2W50 0-50 符号 使用液体空气、水、油、瓦斯 动作方式直动式 形式常闭式 流量孔径mm 1.6 20 25 35 40 50 CV值 4.8 7.6 12 24 29 48 接管口径3/8" 1/2" 3/4" 1" 1 1/4" 1 1/2" 2" 使用流体黏滞度20CST以下 使用压力**kg/cm2 水0.5 空气0~7 油0~7 最大耐压力kg/cm2 10 工作温度-5~80 使用电压范围±10% 本体材质黄铜 油封材质NBR,EPDM或VITON ■电磁阀技术参数 型号2L170 -10 2L170 -15 2L170 -20 2L200 -25 2L300 -35 2L300 -40 符号 使用液体蒸汽、水、空气 动作方式引导式(先导式)形式常闭式流量孔径mm 17 25 30 50 CV值 4.8 12 20 接管口径3/8" 1/2" 3/4" 1" 1 1/4" 1 1/2" 2使用流体黏滞度20CST以下 使用压力**kg/cm2 蒸汽、热空气、油0.5~15 蒸汽、热空气、

压力控制器说明书

4150K、4160K系列Ⅱ压力控制器和变送器 说明 操作范围 本节介绍4150K、4160K系列2压力控制器和变送器(图1)的安装、操作、维护和部分信息,详细内容见阀门、执行器部分。 任何人在安装、操作和维护此套设备前,必须(1)进行全面培训,对阀门和执行器应有一定了解。(2)详细阅读本说明书,若有其它问题,请与Fisher销售部联系。 介绍 4150K、4160K系列2压力控制器和变送器使用波纹管或Bourdon管检测单元检测气或水表压力、真空、复合压力或差压。控制器和变送器的输出为气压信号,可用于操作控制单元、指示装置和记录装置。 规格 4150K、4160K系列2压力控制器和变送器的规格见表1、表2。 表2 适用类型 安装 警告:为避免由于压力释放而引起的人身伤害或财产损失必须: ?穿防护工作服带眼罩,戴手套 ?检查测量过程中是否可能为过程介质所伤害 标准安装 如图1所示,此套设备必须垂直安装,若为其它方向必须如图3所示保证排气孔向下。 适用类型 见表2 输入信号

类型:表压、真空、复合压力、差压 范围:表3或表4 第4页 输出信号 纯比例或比例加积分控制器和变送器输出信号均为0.2-1.0bar(3-15psig)或0.4-2.0bar(6-30psig)气压信号。 微分控制器 0和1.4Bar(3和15Psig)或0.4和20Bar(6和30Psig)气压信号。 作用 正作用:检测压力增加,输出信号增加。 反作用:检测压力增加,输出信号减小。 所需压力源 见表5 第7页 稳定状态下的气耗量见第7页图2 输入和输出的连接使用1/4英寸的阴制NPT 压力单位的换算见第7页表6 比例带调整 纯比例和比例加积分的控制器:对0.2-1.0Bar(3-15Psig)满量程压力输出变化为3%-100%可调,对0.4-2.0Bar(6-30Psig)满量程压力输出变化为6%-100%可调。 积分调整 比例加积分控制器:从0.01-74Min/Repeat可调(100-0.01Repeat/Min) 零点调整 检测单元范围内,定位量程在100%之内可调。 量程调整 检测单元满量程压力输出变化从6-100%可调。 特性 重复性:检测单元范围的0.5% 死区(微分控制器除外):输出范围的0.1% 100%比例带快速响应 执行器的输出:0.7Hz 波纹管控制器的输出:9Hz 操作环境温度 标准环境:-40-71℃(-40-160F) 高温环境:-18-104℃(0-220F) 环境温度的影响

压力和差压变送器详细使用说明

压力和差压变送器详细使用说明 (一)差压变送器原理与使用 本节根据实际使用中的差压变送器主要介绍电容式差压变送器。 1. 差压变送器原理 压力和差压变送器作为过程控制系统的检测变换部分,将液体、气体或蒸汽的差压(压力)、流量、液位等工艺参数转换成统一的标准信号(如DC4mA~20mA 电流),作为显示仪表、运算器和调节器的输入信号,以实现生产过程的连续检测和自动控制。 差动电容式压力变送器由测量部分和转换放大电路组成,如图1.1所示。 图1.1 测量转换电路 图1.2 差动电容结构 差动电容式压力变送器的测量部分常采用差动电容结构,如图1.2所示。中心可动极板与两侧固定极板构成两个平面型电容H C和L C。可动极板与两侧固定极板形成两个感压腔室,介质压力是通过两个腔室中的填充液作用到中心可动极板。一般采用硅油等理想液体作为填充液,被测介质大多为气体或液体。隔离膜片的作用既传递压力,又避免电容极板受损。

