2005年高考试题分类解析(数列,数学归纳法)

合集下载

2005年全国高考数学(山东卷)

2005年全国高考数学(山东卷)

2005年全国高考数学(山东卷)试卷分析田明泉一.试卷的整体评价2005年山东省高考数学自主命题继承了2004年全国高考数学试卷的命题思路和框架,遵循《考试说明》的要求,力求平稳过渡.试卷结构和长度保持不变;重点考查中学数学通性通法;试卷难度设计基本恰当;注意了文理科对应试题难度的搭配;加强了对运算能力的考查;应用性题目仍然占有适当的比例;继续坚持对新增数学内容的倾斜.整张试卷以常规题为主,中规中矩,具有一定的效度、区分度和信度.有利于稳定中学数学教学,同时也有利于为高校选拔优秀学生.1.试卷结构和长度保持不变,注重“双基”的考查1.1试卷长度、题型比例配置保持不变,与《考试说明》的规定一致.全卷共22题,其中选择题12个,共60分;填空题4个,共16分;解答题6个,共74分,全卷合计150分.1.2重点考查中学数学主干知识(见表1) ,题目不偏不怪.侧重于中学数学学科的基础知识和基本方法的考查;侧重于初等数学和高等数学衔接内容和方法的考查.表1:考查知识点分布表命题坚持以中学数学的主体内容为考查的重点,以测试考生基本数学素质为目的.如有关函数、三角、立体几何、解析几何、数列、向量、导数、概率等内容在卷面上占有相当大的比例,数形结合、函数与方程、分类讨论以及递推、猜想、转化与化归的思想方法等均蕴含在各试题中,可以看出我省高考数学命题仍然坚持对中学数学主流知识和方法的考查.2.继续加强新增课程内容的考查从表1不难发现,新增数学内容:导数、概率统计、平面向量等在试卷中约占46分,约占整个卷面分数的三分之一,远远高出其在教学大纲中的课时分配所占比例(见表2,还未考虑空间向量在立体几何中的应用所占有的分值).同时对新增数学内容的考查具有一定的广度和深度,在一些常见的数学问题中取代传统的数学方法.如用导数求函数的单调区间和极值点;利用概率考查学生应用数学的意识;用向量的方法表示长度、角度和距离等问题.借此让学生体会这部分内容在解决传统数学问题过程中的优越性,同时体现“高考支持课程改革”的命题思路.命题注意到文理科学生在数学学习上的差异,对文理科学生提出不同的考查要求.与04年全国题相比,在相同题占有比例基本不变的情况下(见表3),增加了姊妹题、减少了不同题的个数和分数.如文理第(16)题都是关于判断空间线面位置关系的问题,但文科较理科要求有所降低;再如文理(22)题都是解析几何题,但是文科是以具体的数字给出的条件,而理科相应地是以字母为条件,两者化简和运算的难度拉开了档次;又如文理姊妹题(21),理科多了比较大小一问;再如文科(18)题是古典概型的应用题,对应理科的姊妹题(18)题增加了有关离散型随机变量分布列的问题,体现了文理科学生的不同要求;还有文理第(19)题,理科增加了第3问“求解有关一元二次不等式在某个区间上恒成立的问题”,提高了对理科学生数学能力的考查.由此可以看出命题者有意识的降低文科试题难度,这样处理符合当前中学数学教学以及学生的实际状况.4.适当地增加了应用题的比例今年高考题文理科各出现三小一大4个应用题和两小一大3个应用题(见表4).应用题的数量和分值与去年相比有所增加,难度变化不大.应该说这和当前课改的教学要求、中学应用题教学实际以及学生学习的实际情况是吻合的.通过设置应用题来考查学生应用数学的意识,创设实际问题情景使考生在新的情景中实现知识迁移,应用数学知识解决实际问题,可以体现考生的数学素质和能力,更好地实现高考的选拔功能,真正考查出考生的学习潜力.今年试卷中理(9)和文(10)各是一个概率应用问题.文理(18)分别是用概率统计的方法分析袋中取球的问题.这些应用题涉及到的实际问题,背景公平,学生熟悉,难度适中.由此可以让学生去关心周围的社会和生活的世界.同时可以更好的实现 “新课标”中倡导的学生创新意识和实践能力的培养,无疑会对中学数学教学改革起到良好的导向作用.5.对思维能力考查的同时,对运算能力提出较高的要求 本次数学试卷的运算量明显增大.在文理科客观试题中,虽然只有少数题目运算量较大.但是,主观题的运算量却明显地加大,运算能力稍差的考生很难顺利完成试题的解答.如:理(5)文(6)、文理(12)(14)(15)(17)(18)(19)题均侧重于基本计算;文理(21)题侧重于代数式整理化简、变形的能力和技巧等.多数试题的难点大多在运算上,而不在解法上.因此,对考生的运算能力提出了较高地要求.在当前现代信息技术与中学数学整合的趋势下,特别作为数学学科,保持考查基本的运算能力还是有必要的.二.试题分析1加强“双基”落实,侧重考查通性通法今年数学试卷的一个突出特点就是大多数题目学生感到面熟,特别是选择题和填空题整体难度不大.重点考查中学数学的“双基”和通性通法.例1:(理(1))=-+++-22)1(1)1(1i ii i (A )i (B )i - (C )1 (D )1-解析:此题主要考查学生复数的基本概念和运算.实际答题时只需解出这个复数的实部或虚部即可.原式=iii i 2121-++-,观察可知,这个复数的实部为1-.故答案为(D ).例2:(文(1)){a n }是首项a 1=1,公差d =3的等差数列,如果a n =2005,则序号n 等于(A )667 (B ) 668 (C )669 (D )670解析:此题主要考查等差数列的通项公式.由11-=-n da a n ,得669=n .例3:(文(2))下列大小关系正确的是(A )3.0log 34.044.03<< (B )4.04333.0log 4.0<< (C )4.03434.03.0log << (D )34.044.033.0log <<解析:此题主要考查指数与对数的基本性质.4.034314.003.0log <<<<.故答案为(C ).例4:(理(2)、文(3))函数)0(1≠-=x xxy 的反函数的图象大致是 (A ) (B ) (C ) (D )解析:此题主要考查函数与其反函数图象的基本性质.实际解题时取几个特殊点坐标带入即可.特殊值法:利用函数与其反函数的对应关系并注意到)0,1()1,0(-↔-以及)1,0()0,1(↔即可.故答案为(B ).例5:(理(3)、文(4))已知函数)12cos()12sin(ππ--=x x y ,则下列判断正确的是(A )此函数的最小正周期为2π,其图象的一个对称中心是)0,12(π(B )此函数的最小正周期为π,其图象的一个对称中心是)0,12(π(C )此函数的最小正周期为2π,其图象的一个对称中心是)0,6(π(D )此函数的最小正周期为π,其图象的一个对称中心是)0,6(π解析:此题主要考查三角函数的倍角公式、三角函数的图象与性质.因为,)62sin(21π-=x y ,所以其周期为π;又当12π=x 时,0=y ,所以函数的图象的一个对称中心是)0,12(π.故答案为(B ).例6:(理(4)文(5))下列函数中既是奇函数,又在区间[-1,1]上单调递减的是(A )x x f sin )(= (B )1)(+-=x x f(C ))(21)(x x a a x f -+=(D )xx x f +-=22ln )( 解析:此题主要考查函数的奇偶性与单调性.先由奇函数,可排除(B )、(C ),再由函数是区间[-1,1]上的减函数,可排除(A ),故答案为(D ).例7:(理(5)文(6))如果n x x )13(32-的展开式中各项系数之和为128,则展开式中31x的系数是 (A )7 (B )7- (C )21 (D )21-解析:此题主要考查二项展开式的通项公式和基本的运算能力,考查赋值法的应用.令1=x ,得1282=n ,所以,7=n .由r r r r rr r r xC x x C T 35777327713)1()()3(----+-=-=,令3357-=-r ,得6=r .故第7项的系数为213)(677==C T .例8:(理(6)文(7))函数⎩⎨⎧≥<<-=-,0,,01),sin()(12x e x x x f x π若2)()1(=+a f f ,则a 的所有可能值为(A)1 (B) 22-(C) 1,22- (D) 1,22解析:此题考查分段函数的概念.实际解题时,取选择支中的几个特殊值代入验证即可.显然,1=a 是一个解,观察选择支可知,22-是另一个解. 例9:(理(7)、文(8))已知向量,,且,65,2+-=+=27-=,则一定共线的三点是(A )D B A 、、 (B )C B A 、、 (C )D C B 、、 (D ) D C A 、、 解析:此题主要考查向量的加法和向量共线的概念.由42+=+=2=.故答案为(A ). 例10:(理(8)、文(9))设地球半径为R ,若甲地位于北纬︒45东经︒120,乙地位于南纬︒75东经︒120,则甲、乙两地的球面距离为(A )R 3 (B)R 6π(C)R 65π (D) R 32π解析:此题主要考查经纬度和球面距离的概念.甲、乙两地在同一经度线上,且所对的球心角是︒120,所以甲、乙两地的球面距离为R 32π.故答案为(D ). 例11:(理(9)文(10))10张奖券中只有3张有奖,5个人购买,每人一张,至少有一人中奖的概率是(A )103 (B )121 (C )21 (D ) 1211解析:此题主要考查简单的古典概型.间接法:都没有中奖的概率是12151057=C C ,故答案为(D ). 例12:(理(13))=++-∞→222)1(2l i m n C C n nn n . 解析:此题主要考查组合数公式及基本性质和数列极限的四则运算.原式23122)1(3lim 2=++-=∞→n n n n n .例13:(文(13))某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人.为了解普通话在该校教师中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为70人的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数是 .解析:此题主要考查分层抽样的方法,应抽取的人数=5049035070=⨯. 例14:(文理(14))设双曲线)0,0(12222>>=-b a by a x 的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ∆是直角三角形,则双曲线的离心率e = .解析:此题主要考查双曲线的准线、渐近线、焦点以及直角三角形的有关概念和性质,设l 交x 轴于点R ,则c ab c a a b PR =⨯=2,又FR PR =,则ca c c ab 2-=,解得b a =,故e =2.2渗透数学思想方法,体现选拔功能为了保证试卷具有一定的区分度,试卷中设置了部分综合性、灵活性较强、具有适当难度的试题,侧重于考查学生运用数学思想方法,分析问题和解决问题的数学能力.2.1数形结合的思想方法 例15:(理(10),文(11))设集合A 、B 是全集U 的两个子集,则B A ⊂是U B A C U =⋃)(的(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D ) 既不充分也不必要条件解析:此题主要考查真子集和补集、全集的概念.