(整理)高分子材料概论-通用塑料

(整理)高分子材料概论-通用塑料
(整理)高分子材料概论-通用塑料

第二章:高分子材料概论

2.2通用塑料

主要内容:2.2.1 塑料概述概述

2.2.2 通用塑料的性能

2.2.3 通用塑料的用途

2.2.4 重要的通用塑料

2.2.5 思考题

2.2.1塑料概述

在所有高分子材料中,塑料的应用最广,品种最多,生产量最大,与人们生活和技术发展关系最密切,发展潜力极大。人类用合成方法生产的第一种塑料是硝化纤维素。硝化纤维作为塑料使用的第一个专利产品出现于1856年,而实现工业化生产是1872年,这就是用樟脑增塑的硝化纤维——赛璐珞的生产。

一、塑料的定义和分类

以合成或天然高聚物为基本成分,大多数情况下配以一定的高分子助剂如填料、增塑剂、稳定剂、着色剂等经加工可塑成型,并在常温下保持其形状不变的材料,称之为塑料。作为塑料基础成分的高聚物,不仅决定塑料的类型而且决定了塑料的主要性能。

塑料品种甚多,性能亦各有差别,为便于区分和合理应用不同塑料,人们按不同方法对塑料进行分类。其中最重要的有以下几种分类方法:

1)按材料的受热行为可分为热塑性和热固性塑料。

热塑性塑料,加热时变软以至熔融流动,冷却时凝固变硬,这种过程是可逆的,可以反复进行,其树脂的分子链是线型或仅带有支链。聚烯烃类、聚乙烯基类、聚苯乙烯类、聚酰胺类、聚甲醛、聚碳酸酯、聚砜、聚苯醚等都属于热塑性塑料,热塑性塑料占塑料总量的80%。

热固性塑料,配料后进行第一次加热时可以软化流动,加热到一定温度时分子链间产生化学反应,分子链之间通过化学键交联成为网状或三维体型结构,这一过程称为固化。固化过程是不可逆的化学变化,宏观上就使材料不能再软化流动了。酚醛塑料、氨基塑料、环氧塑料、不饱和聚酯、有机硅、烯丙基酯、呋喃塑料等都属于热固性塑料。

2)按塑料的使用功能可分为通用塑料和工程塑料。

产量大、价格便宜、原料来源丰富、应用面广的称为通用塑料,一般有聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、酚醛和氨基塑料,占塑料总量的80%,因此上述六类塑料也被称之为六大通用塑料。通用塑料由于力学性能、热性能都比较差,主要作为非结构材料使用。

工程塑料一般是指可作为结构材料使用,具有优异的力学性能、热性能、尺寸稳定性或能满足特殊要求的某些塑料,如聚四氟乙烯、聚酰胺、聚甲醛等。当然这

两者之间的界限有时难以截然划分。某些通用塑料如聚丙烯、聚苯乙烯经改性之后也可作结构材料使用。

3)按树脂的化学结构有聚烯烃类、聚苯乙烯类、丙烯酸类、聚酰胺、聚酯类、聚砜类、聚酰亚胺类等。

二、塑料的组分和作用

塑料根据组分数目可分为单一组分的塑料和多组分塑料。单组分的塑料基本上是由高聚物组成,典型的是聚四氟乙烯,不加任何添加剂。而大多数塑料是多组分体系,除高聚物这一基本成分外,还加入添加剂(称高分子助剂)。高聚物、助剂和加工是影响高分子材料制品质量的三大要素。助剂能改善材料的加工性能、使用性能以及降低成本。助剂的分类方法很多,有时一种助剂能起到多方面的作用,所以很难截然分开。若按功能对高分子助剂进行分类,可分为:①稳定化助剂,是指防止或延缓高分子材料在贮存、加工以及使用过程中的老化和变质,其中包括抗氧剂、光稳定剂、热稳定剂、防霉剂等;②提高机械性能的助剂,在塑料中主要指填料和增强剂;③改善加工性能的助剂,包括增塑剂、增韧剂、润滑剂等:④改善表面性能的助剂,包括润滑剂、偶联剂、抗静电剂等;⑤其他用途的助剂,如阻燃剂、发泡剂、着色剂、染料、固化剂等。