当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜片上时,通过腔室内硅油液体传递到中心测量膜片上,中心感压膜片产生位移,使可动极板和左右两个极板之间的间距不相对,形成差动电容,若不考虑边缘电场影响,该差动电容可看作平板电容。差动电容的相对变化值与被测压力成正比,与填充液的介电常数无关,从原理上消除了介电常数的变化给测量带来的误差。 2. 变送器的使用 (1)表压压力变送器的方向 低压侧压力口(大气压参考端)位于表压压力变送器的脖颈处,在电子外壳的后面。此压力口的通道位于外壳和压力传感器之间,在变送器上360°环绕。保持通道的畅通,包括但不限于由于安装变送器时产生的喷漆,灰尘和润滑脂,以至于保证过程通畅。图1.3为低压侧压力口。 图1.3 低压侧压力口 (2)电气接线 ①拆下标记“FIELD TERMINALS”电子外壳。 ②将正极导线接到“PWR/COMN”接线端子上,负极导线接到“-”接线端子上。注意不得将带电信号线与测试端子(test)相连,因通电将损坏测试线路中的测试二极管。应使用屏蔽的双绞线以获得最佳的测量效果,为了保证正确通讯,应使用24AWG或更高的电缆线。 ③用导管塞将变送器壳体上未使用的导管接口密封。 ④重新拧上表盖。 (3)电子室旋转 电子室可以旋转以便数字显示位于最好的观察位置。旋转时,先松开壳体旋转固定螺钉。 3. 投运和零点校验

动态压差平衡阀的工作原理及使用方法

动态压差平衡阀的工作原理及使用方法 发布时间:2010-5-27 编辑:wenjie 来源:直接进论坛 动态压差平衡阀,亦称自力式压差控制阀、差压控制器、压差平衡阀等,它是用压差作用来调节阀门的开度,利用阀芯的压降变化来弥补管路阻力的变化,从而使在工况变化时能保持压差基本不变,它的原理是在一定的流量范围内,可以有效地控制被控系统的压差恒定,即当系统的压差增大时,通过阀门的自动关小动作,它能保证被控系统压差增大反之,当压差减小时,阀门自动开大,压差仍保持恒定。 动态压差平衡阀的工作原理: 该阀由阀体,阀盖,阀芯弹簧,控制导管,调压器组成,阀门安装在供热管路的回水管上,阀门上的工作腔通过控制管与供水管连接。消除外网压力波动引起的流量偏差,当供水压力P1增大,则供水压差P1-P3增大,感压膜带动阀芯下移关小阀口,使P2增大,从而维持P1-P2的恒定。当供水压力P1减小则感压膜带动阀芯上移,P2减小,使P1-P2恒定不变。无论管路中压力怎样变化,动态压差平衡阀均可维持施加于被控对象压差和流量恒定。 动态压差平衡阀的使用方法: 1、介质流动方向应与阀体箭头方向一致; 2、该阀应安装在回水管上,阀上接导压管,导压管的另一端与供水管连接,建议在导压管供水端安装1/2"球阀,以便启动消除堵塞功能; 3、在导压管前的供水管上应安装过滤网,避免水质太差造成该阀失去自动调节功能; 4、供水管和该阀前的回水管应分别装设压力表,便于调节控制压差; 5、如发现该系统流量过大或过小,可能的原因是管道元件安装时的杂物卡阻在阀塞上,可将1/2"球阀关闭3—5分钟,这时如果是较轻堵塞,即可自动消除,如还不能消除,则要拆开阀门[1]检查消除堵塞物; 6、控制压差调节方法:逆时针方向调节调压阀杆,观察压差。

压力传感器工作原理

电阻应变式压力传感器工作原理细解 2011—10-14 15:37元器件交易网 字号: 中心议题: 电阻应变式压力传感器工作原理 微压力传感器接口电路设计 微压力传感器接口系统得软件设计 微压力传感器接口电路测试与结果分析 解决方案: 电桥放大电路设计 AD7715接口电路设计 单片机接口电路设计 本文采用惠斯通电桥滤出微压力传感器输出得模拟变量,然后用INA118放大器将此信号放大,用7715A/D 进行模数转换,将转换完成得数字量经单片机处理,最后由LCD 将其显示,采用LM334 做得精密5 V 恒流源为电桥电路供电,完成了微压力传感器接口电路设计,既能保证检测得实时性,也能提高测量精度。 微压力传感器信号就是控制器得前端,它在测试或控制系统中处于首位,对微压力传感器获取得信号能否进行准确地提取、处理就是衡量一个系统可靠性得关键因素.后续接口电路主要指信号调节与转换电路,即能把传感元件输出得电信号转换为便于显示、记录、处理与控制得有用电信号得电路。由于用集成电路工艺制造出得压力传感器往往存在:零点输出与零点温漂,灵敏度温漂,输出信号非线性,输出信号幅值低或不标准化等问题。本文得研究工作,主要集中在以下几个方面: (1)介绍微压力传感器接口电路总体方案设计、系统得组成与工作原理。