实际解题中充分性可以利用文氏图直接进行验证;必要性的验证,只要取B A =,可知答案为(A ).例16:(文理(12))设直线l :022=++y x 关于原点对称的直线为l ’,若l ’与椭圆1422=+y x 的交点为A 、B ,点P 为椭圆上的动点,则使PAB ∆的面积为21的点P 的个数为 (A )1 (B )2 (C )3 (D )4解析:此题主要考查中心对称的概念和基本的运算能力.如果此题直接用代数的方法来解,运算较繁且容易出错.实际解题中可以通过画简图,采用数形结合的方法.不难知l ’的方程为022=-+y x ,可知在l ’的下方肯定有两个满足题设的点,设在l ’上方且与椭圆相切于P 点的直线l 1的方程为02=-+c y x ,与椭圆方程联立消去y 得044822=-+-c cx x ,令0)4(84)4(22=-⨯-=∆c c ,得82=c ,取2=c 2.计算 l 1与l ’的距离为5222-=d ,则21125)12(252121<-=-==∆d AB S PAB .故答案为(B ). 例17:(理(15)文(15))设x 、y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤+≤+.40,30,1223,5y x y x y x 则使得目标函数y x z 56+=的值最大的点),(y x 是 .解析:此题是典型的线性规划问题,结合图形不难解出答案是)3,2(. 2.2方程的思想例18:(文理(17))已知向量)sin ,(cos θθ=和)cos ,sin 2(θθ-=,)2,(ππθ∈528=+,求)82cos(πθ+的值.解析:∵ )sin cos ,2sin (cos θθθθ++-=+∴22)sin (cos )2sin (cos θθθθ+++-=+ =)sin (cos 224θθ-+=)4cos(12πθ++由已知528=+,得257)4cos(=+πθ.又 1)82(cos 2)4cos(2-+=+πθπθ,所以2516)82(cos 2=+πθ. ∵ πθπ2<<,∴ 898285ππθπ<+<. ∴ 54)82cos(-=+πθ.本小题主要考查向量运算,三角函数基本公式和简单的变形.关键是通过向量的模构造方程解出257)4cos(=+πθ,然后再利用倍角公式求出54)82cos(-=+πθ,其中方程的思想得到充分的体现.易出错的地方是根据角的范围判断三角函数值的符号.例19:(理(22))已知动圆过定点)0,2(p ,且与直线2px -=相切,其中0>p .(Ⅰ)求动圆圆心的轨迹C 的方程;(Ⅱ)设A 、B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且βα+为定值)0(πθθ<<时,证明直线AB 恒过定点,并求出该定点的坐标.解析:(Ⅰ)设动圆圆心),(y x M ,定点)0,2(pF ,则动点M 到定点F 和定直线l :2px -=距离相等,且定点不在定直线上.法一:由抛物线定义知,动圆圆心的轨迹C 是以定点为焦点,定直线为准线的抛物线.其方程为:)0(22>=p px y .法二:由2)2(22px y p x +=+-,解得动圆圆心的轨迹C 的方程为:)0(22>=p px y .(Ⅱ)法一:设),(),,(2211y x B y x A ,由题意得21x x ≠(否则)πβα=+且021≠⋅x x ,2221212,2px y px y ==.所以直线AB 的斜率存在,设其方程为b kx y +=.由⎩⎨⎧+==.,22b kx y px y 得0222=+-pb py ky , ∴⎪⎩⎪⎨⎧==+.2,22121k pby y k p y y …………………① (1)2πθ≠时,βαβαβαθtan tan 1tan tan )tan(tan ⋅-+=+==.4)(222122122121212122112211p y y y y p y p y p y p y p x y x y x y x y -+=-+=-+ …………………②由①②得,,22tan pkb p-=θ∴pk p b 2tan 2+=θ. 所以直线AB 的方程为θθtan 2)2(2tan 2p p x k pk p kx y ++=++=, 故直线AB 恒过定点)tan 2,2(θpp -. (2)2πθ=时,2πβα=+,∴1tan tan =⋅βα,∴12211=x y x y ,得2214p y y =, …………………③ 由①③得,pk b 2=,所以直线AB 的方程为)2(2p x k pk kx y +=+=, 故直线AB 恒过定点)0,2(p -. 由(1)(2)知,当2πθ=时,直线AB 恒过定点)0,2(p -;当2πθ≠时,直线AB 恒过定点)tan 2,2(θpp -. 法二:由⎩⎨⎧+==.,22b kx y px y 得 0)22(222=+-+b x p kb x k .⎪⎪⎩⎪⎪⎨⎧=-=+.,222221221k b x x k kb p x x 及⎩⎨⎧+=+=.,2211b kx y b kx y=+=)tan(tan βαθ.22112211221122112211pk b px b kx x b kx x b kx x b kx x y x y x y x y -=+⋅+-+++=-+(2πθ≠)以下同法一.法三:设OA 的方程为:,1x k y = OB 的方程为:x k y 2=. 则 ,tan ,tan 21βα==k k由⎩⎨⎧==.2,21px y x k y 得 )2,2(121k p k p A ;同理可得 )2,2(222k pk p B ,∴直线AB 的斜率是 21212122122222k k k k k p k p k pk p k AB+=--=,(若,021=+k k 则πβα=+) ∴直线AB 的方程为 )2(22121211k px k k k k k p y -+=-,∴ ,2212121k k p x k k k k y +++= 又 =+=)tan(tan βαθ21211k k k k -+, (2πθ≠).∴直线AB 的方程为,)1(2)2(21212121k k k k p p x k k k k y +-+++=即 ,tan 2)2(2121θpp x k k k k y +++=以下略. 法四:设直线AB 的方程为b my x +=,与抛物线方程联立消去x ,可避免分式出现,同时可不必讨论斜率不存在的情况.以下略.本小题主要考查直线和抛物线的概念和性质、三角函数公式,考查分类讨论思想、解析几何的基本方法及综合解题能力.在整个解题过程中,突出方程的思想,这就是解析几何的基本方法,用代数(方程)的方法解决几何问题.本小题为试卷的压轴题,由于第(Ⅰ)问两种解法思路清楚,学生熟悉,且计算量不大,一般学生都能得到分数;第(Ⅱ)问涉及到的字符较多且运算量较大,时间又紧,只有数学能力较高的学生才能取得高分.2.3分类讨论的思想 例20:(理(18))袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为71.现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,用ξ表示取球终止时所需要的取球次数.(Ⅰ)求袋中原有白球的个数; (Ⅱ)求随机变量ξ的概率分布; (Ⅲ)求甲取到白球的概率.解析:(Ⅰ)设袋中原有n 个白球,则71272=C C n ,解得,3=n .即袋中原有3个白球.(Ⅱ)由题设,随机变量ξ的取值为1、2、3、4、5.73)1(==ξP ; 726734)2(=⨯⨯==ξP ; 356567334)3(=⨯⨯⨯⨯==ξP ;35345673234)4(=⨯⨯⨯⨯⨯⨯==ξP ;3513456731234)5(=⨯⨯⨯⨯⨯⨯⨯⨯==ξP .所以,随机变量ξ的分布列为且这三个事件两两互斥,故甲取到白球的概率为)3()2()1(=+=+==ξξξP P P P =73+356+351=3522.本小题主要考查古典概型和离散型随机变量的分布列,考查运用概率知识解决实际问题的能力.本题的第(Ⅱ)、(Ⅲ)小题根据取到白球的次数不同,进行分类讨论.2.4转化的方法 例21:(理(11))10<<a ,下列不等式一定成立的是(A )2)1(log )1(log )1()1(>++--+a a a a (B ))1(log )1(log )1()1(a a a a +<--+(C ))1(log )1(log )1(log )1(log )1()1()1()1(a a a a a a a a ++-<++--+-+ (D ))1(log )1(log )1(log )1(log )1()1()1()1(a a a a a a a a +-->+---+-+ 解析:本题主要考查对数运算的基本性质和均值不等式的应用.注意观察题目中出现的两个对数恰好互为倒数,且不相等,故选(A ).例22:(理(19))已知1=x 是函数1)1(3)(23+++-=nx x m mx x f 的一个极值点,其中R n m ∈,,0<m .(Ⅰ)求m 与n 的关系表达式; (Ⅱ)求)(x f 的单调区间;(Ⅲ)当]1,1[-∈x 时,函数)(x f y =的图象上的任意点的切线斜率恒大于3m ,求m 的取值范围.解析:(Ⅰ)∵ 0)1(63)1('=++-=n m m f , ∴ 63+=m n .(Ⅱ)∵63)1(63)1(63)('22+++-=++-=m x m mx n x m mx x f =3)2)(1(---m mx x令0)('=x f ,得 mx x 21,121+==. ∵0<m ,∴12x x <.)(x f 与)('x f 的变化如下表:因此,)(x f 的单调递减区间是)1,(m+-∞和),1(+∞;)(x f 的单调递增区间是)1,21(m+. (Ⅲ)由(Ⅱ)63)1(63)1(63)('22+++-=++-=m x m mx n x m mx x f m 3>,(]1,1[-∈x ).即02)1(22>++-x m mx ,(]1,1[-∈x ).令2)1(2)(2++-=x m mx x g ,)0(<m ,]1,1[-∈x ,∵]1,1[,02)1(2)(2-∈>++-=x x m mx x g 且0<m ,∴⎩⎨⎧>-=>++=-.02)1(,042)1(m m g m m g ⇒.034<<-m即m 的取值范围是.034<<-m 本小题主要考查了导数的概念和计算,应用导数研究函数单调性的基本方法以及函数与方程的思想.第2小题要根据)(x f '的符号,分类讨论)(x f 的单调区间;第3小题是二次三项式在一个区间上恒成立的问题.用区间端点处函数值的符号来表示二次三项式在一个区间上的符号,体现出将一般性问题特殊化的数学思想.2.5空间想象能力例23:(1)(文(16))已知m 、n 是不同的直线,βα,是不重合的平面,给出下列命题:①若α//m ,则m 平行于平面α内的任意一条直线;②若βαβα⊂⊂n m ,,//,则n m //; ③若n m n m //,,βα⊥⊥,则βα//; ④若αβα⊂m ,//,则β//m .