2.2.2通用塑料的性能

通用塑料是相对于工程塑料而言的一类塑料,具有质轻、电绝缘、耐化学腐蚀、容易成型等塑料的一般特点,通用塑料与金属、无机非金属材料的性能对比,其主要的优点:

(1)质轻:塑料的密度在900-2300kg/m3之间,是材料中量轻的,当制成泡沫塑料后密度下降到10-50kg/m3。

(2)拉伸强度、拉伸模量比较低,韧性优良:特别是纤维增强的塑料比强度(强度与密度比)接近或超过金属

材料。

(3)传热系数小:塑料的传热系数是金属的1/100—1/1000,可以作为优良的绝热材料。泡沫塑料的绝热性更佳。

(4)电绝缘性:塑料的体积电阻率在1013-1018Ω·cm 之间,介电常数一般小于2,介电损耗小于10-4。和其它材料相比是最佳的绝缘材料。

(5)成型加工性优良:塑料由于是塑性材料,因此可以适应各种成型方法,多数情况下可以一次成型。

(6)减震、消音性能良好。

(7)耐腐蚀性优良:塑料有较好的化学稳定性,对酸、碱、盐溶液、蒸汽、水、有机溶剂等的稳定性优于金属材料。

(8)透光性能、着色性能好:塑料的遇光性能、着色性能好,可以做成透明或半透明、色泽鲜艳的制品。

(9)可赋予各种特殊的性能:塑料可以作成各种特殊性能的材料,如:透气性、难燃性、粘接性、离子交换性、生物降解性以及光、热、电、磁等性能。

通用塑料的缺点如下:

(1)力学性能比金属材料差,表面硬度低;(2)容易静电积累;(3)难于加工高精度的制品,成型条件对产品的物理性能影响大;(4)使用过程中容易产生蠕变、疲劳、结晶等现象,长期使用性能差;(5)热膨胀系数远远大于其它材料,当进行复合时,要充分考虑;(6)耐热性能差,使用温度低;(7)容易燃烧;(8)在光热条件下容易受到破坏等。

虽然通用塑料有一些缺点,但是随着共混技术的不断发展进步,它的一些不足逐渐得到改善,并不断扩大使用范围,使得塑料在国民经济中的地位越来越重要。

2.2.3通用塑料的用途

通用塑料的用途可涉及以下几个方面:

(1)农业:各种农膜、片材、捧灌管、喷灌管、渔网、养殖箱、飘浮材料。

(2)工业:由于塑料的电绝缘性,在电器工业上已经大量使用塑料作绝缘材料和封装材料;在电子和仪表工业中的制件、壳体;机械工业中的传动齿轮、轴承等;化学工业中各种防腐容器、管道、槽、罐等。

(3)建筑业:用塑料代替木材、金属等传统材料,制作塑料门、窗、天花板、地板革、上下水管道与管件、煤气管道与管件等等。

(4)包装业:各种编织袋、包装薄膜、复合薄膜、中空容器、周转箱、瓦楞箱、打包带、泡沫塑料等。

(5)日常用品:各种塑料玩具、牙刷、肥皂盒、雨衣、餐具、器具、拖鞋等等。

(6)医疗与器械工业:各类人造器官、医疗用输液袋、一次用注射用品、降解性医用材料。

(7)电器工业:各种办公用具及家用电器绝缘、保温、防腐、防潮的壳体,耐唐、精密的军部件等。

除子在以上领域,通用塑料应用比较广泛外,目前一些通用塑料通过改性扩大了应用领域,在国防尖端工业、交通与航空工业等作为结构材料大量使用。

2.2.4重要的通用塑料

一、聚乙烯(PE)

聚乙烯(PE)是以乙烯为原料经催化剂催化聚合而得到的一种热塑性化合物,作为塑料使用的聚乙烯分子量要达到1万以上。聚乙烯是世界上塑料品种中产量最大、应用也最广,约占世界塑料总产量的1/3。最先进行工业化生产的是1937年高压聚合法制得的低密度聚乙烯(LDPE)。