(2)系统得硬件设计,介绍主要硬件得选型及接口电路,包括A/D 转换电路、单片机接口电路、1602显示电路。 (3)对系统采用得软件设计进行研究,并简要阐述主要流程图,包括主程序、A/D转换程序、1602显示程序。 1 电阻应变式压力传感器工作原理 电阻应变式压力传感器就是由电阻应变片组成得测量电路与弹性敏感元件组合起来得传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面得电阻应变片也会产生应变,表现为电阻值得变化。这样弹性体得变形转化为电阻应变片阻值得变化。把4 个电阻应变片按照桥路方式连接,两输入端施加一定得电压值,两输出端输出得共模电压随着桥路上电阻阻值得变化增加或者减小。一般这种变化得对应关系具有近似线性得关系。找到压力变化与输出共模电压变化得对应关系,就可以通过测量共模电压得到压力值。 当有压力时各桥臂得电阻状态都将改变,电桥得电压输出会有变化. 式中:Uo为输出电压,Ui 为输入电压。 当输入电压一定且ΔRi 〈

中央空调压差旁通阀的介绍及作用

压差旁通阀 电动压差旁通阀 压差旁通阀分自力式压差旁通阀和电动压差旁通阀2种。 电动压差旁通阀是通过控制压差旁通阀的开度控制冷冻水的旁通流量,从而使供回水干管两端的压差恒定。广泛应用于中央空调集分水器之间,热力泵供回水之间,可有效保持设备不被损坏。 电动压差旁通阀常用于气体或液体系统,控制气体或液体管路与回路之间的压差。把电动压差旁通阀安装在系统水泵附件的旁通管路中,当系统压差增大而超过控制阀设定值时,阀门则进而开大,使更多的水流经旁通阀,从而使系统压差减小。相反,压差的减小导致阀门开度减小从而使系统压差增加。 自力式压差旁通阀 旁通阀又名自力式旁通压差阀,自力式自身压差控制阀 自力式自身压差控制阀(旁通式-C)在控制范围内自动阀塞为关闭状态,阀门两端压差超过预设值,阀塞即自动打开。并在感压膜的作用下自动调节开度,保持阀门两端压差相对恒定,依靠自身的压差工作,不需任何外来动力,性能可靠。 性能特点: 自力式自身压差控制阀为电动压差控制阀替代产品。 为安全可靠,解决了电动压差控制阀对电的信赖和电路出现问题造成机组损伤的机率,并且自力式自身压差控制阀便于安装,节省费用。 自力式自身压差控制阀的用途: 此经过,以保证机组流量不小于限制值。 自力式自身压差控制阀应用于集中供热系统中以保证某处散热设备不超压或不倒空。比如某系统高低差较大,且不分高低区系统,这时如按高处定压,低处散热设备可能压爆;如按低处定压,高处倒空。

这种情况如热源在低外可在进入高区分支水管加增压泵,回水管加压差阀使高区压力经过提升后,由阀门再降到低区回水压力;如热源在高处可进入低区供水管加装压差阀,回水加增压泵,使通过阀门压力降低的循环水能回到系统中。空调系统中旁通阀的作用和原理: 空调系统的的压差旁通阀是用在冷水机组的集水器与分水器之间的主管道上的,其原理是通过压差控制器感测集水器与分水器两端水压力,然后根据测试到的压力计算出差值,再由压差控制器根据计算出的差值与预先设定值进行比较决定输出方式,以控制阀门是增加开度或减少开度,从而来调节水量,以达到平衡主机系统的水压力的目的。 自力式自身压差控制阀的性能参数: 控制压差在 依靠压差自动工作,无须外接动力,运行安全稳定可靠。 介质温度:0--150℃。 公称压力:1.6Mpa 。 自力式自身压差控制阀的安装调试: 适用于分集水器之间 旁通管安装保护冷热源 适用于高层建筑分区供暖,安装于高区回水管避免高 区倒空和水垂 1、热源 2、循环水泵 3、系统补给水泵 4、自力式 自身压差控制阀 5、加压水泵 6、止回阀 7、后部补水压力调节阀 8、热用户