上面命题中,真命题的序号是 (写出所有真命题的序号). (2)(理(16))已知m 、n 是不同的直线,βα,是不重合的平面,给出下列命题:①若βαβα⊂⊂n m ,,//,则n m //; ②若,//,//,,ββαn m n m ⊂则βα//; ③若n m n m //,,βα⊥⊥,则βα//;④m 、n 是两条异面直线,若βαβα//,//,//,//n n m m ,则βα//. 上面命题中,真命题的序号是 (写出所有真命题的序号). 解析:以上2个小题主要通过判断空间线面平行与垂直的位置关系,考查学生的空间想象能力.答案是③④.例24:(文理(20))如图,已知长方体1111D C B A ABCD -,,1,21==AA AB 直线BD 与平面B B AA 11所成的角为︒30,BD AE ⊥于E ,F 为11B A 的中点. (Ⅰ)求异面直线AE 与BF 所成的角; (Ⅱ)求平面BDF 与平面AA 1B 所成的二面角(锐角)的大小;(Ⅲ)求点A 到平面BDF 的距离. 解析:(Ⅰ)法一:以AB 所在直线为x 轴,AD 所在直线为y 轴,AA 1所在直线为z 轴建立空间直角坐标系,如图,由于AB =2,AA 1=1,所以B 1 AA 1BCDE F D 1C 1)1,0,1(),0,0,2(),0,0,0(F B A ,又⊥AD 面B B AA 11,所以DBA ∠就是直线BD 与平面B B AA 11所成的角,即DBA ∠=︒30.由此可得,AD 332=.故)0,332,0(),0,23,21(D E . ∵)1,0,1(),0,23,21(-==,∴,42,cos -=>=< 即异面直线AE 与BF 所成的角为42arccos. 法二:21)(11-=+⋅=⋅B BB ,以下略.法三:设AE 与BF 所成的角为θ,则BAE ABF ∠⋅∠=cos cos cos θ42=,以下略.(Ⅱ)法一:平面AA 1B 的一个法向量)0,1,0(=m ,设),,(z y x n =是平面BDF 的一个法向量,由⊥⊥,,且)0,332,2(-=,得 ⎪⎩⎪⎨⎧=-=+-.03322,0y x z x ⎩⎨⎧==⇒.3,y x z x 取1=x ,得)1,3,1(=,∴515,cos =>=<. 即平面BDF 与平面AA 1B 所成的二面角(锐角)为515arccos. 法二:射影法.设平面BDF 与平面AA 1B 所成的二面角(锐角)为θ,则DFBAFBS S ∆∆=θcos .以下略. 法三:连接AF ,可证AFD ∠就是平面BDF 与平面AA 1B 所成的二面角的平面角.以下略.(Ⅲ)法一:点A 到平面BDF 的距离d 等于AB 在平面BDF 的法向量)1,3,1(=上投影的绝对值.∴d552cos ===><⋅AB , 所以点A 到平面BDF 的距离为552. 法二:等积法.设点A 到平面BDF 的距离为d ,则根据ABF D BDF A V V --=,得ABF BD F S AD S d ∆∆⋅=⋅.以下略.法三:由(Ⅱ)的法三知,面AFD ⊥面BFD ,所以,作DF AH ⊥于H ,则AH 的长就是点A 到平面BDF 的距离.以下略.本小题主要考查棱柱、空间角、距离和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.由于题目给出的几何载体是长方体,故本题用建系和传统的方法都比较容易解出.其中“射影法”和“等积法”避免了大量的几何论证,把逻辑推理的问题转化为代数计算问题.2.6运算能力例25:(理(21))已知数列}{n a 的首项51=a ,前n 项和为n S ,)(52*1N n n S S n n ∈++=+.(Ⅰ)证明数列}1{+n a 是等比数列;(Ⅱ)令n n x a x a x a x f +++= 221)(,求函数)(x f 在1=x 处的导数)1('f ,并比较)1('2f 与n n 13232-的大小.解析:(Ⅰ)法一:由题设521++=+n S S n n ,得 )1(,421>++=-n n S S n n ,两式相减,得121+=+n n a a ,即)1(211+=++n n a a , 当n =1时,51212++=S S ,又51=a ,得112=a , ∴)1(2112+=+a a .因此,)(),1(21*1N n a a n n ∈+=++,即数列}1{+n a 是以6为首项,2为公比的等比数列.法二:经计算可得:12351-⨯==a ;1231122-⨯==a ;1232333-⨯==a ; 猜想:123-⨯=n n a .数学归纳法证明,略.法三:由题设 )6(26)1(1++=++++n S n S n n ,则{6++n S n }成等比数列,以下略.(Ⅱ)由(Ⅰ)知,123-⋅=n n a . ∵n n x a x a x a x f +++= 221)(,∴)1('f =n na a a +++ 212=)123()123(2)123(2-⨯++-⨯+-⨯n n =)21()2222(32n n n +++-⨯++⨯+ =32)1()222(11+-+-⨯++n n n n n =362)1(2)1(1++-⋅-+n n n n . 因此,)1('f =362)1(2)1(1++-⋅-+n n n n . ∵)1('2f )1323(2n n --=)]12(2)[1(12+--n n n ,∴当1=n 时,)1('2f 0)1323(2=--n n ,即)1('2f =n n 13232-; 当2=n 时,)1('2f 0)1323(2<--n n ,即)1('2f <n n 13232-;当3≥n 时,1222)11(2110+>+≥++++=+=-n n C C C C nn n n n n n n ,故,)1('2f 0)1323(2>--n n ,即)1('2f >n n 13232-.本小题主要考查数列、等比数列的概念和基本知识,考查多项式求导、数列的错项求和以及比较两个代数式大小的方法,考查运算能力以及分析、归纳和推理能力.三.抽样分析为了了解山东省考生的答卷情况,我们从全省367351名普通理科考生和174085名普通文科考生的试卷中,分别各抽取了卷一普理60000份、普文69806份,卷二普理72822份、普文44296份,进行了抽样分析.抽样结果如下(表5~表9):内的实际人数或比例,后一个表示从高分段到本分数段的累计数.表8中13~16题样本数分为:普文1464、普理2322)0.10.20.30.40.50.60.70.80.91123456789101112卷一难度分布表数据分析:1.从表5和表6可以看出,客观题以中低档题为主,理科满分的考生约占15%;文科约占12%.2.从表8可以看出各题的区分度以及试卷的信度指标较好.3.从表9可以看出文科试卷的难度比较符合《考试大纲》的要求,各类题目的难度分布也近似符合3:5:2的要求.4.从表9可以看出理科抽样均分比04年略低0.8分,文科比04年约高11分. 由于时间上的关系,没有统计艺术文、艺术理和体育专业考生的数学成绩.四.对中学数学教学与学习的启示高考竞争愈演愈烈,今年我省高考报名约73万人,比去年净增约17万人,规模年年攀升,又创历史新高,高校扩招的规模跟不上生源增加的速度,升学压力越来越大.高考命题改革的步伐也在加快,高考命题权逐步下放.今年全国包括山东省在内15个省市自主命题.在试卷结构、科目设置、考查内容、分数计算等方面不尽相同.另外,新一轮课程改革已经开始,我省和广东、海南以及宁夏四省率先进入“新课改”试验,使用新教材,2007年高考将面临着重大改革.因此,为了适应当前快速变化和发展的教学与高考的改革要求,反思和促进我们的中学教学,有必要认真研究高考命题以及学生在高考答题中出现的问题.1.考生答卷中出现的主要错误 1.1概念性错误在阅卷中发现,由于考生基础知识、基本概念不落实,造成许多不应该有的失分.如文理(15)题线性规划问题,基本步骤和方法掌握不到位造成失分,且因为没有认真审题错答成最大值的考生也不在少数;再如:文理(17)题由于向量的加法、模的运算、三角公式记忆不熟练、不准确出现了大量错误,如)sin (cos 22θθ-=)4cos(2πθ+、2)4sin(θπ-、4)4sin(πθ-、4)4cos(πθ-等,结果是卷面上书写量很大,却几乎没有得分点.更遗憾的是空白卷也有不少,特别是文科考生.从当前课程、教材改革和近几年高考数学命题改革的趋势来看,三角函数这一部分淡化了三角的恒等变形,强化了三角函数的基本概念、基本变形和三角函数图象的性质和变换.应该注意到三角函数与许多数学分支及应用问题卷二难度分布表0.10.20.30.40.50.60.70.80.913141516171819202122普理普文有着密切关系,三角函数仍是中学数学重要内容之一.再如文理(20)题中有的考生把异面直线所成的角表示为)42arccos(-或42arccos-π;文理(19)题中有的考生直接将两个单调性相同的区间用并集符号连接起来等;文理(22)题的第1小题,许多考生没有把题设条件与抛物线定义联系起来,得到的结论五花八门.因此,平时学习要注意不能把基础知识的掌握与“死记硬背”等同起来,只有抓好“双基”,才有可能提高“能力”.这些问题也反映出当前中学数学学习中普遍存在的“重解题,轻概念;重教辅,轻教材”的倾向.1. 2方法性错误基本方法、基本技能落实不到位.如文理(17)题最后一步要由角的范围来确定三角函数值的符号,许多考生忽略了或不会进行正确的判断,就直接得出结论;又如文理(21)题对于由S n 求a n 的问题,许多考生没有验证n =1的情况,同时许多考生不会或不能正确的使用错位相减求和的方法,还有的考生求)1('f 时,先求)1(f ,再求导数;另外根据某些考生(21)题的解答可以看出,部分考生对数学归纳法掌握的不好.再如文理(20)题中涉及到立体几何的计算问题是历年高考的重点.由于今年给出的几何载体是长方体,因此既可以用传统的解法,也可以用坐标的方法求解.大量的考生选取了坐标法,但是其中点的坐标、向量和法向量的计算出错是考生丢分的主要原因.分类讨论的方法理解掌握的不到位.如文理(19)题利用导数解函数的单调性问题.许多理科考生不认真审题,没有注意其中m <0这个条件,把问题复杂化,最终导致解答失误,而许多文科考生没有或不会根据m 的符号进行分类讨论;再如理(22)题中,多数考生没有对2πθ=和2πθ≠两种情况进行讨论;理(21)题的第2小题比较大小时,不会分类或分类混乱.这些问题的主要原因是已知条件分析的不透、解题步骤不规范以及基本的运算技能较差.1.3 能力性错误 基本的运算能力下滑.本张试卷与往年相比运算量较大,如理科6个解答题包含14个小题,其中有13个计算题;文科6个解答题包含13个小题,其中有12个计算题.前面谈到的各种基本数值和代数式的化简运算问题,已经反映出许多考生运算能力太差.再如文理选择题最后一小题(12)题,主要就是一个计算求解问题;再如文理(21)(22)题基本上就是以考查运算能力为主的压轴题,很多考生都会做,但只有基础扎实、运算能力强的考生才有希望得高分.识图和作图以及空间想象能力较差.文理(20)的立体几何题,许多考生想当然的把点E 当成了中点.转化能力不足.如理(19)题许多考生不能正确地将“一元二次不等式在一个区间上恒成立的问题”转化为“区间端点处的函数值符号问题”来解决;理(22)。