1)聚乙烯的分类

聚乙烯的分类主要是按照聚乙烯的密度,并适当考虑分子结构来划分:

(1)低密度聚乙烯(LDPE),密度0.915—0.940g/cm3,分子呈长短支链,支化度较大,结晶度55%-65%,分子量约为10-50万;LDPE也称高压聚乙烯,是按照自由基聚合历程进行聚合制备,所以容易发生链转移,产品存在大量的支链结构,分子结构缺乏规整性,因此结晶度小密度低,主要作成薄膜用于食品包装、商业和工业包装、购物袋、垃圾袋等,特别是农用薄膜。

(2)高密度聚乙烯(HDPE),密度0.940—0.970g/cm3,分子呈线型结构并有少量的短支链,支化度较小,结晶度85%-90%, 分子量约为10-150万;HDPE也称低压聚乙烯,由于它的分子量比较高,支链短而且少,因此分子结构规整性较好,结晶度高密度大,除冲击强度外其他力学性能都优于LDPE。

(3)线型低密度聚乙烯(LLDPE),密度0.914—

0.940g/cm3,分子量约为5-20万,分子呈线型结构,有一定数量无规则分布的短支链,其分子规整性和结晶度介于HDPE和LDPE之间。它是由乙烯和少量的a-烯烃共聚得到。

(4)其它种类聚乙烯,除了上述几种聚乙烯外,还有超高分子量聚乙烯(UHMW- PE) 、交联聚乙烯、氯化聚乙烯等种类:

一般分子量在100万以上的称为超高分子量聚乙烯(UHMWPE),由于其分子量很大,具有独特的性能,如极佳的耐磨性、高的冲击强度、良好的自润滑性、优异

的耐低温核化学稳定性,是一种价廉却可以和工程塑料相媲美的塑料。

通过化学或辐射的方法在聚乙烯分子链间产生交联,而形成网络状结构的热固性聚乙烯称为交联聚乙烯,无论是低密度聚乙烯或高密度聚乙烯都能进行交联,交联的聚乙烯的拉伸强度、冲击强度、抗蠕变性、刚性、模量等都优于HDPE,可在140o C长期使用。

对聚乙烯进行氯化反应后的产物称为氯化聚乙烯(CPE),由于氯的取代,破坏了聚乙烯的结晶性,使氯化聚乙烯变软、玻璃化转变温度降低。氯化聚乙烯主要用于与聚氯乙烯共混。

2)聚乙烯的主要特征

(1)聚乙烯比水轻,无毒,为白色蜡状半透明材料,它的透明度随着结晶度增加而下降,一般,经过退火处理后变得不透明,而淬火处理后透明;(2)具有优良的电绝缘性,它的介电常数和介电强度与分子量有关;(3)良好的耐化学性,在60?C以下,能耐各种浓度的盐和碱溶液,室温下一些化学物质对它不起作用;(4)具有优异的力学性质,结晶部分赋予聚乙烯较高的强度,非结晶部分赋予了良好的柔性和弹性,并随着分子量的增加力学性能有所提高,当分子量超过150万为极坚韧的材料,可作为工程材料使用;(5)聚乙烯容易光氧化、热氧化、臭氧分解。