前室压力传感器I楼梯间压力传感器I压差控制器I压差测控器介绍

前室压力传感器I楼梯间压力传感器I压差控制器I压差测控器介绍 前室压力传感器I楼梯间压力传感器,源于《建筑防排烟与暖通空调防火设计图集》 在介绍压力传感器之前,先来了解下加压送风系统。加压送风工作方式是通过送风机所产生的气体流动和压力差来控制烟气的流动,即在建筑内发生火灾时,对着火区以外的有关区域进行送风加压,使其保持一定正压,以防止烟气侵入的防烟方式。 为保证疏散通道不受烟气侵害使人员安全疏散,发生火灾时,从安全性的角度出发,高层建筑内可分为四个安全区:第一类安全区为防烟楼梯间、避难层;第二类安全区为防烟楼梯间前室、消防电梯间前室或合用前室;第三类安全区为走道;第四类安全区为房间。 依据上述原则,加压送风时应使防烟楼梯间压力>前室压力>走道压力>房间压力,同时还要保证各部分之间的压差不要过大,造成开门困难影响疏散。当火灾发生时,机械加压送风系统应能够及时开启,防止烟气侵入作为疏散通道的走廊、楼梯间及其前室,以确保有一个安全可靠、畅通无阻的疏散通道和环境,为安全疏散提供足够的时间。 而《建筑防烟排烟系统技术规范》对防烟楼梯间及电梯前室余压值进行了明确规范:

3.3.15机械加压送风应满足走道→前室→楼梯间的压力呈递增分布,余压值应符合下列要求: 1、前室、合用前室、消防电梯前室、封闭避难层(间)与走道之间的压差应为25-30Pa; 2、防烟楼梯间、防烟电梯井与走道之间的压差应为40-50Pa。 如何来控制余压值的保持在标准范围呢? 于是设计师便提出了压力传感器的概念,用于检测相应空间余压值,并通过余压阀控制送风方向,达到控制余压值的目的。 在我们进行产品研发过程中,根据其功能,我们将它命名为:压差测控器(有的厂家也成为压差控制器)。因为其一方面源于它的检测功能,而且测量的是两个空间空气压力差值,另一方面,它还要根据检测的压差值,对旁通阀进行动态调控。因此称它为压差测控器更为贴切。 其原理如下:

差压式变送器调试方法

差压变送器在工厂有广泛的应用,为保证其正常运行及准确性,定期检查、校准是很有必要的。 现介绍一种不用拆除导压管就进行现场校准的方法。 一.准备工作: 我们知道差压变送器在应用中是与导压管相连接的,通常的做法,需要把导压管和差压变送器的接头拆开,再接入压力源进行校准。这样是很麻烦的,并且工作和劳动强度大,最担心的是拆装接头时把导压管扳断或出现泄漏问题。我们知道不管什么型号的差压变送器,其正、负压室都有排气、排液阀或旋塞;这就为我们现场校准差压变送器提供了方便,也就是说不用拆除导压管就可校准差压变送器。对差压变送器进行校准时,先把三阀组的正、负阀门关闭,打开平衡阀门,然后旋松排气、排液阀或旋塞放空,然后用自制的接头来代替接正压室的排气、排液阀或旋塞;而负压室则保持旋松状态,使其通大气。压力源通过胶皮管与自制接头相连接,关闭平衡阀门,并检查气路密封情况,然后把电流表(电压表)、手操器接入变送器输出电路中,通电预热后开始校准。 二.常规差压变送器的校准: 先将阻尼调至零状态,先调零点,然后加满度压力调满量程,使输出为 20mA,在现场调校讲的是快,在此介绍零点、量程的快速调校法。调零点时对满度几乎没有影响,但调满度时对零点有影响,在不带迁移时其影响约为量程调整量的1/5,即量程向上调整1mA,零点将向上移动约0.2mA,反之亦然。例如: 输入满量程压力为100Kpa,该读数为19.900mA,调量程电位器使输出为19.900+(20.000-19.900)*1.25=20.025mA.量程增加0.125mA,则零点增加1/5* 0.125=0.025.调零点电位器使输出为20.000mA.零点和满量程调校正常后,再检查中间各刻度,看其是否超差?必要时进行微调。然后进行迁移、线性、阻尼的调整工作。 三.智能差压变送器的校准

压差平衡阀的作用原理是什么

压差平衡阀的作用原理是什么? 压差平衡阀,亦称自力式压差控制阀,是一种不需外来能源依靠被调介质自身压力变化进行自动调节的阀门,适用于分户计量或自动控制系统中。 压差平衡阀为双瓣结构,结构紧凑,用于供热(空调)水系列中,恒定被控制系统的压差,并有以下的特点: 1、恒定被控制系统压差; 2、支持被控系统内部自主调节; 3、吸收外网压差波动; 4、采用先进的无级调压结构,控制压差可调比可达25:1; 5、具备自动消除堵塞功能; 6、法兰尺寸符合GB4216.2中灰铸铁法兰尺寸。 压差平衡阀的使用方法: 1、介质流动方向应与阀体箭头方向一致; 2、压差平衡阀应安装在回水管上,阀上接导压管,导压管的另一端与供水管连接,建议在导压管供水端安装1/2"球阀,以便启动消除堵塞功能; 3、在导压管前的供水管上应安装过滤网,避免水质太差造成该阀失去自动调节功能; 4、供水管和该阀前的回水管应分别装设压力表,便于调节控制压差; 5、如发现该系统流量过大或过小,可能的原因是管道元件安装时