2005年全国统一高考数学试卷及解析(理)

2005年全国统一高考数学试卷及解析(理)

2005年全国统一高考数学试卷ⅰ(理)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数=()A.﹣i B.i C.2﹣i D.﹣2+i2.(5分)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅ D.S1⊆(∁I S2∪∁I S3)3.(5分)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B. C.D.4.(5分)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是()A.B.C.D.5.(5分)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C.D.6.(5分)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A. B.C. D.7.(5分)当0<x<时,函数的最小值为()A.2 B.C.4 D.8.(5分)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.9.(5分)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)10.(5分)在直角坐标平面上,不等式组所表示的平面区域面积为()A. B.C.D.311.(5分)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③12.(5分)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对二、填空题(共4小题,每小题4分,满分16分)13.(4分)若正整数m满足10m﹣1<2512<10m,则m=.(lg2≈0.3010)14.(4分)的展开式中,常数项为.(用数字作答)15.(4分)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=度.16.(4分)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为.(写出所有正确结论的编号)三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.18.(12分)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.19.(12分)设等比数列{a n}的公比为q,前n项和S n>0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n 的大小.20.(12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)21.(14分)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.22.(12分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.2005年河北省高考数学试卷Ⅰ(理)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2005•安徽)复数=()A.﹣i B.i C.2﹣i D.﹣2+i【分析】两个复数相除,分子、分母同时乘以分母的共轭复数,复数的乘法按多项式乘以多项式的方法进行.【解答】解:复数====i,故选B.2.(5分)(2005•安徽)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅ D.S1⊆(∁I S2∪∁I S3)【分析】根据公式C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B),容易判断.【解答】解:∵S1∪S2∪S3=I,∴C I S1∩C I S2∩C I S3)=C I(S1∪S2∪S3)=C I I=∅.故答案选C.3.(5分)(2008•湖北)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B. C.D.【分析】做该题需要将球转换成圆,再利用圆的性质,获得球的半径,解出该题即可.【解答】解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒球的半径是,所以根据球的体积公式知,故选B.4.(5分)(2005•安徽)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x 有两个交点时,其斜率k的取值范围是()A.B.C.D.【分析】圆心到直线的距离小于半径即可求出k的范围.【解答】解:直线l为kx﹣y+2k=0,又直线l与圆x2+y2=2x有两个交点故∴故选C.5.(5分)(2005•安徽)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C.D.【分析】该几何体是一个三棱柱截取两个四棱锥,体积相减即为该多面体的体积.【解答】解:一个完整的三棱柱的图象为:棱柱的高为2;底面三角形的底为1,高为:,其体积为:;割去的四棱锥体积为:,所以,几何体的体积为:,故选A.6.(5分)(2005•安徽)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A. B.C. D.【分析】先根据抛物线和双曲线方程求出各自的准线方程,然后让二者相等即可求得a,进而根据c=求得c,双曲线的离心率可得.【解答】解:双曲线的准线为抛物线y2=﹣6x的准线为因为两准线重合,故=,a2=3,∴c==2∴该双曲线的离心率为=故选D7.(5分)(2005•安徽)当0<x<时,函数的最小值为()A.2 B.C.4 D.【分析】利用二倍角公式化简整理后,分子分母同时除以cosx,转化成关于tanx的函数解析式,进而利用x的范围确定tanx>0,最后利用均值不等式求得函数的最小值.【解答】解:=.∵0<x<,∴tanx>0.∴.当时,f(x)min=4.故选C.8.(5分)(2005•安徽)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.【分析】根据题中条件可先排除前两个图形,然后根据后两个图象都经过原点可求出a的两个值,再根据抛物线的开口方向就可确定a的值【解答】解:∵b>0∴抛物线对称轴不能为y轴,∴可排除掉前两个图象.∵剩下两个图象都经过原点,∴a2﹣1=0,∴a=±1.∵当a=1时,抛物线开口向上,对称轴在y轴左方,∴第四个图象也不对,∴a=﹣1,故选B.9.(5分)(2005•安徽)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)【分析】结合对数函数、指数函数的性质和复合函数的单调性可知:当0<a<1,log a(a2x﹣2a x﹣2)<0时,有a2x﹣2a x﹣2>1,解可得答案.【解答】解:设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),若f(x)<0则log a(a2x﹣2a x﹣2)<0,∴a2x﹣2a x﹣2>1∴(a x﹣3)(a x+1)>0∴a x﹣3>0,∴x<log a3,故选C.10.(5分)(2005•安徽)在直角坐标平面上,不等式组所表示的平面区域面积为()A. B.C.D.3【分析】先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用三角形的面积公式计算即可.【解答】解:原不等式组可化为:或画出它们表示的可行域,如图所示.可解得A(,﹣),C(﹣1,﹣2),B(0,1)原不等式组表示的平面区域是一个三角形,其面积S△ABC=×(2×1+2×)=,故选C.11.(5分)(2005•安徽)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③【分析】先利用同角三角函数的基本关系和二倍角公式化简整理题设等式求得cos=进而求得A+B=90°进而求得①tanA•cotB=tanA•tanA等式不一定成立,排除;②利用两角和公式化简,利用正弦函数的性质求得其范围符合,②正确;③sin2A+cos2B=2sin2A不一定等于1,排除③;④利用同角三角函数的基本关系可知cos2A+cos2B=cos2A+sin2A=1,进而根据C=90°可知sinC=1,进而可知二者相等.④正确.【解答】解:∵tan=sinC∴=2sin cos整理求得cos(A+B)=0∴A+B=90°.∴tanA•cotB=tanA•tanA不一定等于1,①不正确.∴sinA+sinB=sinA+cosA=sin(A+45°)45°<A+45°<135°,<sin(A+45°)≤1,∴1<sinA+sinB≤,所以②正确cos2A+cos2B=cos2A+sin2A=1,sin2C=sin290°=1,所以cos2A+cos2B=sin2C.所以④正确.sin2A+cos2B=sin2A+sin2A=2sin2A=1不一定成立,故③不正确.综上知②④正确故选B.12.(5分)(2005•安徽)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对【分析】直接解答,看下底面上的一条边的异面直线的条数,类推到上底面的边;再求侧面上的异面直线的对数;即可.【解答】解:三棱柱的底面三角形的一条边与侧面之间的线段有3条异面直线,这样3条底边一共有9对,上下底面共有18对.上下两个底边三角形就有6对;侧面之间的一条侧棱有6对,侧面面对角线之间有6对.加在一起就是36对.(其中棱对应的两条是体对角线和对面的面与其不平行的另一条对角线).故选D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2005•安徽)若正整数m满足10m﹣1<2512<10m,则m= 155.(lg2≈0.3010)【分析】利用题中提示lg2≈0.3010,把不等式同时取以10为底的对数,再利用对数的运算性质,转化为关于m的不等式求解即可.【解答】解:∵10m﹣1<2512<10m,取以10为底的对数得lg10m﹣1<lg2512<lg10m,即m﹣1<512×lg2<m又∵lg2≈0.3010∴m﹣1<154.112<m,因为m是正整数,所以m=155故答案为155.14.(4分)(2005•安徽)的展开式中,常数项为672.(用数字作答)=C n r a n﹣r b r求出通项,进行指【分析】利用二项式定理的通项公式T r+1数幂运算后令x的指数幂为0解出r=6,由组合数运算即可求出答案.=C9r(2x)9﹣r=(﹣1)r29﹣r C9r x9【解答】解:由通项公式得T r+1﹣r=(﹣1)r29﹣r C9r,令9﹣=0得r=6,所以常数项为(﹣1)623C96=8C93=8×=672故答案为67215.(4分)(2005•山西)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=115度.【分析】由三角形内切定义可知:OB、OC是∠ABC、∠ACB的角平分线;再利用角平分线的定义可知∠OBC+∠OCB=(∠ABC+∠ACB),代入数值即可求答案.【解答】解:∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(50°+80°)=65°,∴∠BOC=180°﹣65°=115°.故答案为:115°.16.(4分)(2005•安徽)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形B FD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为①③④.(写出所有正确结论的编号)【分析】由平行平面的性质可得①是正确的,当E、F为棱中点时,四边形为菱形,但不可能为正方形,故③④正确,②错误.【解答】解:①:∵平面AB′∥平面DC′,平面BFD′E∩平面AB′=EB,平面BFD′E∩平面DC′=D′F,∴EB∥D′F,同理可证:D′E∥FB,故四边形BFD′E一定是平行四边形,即①正确;②:当E、F为棱中点时,四边形为菱形,但不可能为正方形,故②错误;③:四边形BFD′E在底面ABCD内的投影为四边形ABCD,所以一定是正方形,即③正确;④:当E、F为棱中点时,EF⊥平面BB′D,又∵EF⊂平面BFD′E,∴此时:平面BFD′E⊥平面BB′D,即④正确.故答案为:①③④三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)(2005•山西)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.【分析】(I)由图象的一条对称轴是直线,从而可得,解的∅,根据平移法则判断平移量及平移方向(II)令,解x的范围即为所要找的单调增区间(III)利用“五点作图法”做出函数的图象【解答】解:(Ⅰ)∵x=是函数y=f(x)的图象的对称轴,∴,∴,k∈Z.∵.由y=sin2x向右平移得到.(4分)(Ⅱ)由(Ⅰ)知ϕ=﹣,因此y=.由题意得,k∈Z.所以函数的单调增区间为,k∈Z.(3分)(Ⅲ)由知x 0 πy ﹣﹣1 0 1 0 ﹣故函数y=f(x)在区间[0,π]上图象是(4分)18.(12分)(2005•安徽)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M 是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.【分析】法一:(Ⅰ)证明面PAD⊥面PCD,只需证明面PCD内的直线CD,垂直平面PAD内的两条相交直线AD、PD即可;(Ⅱ)过点B作BE∥CA,且BE=CA,∠PBE是AC与PB所成的角,解直角三角形PEB求AC与PB所成的角;(Ⅲ)作AN⊥CM,垂足为N,连接BN,说明∠ANB为所求二面角的平面角,在三角形AMC中,用余弦定理求面AMC与面BMC所成二面角的大小.法二:以A为坐标原点AD长为单位长度,建立空间直角坐标系,(Ⅰ)求出,计算,推出AP⊥DC.,然后证明CD垂直平面PAD,即可证明面PAD⊥面PCD;(Ⅱ),计算.即可求得结果.(Ⅲ)在MC上取一点N(x,y,z),则存在使,说明∠ANB 为所求二面角的平面角.求出,计算即可取得结果.【解答】法一:(Ⅰ)证明:∵PA⊥面ABCD,CD⊥AD,∴由三垂线定理得:CD⊥PD.因而,CD与面PAD内两条相交直线AD,PD都垂直,∴CD⊥面PAD.又CD⊂面PCD,∴面PAD⊥面PCD.(Ⅱ)解:过点B作BE∥CA,且BE=CA,则∠PBE是AC与PB所成的角.连接AE,可知AC=CB=BE=AE=,又AB=2,所以四边形ACBE为正方形.由PA⊥面ABCD得∠PEB=90°在Rt△PEB中BE=a2=3b2,PB=,∴.∴AC与PB所成的角为.(Ⅲ)解:作AN⊥CM,垂足为N,连接BN.在Rt△PAB中,AM=MB,又AC=CB,∴△AMC≌△BMC,∴BN⊥CM,故∠ANB为所求二面角的平面角∵CB⊥AC,由三垂线定理,得CB⊥PC,在Rt△PCB中,CM=MB,所以CM=AM.在等腰三角形AMC中,AN•MC=,∴.∴AB=2,∴故所求的二面角为.法二:因为PA⊥PD,PA⊥AB,AD⊥AB,以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为A(0,0,0)B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(Ⅰ)证明:因为,故,所以AP⊥DC.又由题设知AD⊥DC,且AP与AD是平面PAD内的两条相交直线,由此得DC⊥面PAD.又DC在面PCD上,故面PAD⊥面PCD(Ⅱ)解:因,故=,所以由此得AC与PB所成的角为.(Ⅲ)解:在MC上取一点N(x,y,z),则存在使,,∴x=1﹣λ,y=1,z=λ.要使AN⊥MC,只需即,解得.可知当时,N点坐标为,能使.,有由得AN⊥MC,BN⊥MC.所以∠ANB为所求二面角的平面角.∵,∴.故所求的二面角为arccos.19.(12分)(2005•安徽)设等比数列{a n}的公比为q,前n项和S n >0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n 的大小.【分析】(Ⅰ)设等比数列通式a n=a1q(n﹣1),根据S1>0可知a1大于零,当q不等于1时,根据等比数列前n项和公式,进而可推知1﹣q n>0且1﹣q>0,或1﹣q n<0且1﹣q<0,进而求得q的范围,当q=1时仍满足条件,进而得到答案.(Ⅱ)把a n的通项公式代入,可得a n和b n的关系,进而可知T n和S n的关系,再根据(1)中q的范围来判断S n与T n的大小.【解答】解:(Ⅰ)设等比数列通式a n=a1q(n﹣1)根据S n>0,显然a1>0,当q不等于1时,前n项和s n=所以>0 所以﹣1<q<0或0<q<1或q>1当q=1时仍满足条件综上q>0或﹣1<q<0(Ⅱ)∵∴b n==a n q2﹣a n q=a n(2q2﹣3q)∴T n=(2q2﹣3q)S n∴T n﹣S n=S n(2q2﹣3q﹣2)=S n(q﹣2)(2q+1)又因为S n>0,且﹣1<q<0或q>0,所以,当﹣1<q<﹣或q>2时,T n﹣S n>0,即T n>S n;当﹣<q<2且q≠0时,T n﹣S n<0,即T n<S n;当q=﹣,或q=2时,T n﹣S n=0,即T n=S n.20.(12分)(2005•安徽)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)【分析】首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率,由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元,得到变量ξ的可能取值是0,10,20,30,根据独立重复试验得到概率的分布列.【解答】解:首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率p=1﹣C330.53=0.875由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元得到变量ξ的可能取值是0,10,20,30,ξ=0,表示没有坑需要补种,根据独立重复试验得到概率P(ξ=0)=C330.8753=0.670P(ξ=10)=C320.8752×0.125=0.287P(ξ=20)=C31×0.875×0.1252=0.041P(ξ=30)=0.1253=0.002∴变量的分布列是ξ0 10 20 30P0.670 0.287 0.041 0.002∴ξ的数学期望为:Eξ=0×0.670+10×0.287+20×0.041+30×0.002=3.7521.(14分)(2005•安徽)已知椭圆的中心为坐标原点O,焦点在x 轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.【分析】(Ⅰ)直线与椭圆方程联立用未达定理的A、B两点坐标的关系,据向量共线的条件得椭圆中a,b,c的关系,从而求得椭圆的离心率(Ⅱ)用向量运算将λμ用坐标表示,再用坐标的关系求出λ2+μ2的值.【解答】解:(1)设椭圆方程为则直线AB的方程为y=x﹣c,代入,化简得(a2+b2)x2﹣2a2cx+a2c2﹣a2b2=0.令A(x1,y1),B(x2,y2),则.∵与共线,∴3(y1+y2)+(x1+x2)=0,又y1=x1﹣c,y2=x2﹣c,∴3(x1+x2﹣2c)+(x1+x2)=0,∴.即,所以a2=3b2.∴,故离心率.(II)证明:由(1)知a2=3b2,所以椭圆可化为x2+3y2=3b2.设M(x,y),由已知得(x,y)=λ(x1,y1)+μ(x2,y2),∴∵M(x,y)在椭圆上,∴(λx1+μx2)2+3(λy1+μy2)2=3b2.即λ2(x12+3y12)+μ2(x22+3y22)+2λμ(x1x2+3y1y2)=3b2.①由(1)知.∴,∴x1x2+3y1y2=x1x2+3(x1﹣c)(x2﹣c)=4x1x2﹣3(x1+x2)c+3c2==0.又x12+3y12=3b2,x22+3y22=3b2,代入①得λ2+μ2=1.故λ2+μ2为定值,定值为1.22.(12分)(2005•安徽)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.【分析】(1)根据总体的概念:所要考查的对象的全体即总体进行回答;(2)根据频率=频数÷总数进行计算;(3)首先计算样本中的频率,再进一步估计总体.【解答】解:(1)总体是某校2000名学生参加环保知识竞赛的成绩.(2),答:竞赛成绩在79.5~89.5这一小组的频率为0.25.(3),答:估计全校约有300人获得奖励.。