的杂物卡阻在阀塞上,可将1/2"球阀关闭3—5分钟,这时如果是较轻堵塞,即可自动消除,如还不能消除,则要拆开阀门检查消除堵塞物; 6、控制压差调节方法:逆时针方向调节调压阀杆,观察压差。 压差平衡阀选型说明: 按式KV=G/式中(G-M3/h),根据最大流量和可能的最小工作压差计算所需的最大KV值,应小于阀门的最大KV值;根据最小流量和可能的最大工作压差计算所需的最小KV值,应大于阀门的最小KV值,如G=3-10M/h,△P"最大=200KPa,△P"最小=20KPa,KV最大=10/=25,KV最小=3/=2.12,选择DN50即符合要求,建议尽量不变径选用阀门。 压差平衡阀的用途: 为何室内安装自控装置必须安装压差平衡阀原因如下: 1.如果不安装压差平衡阀,近端用户由于压差过大,当近端用户室内温度达到设置值时,由于感温包的膨胀推力是有限的使恒温阀无法关断,使近端用户室内温度超标。 2.如果不安装压差平衡阀,近端用户压差过大,远端用户压差小,外网压差不平衡,造成近端和远端用户室内温度产生时序,如果采用间接性供暖方式,由于时序过长造成远端用户还未达到用户需求时就到了供暖的间歇时间,使远端用户无法达到供暖要求,如变频变流量调节时由于时序过长远端用户还未达到用户需求时即到了热源循环水泵的转数调小的时候,使变频装置无法发挥应有的功效。 3.如果不安装压差平衡阀当各用户调节时会相互干扰,如果一个

油压差控制器说明书

HDP88T型系列电子延时压差(油压差)控制器 简介: HDP88T型系列油压差控制器是一种对螺杆式压缩机安全保护开关, 当油压下降到不足以使压缩机安全工作时,并在延时设定期间没有 恢复到设定油压值以上,主电路切断,压缩机停止工作,以达到保 护压缩机免受损坏的目的。 HDP88T压差的时间设定之前须参考压缩机制造商的指引。 产品特点: 压差调节范围大,回差小,输出端电压最大250VAC,电流最大16A。 延时时间可调节,客户根据需要自行调节,时间精确稳定(20S~150S) 改进了原加热双金属片延时时间的不稳定性。 电源输入:110~250VAC 24~36DC。 压缩机重新启动前,须手动复位控制器。 延时器(控制器内部)不受电压及环境变化所影响(指定参数内)。 如要使用不同电源,请把HDP88T的跨接线(3~4)拆掉即可。 德国原装微动开关及继电器,有认证标准。 典型原理图典型线路图 型号与参数单位:Mpa 型号 调节范围最大工作 压力 最大开关 压差 △P bar 联结方式 介质温度 (℃) 环境温度 (℃) 延迟时间设 定范围(秒) Min Max

HDP88T-Ⅰ0.060.35 1.70.2M12X1.25 6mm喇叭口 1/4”flare -10~120-20~8020~150 HDP88T-Ⅱ0.2 1.2 3.30.2 连接与安装方式 连接方式:控制器的连接方式有二种:一种是用外径¢6×1的紫铜管(必须呈软态),在管端扩90°角喇叭口,再用控制器的自用螺帽旋紧即可。 另一种连接方式是用外径¢3,长1米的毛细管连接(此连接方式必须在订货时 提出)见下列示图所示。 安装方式:控制器的安装方式有二种:一种是利用控制器背面3个M4安装螺孔进行安装。 另一种安装方式是先用多用途的安装板附件(详见下图所示)。 使用说明: 安装 如果用毛细管方式连接的,必须防止毛细管的急弯和扭转。 如果控制器使用在以氨为介质的制冷系统中,则必须选用不锈钢波纹管控制器。 在与控制器连接之前,确保所有的管路都是清洁干净的。 不能把控制器安装在工作负荷超过它的电器额定值的设备中。 过长的毛细管盘成圈或妥为固定,以防振动。允许毛细管有一些松垂,防止剧烈振动造成毛细管开裂。 接线当准备接线时,必须确保切断电源,以防止触电和设备损坏。 调整顺时针拨动调节盘时,使压差调定植下降。反之,则上升。 注意 在设定压力和延时器时间前,请仔细了解压缩机的技术指标。 不正确安装危险!压差控制器HP(高压端)压力必须大于LP(低压端)的压力,否则控制器将失效,安装必

压力变送器工作原理

罗斯蒙特3051 智能型压力变送器 工作原理 工作时,高、低压侧的隔离膜片和灌充液将过程压力传递给中心的灌充液,中心灌充液将压力传递到δ- 室传感器中心的传感膜片上。传感膜片是一个张紧的弹性元件,其位移随所受压差而变化(对于GP表压变送器,大气压力如同施加传感膜片的低压则一样,AP绝压变送器低压侧始终保持一个参考电压)。传感膜片的最大位移量为0.004英寸(0.10毫米)且位移量与压力成正比,两侧的电容极板检测传感膜片的位置。传感膜片和电容极板之间的电容的差值被转换成相应的电流,电压或数字HATR输出信号。 线路板模块 变送器线路板模块采用专用集成电路(ASICS)和表面封装技术。 线路块接收来自传感器膜头的数字信号和修正系数后,对信号进行修正和显性化。线路板模块的输出部分将数字信号转换成一个模拟信号输出,并可与HATR手操器通讯。可选的夜晶表头插入线路板上,可

显示以压力工程单位或百分比为单位的数字输出。夜晶表头适用于标准变送器和低功耗变送器。 数据组态 组态数据存贮在变送器线路板上的永久性EEPROM存贮器中。变送器断电数据仍能保存,因此变送器一通电力可以工作。 数/模转换和信号传送 过程变量以数字方式存贮,可进行精确的修正和工程单位转换,之后经修正的数据被转换成一个模拟输出信号。HATR手操器存取传感器的数字信号,而不需要数/模转换从而达到更高精度。 通讯模式 1151型智能变送器采用HATR协议通讯,该协议采用工业标准bell202频移键控(FSK)技术,将一个高频信号叠加在电流输出信号上实现远程通讯。而不影响回路的一致性。 软件功能 HATR协议使用户很容易对1151智能型压力变送器进行组态,测试和具体设置。 组态 1151智能型可以很容易地用HATR手操器进行组态。组态包括两个方面。第一,对变送器可操作参数的设置,包括设置:·零点和量程设置点 ·线性或平方根输出 ·阻尼

压差阀

压差阀 目录 ZYC型自力式压差控制阀 低真空电磁压差充气阀DYC-Q 压差旁通平衡阀-800X压差旁通平衡阀 压差旁通平衡阀 压差旁通阀-800X压差旁通阀 无压差电磁阀-ZCT无压差电磁阀 电磁真空压差式充气阀DYC-JQ、GYC-JQ 自力式压差控制阀-ZYC自力式压差控制阀 自力式压差控制阀ZYC 自力式差压调节阀-ZZV自力式差压调节阀 自力式差压调节阀-ZZYW型自力式差压调节阀

ZYC型自力式压差控制阀 一、产品[自力式压差控制阀]的详细资料: 产品型号:ZYC型 产品名称:自力式压差控制阀 产品特点:ZYC型自力式压差控制阀,是一种利用介质自身的压力变化进行自我控制而保持流经该被控系统介质压差不变的阀门。适用于供暖方式采用双管系统的压差控制,保证系统基本不变,降低噪音,平衡阻力,消除热网和水力失调。 二、主要技术参数: 型号公称压力壳体实验压力 压差控制范围 定压差型可调压差型ZYC-16一H3T16MPa 2.4MPa10KPa、20KPa、30KPa10.30KPa 三、ZYC型自力式压差控制阀主要外型尺寸(法兰连接尺寸按GB4216规定): DN mm 连接方式 L mm H(mm)流量 m3/h 适用介质介质温度 主要零 件材料定压差型可调压差型 15 螺纹1109514502-1 水0~100℃ 阀体、上盖和 下盖 为铸铁、阀芯 201101101500.3-1.5 2511513016505-2

为铜、膜片为尼龙强化橡胶、弹簧为不锈钢 32 法兰1301401901-440 20019034015-650 2152053552-865 2302403903-1280 2753005005-20100 29035055010-3012531038058015-45订货须知: 一、①ZYC 型自力式压差控制阀产品名称与型号②ZYC 型自力式压差控制阀口径③ZYC 型自力式压差控制阀是否带附件二、若已经由设计单位选定公司的ZYC 型自力式压差控制阀型号,请按ZYC 型自力式压差控制阀型号 三、当使用的场合非常重要或环境比较复杂时,请您尽量提供设计图纸和详细参数, 相关产品: WM341系列隔膜可调式减压阀 波纹管式减压阀 T44H/Y 型波纹管减压阀 YZ11X 直接作用薄膜式水用减压阀 直接作用薄膜式减压阀 内螺纹活塞式蒸汽减压阀 Y45H/Y 型手动双座蒸汽减压阀 Y945H/Y 型电动双座蒸汽减压阀 YB43X 固定比例式减压阀 比例式减压阀 高灵敏度蒸汽减压阀