2005年高考.北京卷.文科数学试题精析详解

2005年高考.北京卷.文科数学试题精析详解

2005年普通高等学校招生全国统一考试(北京卷)数学(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷 1至2页,第II 卷3至9页,共150分。

考试时间120分钟。

考试结束,将本试卷和答题卡一并交回。

第I 卷(选择题共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试卷上。

一、本大题共8小题.每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项. (1)设全集U =R ,集合M ={x | x >1},P ={x | x 2>1},则下列关系中正确的是 A .M=P B .P M C .M P ( D )M P R =I 【答案】C【详解】{|1P x x =>或1}x <- {|1}M x x =>易得M P【名师指津】 集合与集合之间关系的题目经常借助图象来观察. (2)为了得到函数321x y -=-的图象,只需把函数2xy =上所有点 (A )向右平移3个单位长度,再向下平移1个单位长度 (B )向左平移3个单位长度,再向下平移1个单位长度 (C )向右平移3个单位长度,再向上平移1个单位长度 (D )向左平移3个单位长度,再向上平移1个单位长度 【答案】A【详解】把函数2x y =图像上所有点向右平移3个单位长度就得到函数3x 2y -=的图像;再把函数3x 2y -=的图像向下平移1个单位长度,即得到函数321x y -=-的图象。

【名师指津】要牢记图像的平移规律:(对x 来说)正左移,负右移;(对y 来说)正上移,负下移;平移规律可用简单的口诀来记忆:左右,上下,加减。

(3)“m=21”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的 (A )充分必要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】B【详解】当12m =时两直线斜率乘积为1-从而可得两直线垂直,当2m =-时两直线一条斜率为0一条斜率不存在,但两直线仍然垂直.因此12m =是题目中给出的两条直线垂直的充分但不必要条件.【名师指津】对于两条直线垂直的充要条件①12,k k 都存在时12.1k k =-②12,k k 中有一个不存在另一个为零对于②这种情况多数考生容易忽略.(4)若||1,||2,a b c a b ===+r r r r r,且c a ⊥r r ,则向量a r 与b r 的夹角为(A )30° (B )60° (C )120° (D )150° 【答案】C【详解】设所求两向量的夹角为θc a b c a →→→→→=+⊥Q 2.()..0c a a b a a a b →→→→→→→→∴=+=+=2||||||cos a a b θ→→→∴=- 即:2||||1cos 2||||||a a ab b θ→→→→→-==-=-所以120.oθ=【名师指津】 对于.||||cos a b a b θ→→→→=这个公式的变形应用应该做到熟练,另外向量垂直(平行)的充要条件必需掌握.(5)从原点向圆 x 2+y 2-12y +27=0作两条切线,则这两条切线的夹角的大小为 (A )6π (B )3π (C )2π(D )32π 【答案】B 【详解】 将圆的方程配方得:22(6)9x y +-=圆心在(0,6)半径为3,如图: 在图中Rt PAO ∆中,62OP PA ==,从而得到30oAOP ∠=,即60.oAOB ∠=所以两条切线的夹角的大小为3π. 【名师指津】 以数形结合的思想解决此类题,抓图中直角三角形中边角关系. (6)对任意的锐角α,β,下列不等关系中正确的是(A )sin(α+β)>sin α+sin β (B )sin(α+β)>cos α+cos β (C )cos(α+β)<sinα+sinβ (D )cos(α+β)<co sα+cosβ 【答案】D 【详解】当30o αβ==时可排除A 、B 选项,当15oαβ==时代入C 选项中,即:0cos302sin15oo<< 两边平方234sin 154o<1cos304230.2682o -=⨯=-≈矛盾故选D 【名师指津】 特殊值反代入的解题思想在高考选择题的解决过程中经常用到.本题只是简单的两组特殊角代入即可解决问题.特殊值解选择题关键是恰到好处地选取特殊值如:数值类经常考虑110,1,,23±。

2005年高考.湖北卷.理科数学试题精析详解

2005年高考.湖北卷.理科数学试题精析详解
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。答在试题卷上无效。
3.考试结束,监考人员将本试题卷和答题卡一并收回。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.
1.设P、Q为两个非空实数集合,定义集合P+Q=
求t的取值范围.
17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力。
解法1:依定义
开口向上的抛物线,故要使 在区间(-1,1)上恒成立
.
解法2:依定义
的图象是开口向下的抛物线,
18.(本小题满分12分)
在△ABC中,已知 边上的中线BD= ,求sinA的值.
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;
关于上述样本的下列结论中,正确的是()
重心.从K、H、G、B′中取一点作为P,使得该棱柱恰有
2条棱与平面PEF平行,则P为()
A.KB.H
C.GD.B′
解:用排除法.∵AB∥平面KEF, ∥平面KEF, ∥平面KEF, ∥平面KEF,否定(A), ∥平面HEF, ∥平面HEF, ∥平面HEF, ∥平面HEF,否定(B),对于平面GEF,有且只有两条棱AB, 平面GEF,符合要求,故(C)为本题选择支.当P点选 时有且只有一条棱AB∥平面PEF,综上选(C)

2005年高考.全国卷Ⅰ.理科数学试题精析详解(河北、河南、安徽、山西)

2005年高考.全国卷Ⅰ.理科数学试题精析详解(河北、河南、安徽、山西)