CWK-11型波纹管压差控制器

CWK-11型波纹管压差控制器 ?概述 CWK-11型波纹管压差控制器是用于制冷系统中氨泵或其它机械的保护装置。它能保证氨泵正常运转时所必须具有的最低压头。氨泵压头太低说明流量不足,缺液运行将损坏氨泵和影响降温。 CWK-11型控制的是氨泵的真实压头,与进口压力、出口压力的绝对值无关,当两端的压差也就是氨泵压头达不到所要求的设定值时,CWK-11型即接通 延时继电器自动延时,延时期间压力回升,能使开关触头跳回,则停止延时,氨泵继续正常工作,如直到延时结束,压力仍不能使开关触头跳回,即自动停泵。 CWK-11 型本身不具有延时机构,需外接延时继电器。波纹管、气箱均采用不锈钢制成,不仅可用于氨泵,也可用于其它液泵。 ?主要技术参数 1 、压差调节范围:0.01~0.15MPa 2、开关差值:<0.01MPa 3、电源:AC220V或380V触头容量380V、3A (无感负载) 4、波纹管最大承受压力:1.0MPa ?工作原理 CWK-11型压差控制器是由两个相对的敏感元件(波纹管)组成,主刻度调节花盘在壳体内。氨泵刚起动时两端尚未建立压差,为不使压差控制器在此时动作,必须加接延时继电器,经一定时间的延时,压差建立后,底部气箱内波纹管压缩,产生位移,通过杠杆作用,使开关动作。运转时,若压头达不到或等于所调指示值,弹簧力使底部波纹管伸长,杠杆下移,开关跳回,接通延时继电器。 ?使用与调节 1、CWK-11型压差控制器的底部气箱为低压箱,低压箱接管连至氨泵的进氨管路上,控制器的下部气箱为高压端,高压端接管与氨泵的出氨管路联接。

2、刻度板上指针指示值表示控制器的下限位数值,即表示氨泵能够安全运转的最低压头,上限位数值等于指针指示值加开关差值。 3、氨泵刚起动时,压差尚未建立,开关触头处于下限位指针设定值,一通电即开始延时,在规定的时间内,压差达到上限位数值开关触头变位,延时停止,氨泵投入正常运转。若达到设定的延时时间,氨泵压差仍达不到上限位置,延时继电器立即动作,切断氨泵电源,保护了氨泵安全。 出厂设定值0.05MPa (下限位) 上限位值0.05MPa加开关差值 起动时,一接通电源,外接延时继电器开始延时,高于上限位置,延时停止,氨泵正常转动,若延时终了仍达不到上限位值,停泵、报警。 运转时,高于上限位值,氨泵正常运转,低于指针指示值,开始延时,压力回升高于上限位值,延时停止,正常运转。在延时期间,压力虽回升高于0.05MPa但未达到上限位值,仍属延时期内。若延时终了仍达不到上限位值,停泵、报警。 4、氨泵的石墨轴承需要氨液润滑,屏蔽氨泵的电机也需要氨液冷却,能够保证氨泵不发生损坏的最低压头即为所调压力差的最低值,欠压运行所允许的最长时间,即为延时的时间。 调定压差设定值时,尚需参考系统运行情况,如调得太低,泵虽也能运转,但气蚀严重,压头长久建立不起来,不如停泵抽气,然后重新起动,如调得较高,本系统的泵往往要在调定的延长时间以后数秒才能达到,容易自动停车,使泵起动不了。总之,应根据本系统情况调在适当数值。 5、调整指针设定值,须取下表盖,拨动调节盘,逆时针方向旋转为压紧弹簧,加大压差指示,顺时针方向旋转为放松弹簧,减小压差指示。 6、CWK-11型压差控制器本身不带延时机构,须外接延时继电器,通常延时时间为10 秒。 7、CWK-11 型压差控制器接在氨泵两侧,直接与低温氨液接触,壳体经常处于结霜状态。为了防止氨气侵入控制器内腐蚀零件,安装时,先检查表盘是否密封压紧,注

压力变送器的工作原理

压力变送器的工作原理 压力变送器的工作原理 压力变送器主要由测压元件传感器(也称作压力传感器)、放大电路和支持结构件三类组成。它能将测压元件传感器测量到的气体、液体等物理压力参数变化转换成电信号(如4~20mA等),以提供指示报警仪、记载仪、调理器等二次仪表进行显示、指示和调整。 压力变送器用于测量液体、气体或蒸汽的液位、密度和压力,然后转换为成4~20mA 信号输出。 压差变送器也称差压变送器,主要由测压元件传感器、模块电路、显示表头、表壳和过程连接件等组成。它能将接收的气体、液体等压力差信号转变成标准的电流电压信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。 差压变送器根据测压范围可分成一般压力变送器(0.001MPa~20MPA)和微差压变送器(0~30kPa)两种。 差压变送器的测量原理是:流程压力和参考压力分别作用于集成硅压力敏感元件的两端,其差压使硅片变形(位移很小,仅μm级),以使硅片上用半导体技术制成的全动态惠斯登电桥在外部电流源驱动下输出正比于压力的mV级电压信号。由于硅材料的强性极佳,所以输出信号的线性度及变差指标均很高。工作时,压力变送器将被测物理量转换成mV级的 电压信号,并送往放大倍数很高而又可以互相抵消温度漂移的差动式放大器。放大后的信号经电压电流转换变换成相应的电流信号,再经过非线性校正,最后产生与输入压力成线性对应关系的标准电流电压信号。 压力传感器工作原理 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用 1 、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式