(D) 2 2 i
【点拨】对于复数运算应先观察其特点再计算,会简化运算.
(2)设 I 为全集, S1、S2、S3 是 I 的三个非空子集,且 S1 S2 S3 I ,则下面论断正确的是
()
(A) CI S1 (S2 S3)
(B) S1 (CI S2 CI S3)
(C) CI S1 CI S2 CI S3
(3)一个与球心距离为 1 的平面截球所得的圆面面积为 π ,则球的表面积为
()
(A) 8 2π (B) 8π (C) 4 2π (D) 4π 【解析】∵截面圆面积为 π ,∴截面圆半径 r 1 ,
O1
∴球的半径为 R OO12 r 2 2 ,
∴球的表面积为 8π ,故选B.
O
【点拨】找相关的直角三角形.
1 3
S
BNC
NF
2 24

VE AMD
VF BNC
2 24
V , AMDBNC
SBNC MN
2 4
,∴ V ABCDEF
2
,故选 A.
3
【点拨】将不规则的多面体分割或补全为规则的几何体进行计算.
(6)已知双曲线
x2 a2
y2
1
(a
0) 的一条准线与抛物线 y 2
6x 的准线重合,则该双曲线的
sin 2x
2sin x cos x sin x cos x
(D) 4 3
2 cos x 4 sin x 4 ,当且仅当 cos x 4 sin x ,即 tan x 1 时,取“ ”,
sin x cos x
sin x cos x
2
∵0
x
π 2
,∴存在 x 使 tan x

最新命题题库大全2005高考数学试题解析 分项专题04 数

最新命题题库大全2005高考数学试题解析 分项专题04 数

2013最新命题题库大全2005-2008年高考试题解析数学(文科)分项专题04 数列2008年高考试题03 数列一、选择题1.(2008北京7).已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于( C ) A .30 B .45C .90D .1862.(2008广东4)记等差数列{a n }的前n 项和为S n ,若S 1=4,S 4=20,则该数列的公差d = ( B )A .7B .6C .3D .23.(2008宁夏8)设等比数列{}n a 的公比q =2,前n 项和为S n ,则24a S =( C ) A .2B .4C .215 D .217 4.(2008江西5)在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a = ( A ) A .2ln n + B .2(1)ln n n +- C .2ln n n + D .1ln n n ++7.(2008上海14)若数列{}n a 是首项为l ,公比为32a -的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( B )A.1 B.2 C.12 D.548.(2008天津4) 若等差数列{}n a 的前5项和525S =,且23a =,则7a =( B ) A .12B .13C .14D .159.(2008浙江4)已知{}n a 是等比数列,41252==a a ,,则公比q = ( D )(A )21-(B )2- (C )2 (D )21 10.(2008重庆1)已知{a n }为等差数列,a 2+a 8=12,则a 5等于 ( C )(A)4 (B)5(C)6(D)711.(2008陕西4) 已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( B )A .64B .100C .110D .120二、填空题3.(2008江苏10)将全体正整数排成一个三角形数阵: 1 2 3 4 5 6 7 8 9 10。

2005高考数列专题

2005高考数列专题

2005高考数列专题一、选择题1.(05,福建,2)已知等差数列}{n a 中,1,16497==+a a a ,则12a 的值是( A )A .15B .30C .31D .642.(05,江苏,3)在各项都为正数的等比数列{}n a 中,首项31=a ,前三项和为21,则543a a a ++=( C )A .33B .72C .84D .1893.(05,全国2,11)如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( B )(A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a4.(05,江西理,12)将1,2,…,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为( A ) A .561 B .701 C .3361 D .4201 5.(05,广东,10)已知数列===+==∞→--12112,2lim .,4,3),(21,2}{x x n x x x x x x n n n n n n 则若满足 ( B )A .23B .3C .4D .56.(05,辽宁,12)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是( A )A B C D二、填空题1.(05,天津理,13)在数列{a n }中,a 1=1,a 2=2,且)( )1(12*+∈-+=-N n a a nn n 则100S =__2600___.2.(05,湖北理,15)设等比数列{n a }的公比为q ,前n 项和为n S ,若1+n S ,n S ,2+n S 成等差数列,则q 的值为 -2三、解答题1.(05,北京文,17)数列{}n a 的前n 项和为S n ,且,31,111n n S a a ==+n=1,2,3….求 (I )234,,a a a 的值及数列{}n a 的通项公式; (II )2462n a a a a ++++的值.解:(I )由a 1=1,113n n a S +=,n=1,2,3,……,得 211111333a S a ===,3212114()339a S a a ==+=,431231116()3327a S a a a ==++=,由1111()33n n n n n a a S S a +--=-=(n ≥2),得143n n a a +=(n ≥2),又a 2=31,所以a n =214()33n -(n ≥2),∴ 数列{a n }的通项公式为21114()233n n n a n -=⎧⎪=⎨⎪⎩≥;(II )由(I )可知242,,,n a a a 是首项为31,公比为24()3项数为n 的等比数列,∴ 2462n a a a a ++++=22241()1343[()1]43731()3n n -⋅=-- 2.(05,天津理,18)已知0,0,( 1221>>∈+++++=*---b a N n b ab b a b a a u n n n n n n(Ⅰ)当b a =时,求数列{}n u 的前n 项和n S (Ⅱ)求1lim-∞→n nn u u 。

2005年全国高考数学试题 数列部分

2005年全国高考数学试题 数列部分

数列部分选择题1. (广东卷)已知数列{}n x 满足122x x =,()1212n n n x x x --=+,3,4,n =….若lim 2n n x →∞=,则(B) (A)32(B)3(C)4(D)52. (福建卷)3.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( A )A .15B .30C .31D .643. (湖南卷)已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =(B )A .0B .3-C .3D .234. (湖南卷)已知数列{log 2(a n -1)}(n∈N *)为等差数列,且a 1=3,a 2=5,则nn n a a a a a a -++-+-+∞→12312l i m111(=(C )A .2B .23 C .1 D .215. (湖南卷)设f 0(x )=sinx ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2005(x )=(C ) A .sinxB .-sinxC .cos xD .-cosx6. (江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=(C )( A ) 33 ( B ) 72 ( C ) 84 ( D )189 7. (全国卷II ) 如果数列{}n a 是等差数列,则(B )(A)1845a a a a +<+ (B) 1845a a a a +=+ (C) 1845a a a a +>+ (D) 1845a a a a = 8. (全国卷II ) 11如果128,,,a a a 为各项都大于零的等差数列,公差0d ≠,则(B)(A)1845a a a a >(B) 1845a a a a <(C) 1845a a a a +>+ (D) 1845a a a a =9. (山东卷){}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于(C ) (A )667 (B )668 (C )669 (D )670 10. (上海)16.用n 个不同的实数a 1,a 2,┄a n 可得n!个不同的排列,每个排列为一行写成 1 2 3一个n!行的数阵.对第i 行a i1,a i2,┄a in ,记b i =- a i1+2a i2-3 a i3+┄+(-1)n na in , 1 3 2 i=1,2,3, ┄,n!.用1,2,3可你数阵如右,由于此数阵中每一列各数之和都 2 1 3 是12,所以,b 1+b 2+┄+b 6=-12+2⨯12-3⨯12=-24.那么,在用1,2,3,4,5形成 2 3 1 的数阵中, b 1+b 2+┄+b 120等于 3 1 23 21[答]( C ) (A)-3600 (B) 1800 (C)-1080 (D)-720 11. (浙江卷)limn →∞2123nn++++ =( C )(A) 2 (B) 4 (C)21 (D)012. (重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年全国高考数学试题分类汇编——数列·数学归纳法1. (2005全国卷II 文科第7题)如果数列{}n a 是等差数列,则( )(A)1845a a a a +<+(B) 1845a a a a +=+ (C) 1845a a a a +>+ (D) 1845a a a a =2. (2005全国卷II 文科第13题)在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_______.3. (全国卷II 理科第11题)如果128,,,a a a 为各项都大于零的等差数列,公差0d ≠,则( ) (A)1845a a a a > (B) 1845a a a a < (C) 1845a a a a +>+ (D) 1845a a a a =4.(2005湖南卷文科第5题)已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =( )A .0B .3-C .3D .235.(2005湖南卷理科第3题)已知数列{log 2(a n -1)}(n ∈N *)为等差数列,且a 1=3,a 2=5,则lim 21321111()n n na a a a a a →∞++++---=( )A .2B .23C .1D .216. (2005湖北卷理科第15题)设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 . 7.(2005江苏卷第3题)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=( ) ( A ) 33 ( B ) 72 ( C ) 84 ( D )189 8.(2005山东卷文科第1题){}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于( )(A )667 (B )668 (C )669 (D )6709.(2005福建卷理科第2题)已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 ( ) A .15B .30C .31D .6410.(2005天津卷文科第14题)在数列{a n }中, a 1=1, a 2=2,且)( )1(12*+∈-+=-N n a a n n n ,则10S =_ ___.11.(2005天津卷理科第13题)在数列{a n }中, a 1=1, a 2=2,且)( )1(12*+∈-+=-N n a a n n n ,则100S =__ .12.(2005辽宁卷第12题)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是 ( )(A ) (B ) (C ) (D )13.(2005广东卷第10题)已知数列{}n x 满足122x x =,()1212n n n x x x --=+,3,4,n =….若lim 2n n x →∞=,则( )(A)32(B)3 (C)4 (D)514. (2005广东卷第14题)设平面内有n条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三角形不过同一点.若用()f n 表示这n条直线交点的个数,则(4)f _______;当n>4时,()f n =_______.15. (2005北京卷第14题)已知n 次多项式1011()n n n n n P x a x a x a x a --=++++,如果在一种算法中,计算0kx (k =2,3,4,…,n )的值需要k -1次乘法,计算30()P x 的值共需要9次运算(6次乘法,3次加法),(文科)那么计算100()P x 的值共需要 次运算. (理科)那么计算0()n P x 的值共需要 次运算. 下面给出一种减少运算次数的算法:0011(),()()k k k P x a P x xP x a ++==+ (k =0, 1,2,…,n -1).利用该算法,计算30()P x 的值共需要6次运算, (文科)计算100()P x 的值共需要 次运算. (理科)计算0()n P x 的值共需要 次运算.16. [ 2005上海理科第12题,文科第16题(选择题)]用n 个不同的实数n a a a ,,,21 可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵。

对第i 行in i i a a a ,,,21 ,记in ni i i i na a a a b )1(32321-++-+-=,!,,3,2,1n i =。

例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以,2412312212621-=⨯-⨯+-=+++b b b ,那么,在用1,2,3,4,5形成的数阵中,12021b b b +++ =__________。

1 2 31 32 2 13 2 3 1 3 1 2 3 2 117. (2005全国卷Ⅰ文科第21题) 设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。

(Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T 。

18. (2005全国卷Ⅰ理科第19题,满分12分)设等比数列{}n a 的公比为q ,前n 项和),2,1( 0 =>n S n 。

(Ⅰ)求q 的取值范围; (Ⅱ)设1223++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小。

19. (2005全国卷II 文科第19题)已知{}n a 是各项为不同的正数的等差数列,1lg a 、2lg a 、4lg a 成等差数列.又21nn b a =,1,2,3,n =.(Ⅰ) 证明{}n b 为等比数列;(Ⅱ) 如果数列{}n b 前3项的和等于724,求数列{}n a 的首项1a 和公差d .20.(2001全国卷II 理科第18题)已知{}n a 是各项为不同的正数的等差数列,1lg a 、2lg a 、4lg a 成等差数列.又21nn b a =,1,2,3,n =.(Ⅰ) 证明{}n b 为等比数列;(Ⅱ) 如果无穷等比数列{}n b 各项的和13S =,求数列{}n a 的首项1a 和公差d . (注:无穷数列各项的和即当n →∞时数列前n 项和的极限)21. (2005全国卷III 理科第20题,文科第20题)在等差数列}{n a 中,公差412,0a a a d 与是≠的等差中项.已知数列 ,,,,,,2131n k k k a a a a a 成等比数列,求数列}{n k 的通项.n k22. (2005辽宁卷第19题)已知函数).1(13)(-≠++=x x x x f 设数列n a {}满足)(,111n n a f a a ==+,数列n b {}满足).(|,3|*21N n b b b S a b n n n n ∈+++=-=(Ⅰ)用数学归纳法证明12)13(--≤n nn b ;(Ⅱ)证明.332<n S23. (2005江苏卷第23题)设数列{a n }的前项和为n S ,已知a 1=1, a 2=6, a 3=11,且1(58)(52)n n n S n S An B +--+=+,,,3,2,1 =n 其中A,B 为常数.(Ⅰ)求A 与B 的值;(Ⅱ)证明数列{a n }为等差数列;(Ⅲ)1m n >对任何正整数、都成立.24.(2005北京卷理科第19题)设数列{a n }的首项a 1=a ≠41,且11为偶数21为奇数4nn n a n a a n +⎧⎪⎪=⎨⎪+⎪⎩,记2114n n b a -=-,n ==l ,2,3,…·. (I )求a 2,a 3;(II )判断数列{b n }是否为等比数列,并证明你的结论; (III )求123lim()n n b b b b →∞++++.25.(2005北京卷文科第17题)数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求 (I )a 2,a 3,a 4的值及数列{a n }的通项公式; (II )2462n a a a a ++++的值.26.(2005上海理科第20题,文科第20题)本题共有2个小题,第1小题满分6分, 第2小题满分8分.假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?27、(2005上海理科第22题,本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分。

在直角坐标平面中,已知点()()()()nn n P P P P 2,,,2,3,2,2,2,133221 ,其中n 是正整数,对平面上任一点0A ,记1A 为0A 关于点1P 的对称点,2A 为1A 关于点2P 的对称点,...,n A 为1-n A 关于点n P 的对称点。

(1)求向量20A A 的坐标;(2)当点0A 在曲线C 上移动时,点2A 的轨迹是函数)(x f y =的图象,其中)(x f 是以3为周期的周期函数,且当(]3,0∈x 时,x x f lg )(=。

求以曲线C 为图象的函数在(]4,1上的解析式;(3)对任意偶数n ,用n 表示向量n A A 0的坐标。

28. (2005天津卷理科第18题)已知)0,0,( 1221>>∈+++++=*---b a N n b ab b a b a a u n n n n n n .(Ⅰ)当b a =时,求数列{}n u 的前n 项和n S ; (Ⅱ)求1lim-∞→n nn u u .29. (2005天津卷文科第18题)若公比为c 的等比数列{n a }的首项1a =1且满足:122n n n a a a --+=(n =3,4,…)。

(I )求c 的值。

(II )求数列{n na }的前n 项和n S 。

30.(2005福建卷文科第19题)已知{n a }是公比为q 的等比数列,且231,,a a a 成等差数列.(Ⅰ)求q 的值;(Ⅱ)设{n b }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由.已知数列{a n }满足a 1=a , a n+1=1+na 1我们知道当a 取不同的值时,得到不同的数列,如当a =1时,得到无穷数列:.0,1,21:,21;,35,23,2,1---=得到有穷数列时当a (Ⅰ)求当a 为何值时a 4=0; (Ⅱ)设数列{b n }满足b 1=-1, b n+1=)(11+∈-N n b n ,求证a 取数列{b n }中的任一个数,都可以得到一个有穷数列{a n }; (Ⅲ)若)4(223≥<<n a n ,求a 的取值范围.32. (2005湖北卷文第19题)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-= (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和T n .33. (2005湖北卷理第22题)已知不等式n n n 其中],[log 21131212>+++ 为大于2的整数,][log 2n 表示不超过n 2log 的最大整数. 设数列}{n a 的各项为正,且满足,4,3,2,),0(111=+≤>=--n a n na a b b a n n n(Ⅰ)证明 ,5,4,3,][log 222=+<n n b ba n(Ⅱ)猜测数列}{n a 是否有极限?如果有,写出极限的值(不必证明); (Ⅲ)试确定一个正整数N ,使得当N n >时,对任意b >0,都有.51<n a已知数列))}1({log *2N n a n ∈-为等差数列,且.9,331==a a(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)证明.111112312<-++-+-+nn a a a a a a35. (2005湖南卷理第20题)自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响. 用x n 表示某鱼群在第n 年年初的总量,n ∈N *,且x 1>0.不考虑其它因素,设在第n 年内鱼群的繁殖量及捕捞量都与x n 成正比,死亡量与x n 2成正比,这些比例系数依次为正常数a ,b ,c. (Ⅰ)求x n+1与x n 的关系式;(Ⅱ)猜测:当且仅当x 1,a ,b ,c 满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)(Ⅲ)设a =2,c =1,为保证对任意x 1∈(0,2),都有x n >0,n ∈N *,则捕捞强度b 的 最大允许值是多少?证明你的结论.36. (山东卷理第21题,文第21题)已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈(I )证明数列{}1n a +是等比数列;(II )令212()n n f x a x a x a x =+++,求函数()f x 在点1x =处的导数(1)f '(理科)并比较2(1)f '与22313n n -的大小.37. (2005浙江卷文科第16题)已知实数a ,b ,c 成等差数列,a +1,了+1,c +4成等比数列,求a ,b ,c .38(2005浙江卷理科第20题,压轴题)设点n A (n x ,0),1(,2)n n n P x -和抛物线n C :y =x 2+a n x +b n (n ∈N *),其中a n =-2-4n -112n -,n x 由以下方法得到:x 1=1,点P 2(x 2,2)在抛物线C 1:y =x 2+a 1x +b 1上,点A 1(x 1,0)到P 2的距离是A 1到C 1上点的最短距离,…,点11(,2)nn n P x ++在抛物线n C :y =x 2+a n x +b n 上,点n A (n x ,0)到1n P +的距离是n A 到n C 上点的最短距离. (Ⅰ)求x 2及C 1的方程. (Ⅱ)证明{n x }是等差数列.39. (2005重庆卷文科第22题)数列{a n }满足a 1=1且8a n +1-16a n +1+2a n +5=0 (n ≥1)。

相关文档
最新文档