实验室房间压差控制系统的工作原理

实验室房间压差控制系统: 直接压差显示 压差控制器持续地监测房间的实际压差值,并以直观的数字进行显示,以便实验室操作人员随时掌握室内压差的状态,提高了实验室周围环境的安全系数。 时刻监控压差状态 室内排风和房间补风及窗户、门开关等因素引起的房间压差的变动,通过精密传感器的监控在2 秒内将房间压差恢复设定值范围内,维持压差保持在最佳状态,防止了因气流变化导致的有毒气体的溢出。 安全报警 如果房间压差超出安全范围,声音及警灯将报警。 紧急处理 当门外未关状态时,系统将自动将房间补风调至设定的风量值,保证房间处于负压中,防止室内有害气体的溢出。 控制元气组件: 房间压差控制器

房间压差传感器 VAV变风量阀 门磁感应开关 控制电源 以上就是木人给大家的简单介绍,如果您还想了解其他更多内容可以拨打我们的热线电话,或者点击官网咨询我们,或者点击在线咨询我们。 深圳市木人实验室环境技术有限公司(原深圳市木人科技实业有限公司)创立于2004年,是一家专业从事于实验室前期建筑咨询,系统规划设计、施工、实验室家具设计制作的股份制有限公司。 作为改革开放之都的实验室建设行业的先行者,我们致力于引进国际上先进的实验室技术,并予以吸收国产化,先后推出了欧式,美式实验台,VAV变风量控制系统,实验室智能化系统,由此获得广大客户的认可。 我们:

改革开放的前沿-设计之都-深圳 十五年的实验室设计施工经验 装饰、暖通、结构、家具等各个专业的设计师团队 20年项目管理经验的建造师 10000平方的实验室家具设计制造中心 上千个工程案例(华为技术、富士康科技集团,中兴通讯,深圳大学,南昌大学,深圳市人民医院,完美集团,深圳市检察院等) 实验室建设行业正经历一场前所未有的变革,由手工化进入智能化时代,木人不会做变革的观众,木人的使命将使我们如催化剂一般积极参与变革!

压力传感器工作原理

电阻应变式压力传感器工作原理细解 2011-10-14 15:37元器件交易网 字号: 中心议题: 电阻应变式压力传感器工作原理 微压力传感器接口电路设计 微压力传感器接口系统的软件设计 微压力传感器接口电路测试与结果分析 解决方案: 电桥放大电路设计 AD7715接口电路设计 单片机接口电路设计 本文采用惠斯通电桥滤出微压力传感器输出的模拟变量,然后用INA118放大器将此信号放大,用7715A/D 进行模数转换,将转换完成的数字量经单片机处理,最后由LCD 将其显示,采用LM334 做的精密5 V 恒流源为电桥电路供电,完成了微压力传感器接口电路设计,既能保证检测的实时性,也能提高测量精度。 微压力传感器信号是控制器的前端,它在测试或控制系统中处于首位,对微压力传感器获取的信号能否进行准确地提取、处理是衡量一个系统可靠性的关键因素。后续接口电路主要指信号调节和转换电路,即能把传感元件输出的电信号转换为便于显示、记录、处理和控制的有用电信号的电路。由于用集成电路工艺制造出的压力传感器往往存在:零点输出和零点温漂,灵敏度温漂,输出信号非线性,输出信号幅值低或不标准化等问题。本文的研究工作,主要集中在以下几个方面:

(1)介绍微压力传感器接口电路总体方案设计、系统的组成和工作原理。 (2)系统的硬件设计,介绍主要硬件的选型及接口电路,包括A/D 转换电路、单片机接口电路、1602显示电路。 (3)对系统采用的软件设计进行研究,并简要阐述主要流程图,包括主程序、A/D 转换程序、1602显示程序。 1 电阻应变式压力传感器工作原理 电阻应变式压力传感器是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。这样弹性体的变形转化为电阻应变片阻值的变化。把4 个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。一般这种变化的对应关系具有近似线性的关系。找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。 当有压力时各桥臂的电阻状态都将改变,电桥的电压输出会有变化。 式中:Uo 为输出电压,Ui 为输入电压。 当输入电压一定且ΔRi <

相关文档
最新文档