3)聚乙烯的应用

《高分子材料与工程概论》课程教学大纲

《高分子材料与工程概论》课程教学大纲 课程代码:050331028 课程英文名称:High Polymer Materials Engineering Introduction 课程总学时:24 讲课:24 实验:0 上机:0 适用专业:高分子材料与工程 大纲编写(修订)时间:2017. 06 一、大纲使用说明 (一)课程的地位及教学目标 高分子材料与工程概论是高等工科院校高分子材料与工程专业必修的一门获得高分子材料与工程概框和专业基础知识的专业基础课。它主要简要介绍高分子材料的基本概念、应用、加工成型方法及工艺,是该专业学生学习高分子材料工程知识的入门课程,使其明了高分子材料工程的内容和学习本专业的意义。 通过本课程的学习,学生将达到以下要求: 1.了解高分子材料工程所涉及的范围和领域; 2.了解高分子材料的种类及其特性; 3.熟悉各类高分子材料的选用、成型加工等基础知识; 4.了解高分子材料学科的新知识、新技术、新进展。 (二)知识、能力及技能方面的基本要求 1.基本知识:了解高分子材料的基本性能、选用,及加工基本方法和工艺。 2.基本能力:具有能根据应用要求选择高分子材料类型和根据结构要求选择高分子材料制加工方法和工艺的基本能力。 3.基本技能:高分子材料鉴别的基本技能。 (三)实施说明 1.教学方法:课堂讲授中要重点对基本概念、基本知识的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力。讲课要联系实际并注重培养学生的创新能力。有条件可采用高分子材料加工仿真模拟课件,增强学生的感性认知,也可现场参观高分子材料的生产加工过程或聘请企业工程技术人员讲授。 2.教学手段:本课程以理论为主,在教学中采用电子教案、CAI课件及多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 (四)对先修课的要求 无先修课要求。 (五)对习题课、实验环节的要求 1.本课程对习题课和实践环节无要求。 2.作业题内容以基本概念、基本知识为主,作业要能起到巩固知识,提高分析问题、解决问题能力。学生必须独立、按时完成课外习题和作业,作业的完成情况应作为评定课程成绩的一部分。 (六)课程考核方式

材料科学与工程专业概论

材料是物 质, 但不是所有物质都可以称为材料。如燃料和化学原料、工业化学品、食物和药物, 一般都不算是材料。材料是人类赖以生存和发展的物质基础。 二. 材料的分类 然后我们看材料的分类。材料可按其成分及物理化学性质可分为: a 金属材料(铸铁、碳钢、铝合金 卜 b 无机非金属材料(水泥、玻璃、陶瓷卜 c 有机高分子材料(塑料、合成橡胶、合成纤维 ) d 复合材料(由两种或两种以上物理、化学、力学性能不同的物质,经人工组合而成的 多相固体材料,如石墨/铝复合材料、碳/陶瓷基复合材料、碳/碳复合材料)。按使用用途材 料可分为结构材料(主要利用材料的强度、韧性、 弹性等力学性能,用于制造在不同环境下 工作时承受载荷的各种结构件和零部件的一类材料, 即机械结构材料和建筑结构材料) 和功 能材料(由两种或两种以上物理、化学、 力学性能不同的物质,经人工组合而成的多相固体 材料)。 按照应用领域来分材料可以分为电子材料、航空航天材料、核材料、建筑材料、能源材 料、生物材料等。按来源可分为人工材料和天然材料。 三、 材料的地位和作用 1. 材料是人类文明的里程碑 我们中学阶段学过经济发展史,纵观人类利用材料的历史,材料起着举足轻重的作用, 是一切生产和生活的物质基础,是生产力的标志,是人类进步的里程碑。 石器时代:早在一百万年以前, 人类开始进入旧石器时代,可以使用石头作为工具。一 万年以前,人类开始进入新石器时代, 将石头加工成器具和工具如左下角图, 在8000年前, 开始人工烧制成陶器,用于器皿和装饰品如彩陶双耳罐。 青铜器时代:五千年以前,人类开始进入青铜器时代,青铜烧注成型, 用金 属,越王勾践曾使用的青铜剑,中国商代司母戊鼎。 铁器时代:3000年以前人类开始进入铁器时代,生铁冶炼及处理技术推动了农业、水 利、和军事的发展和人类社会进步,直至 18世纪进入了近代工业快速发展时代。 材料是人类进化和文明的标志。石器、青铜器、铁器这些具体的材料被历史学家作为划 分时代的重要标志。材料的发展创新是各个高新技术领域发展的突破口, 新型材料是当代社 会发展进步的促进剂,是现代社会经济的先导,是现代工业和现代农业发展的基础, 也是国 防现代化的保证。材料的发展深刻地影响着世界经济、 军事和社会的发展,同时也改变着人 们在社会活动中的实践方式和思维方式,由此极大地推动了社会进步。 2. 材料是经济和社会发展的先导 第一次工业革命,钢铁工业的发展为蒸汽机的发明和利用奠定了基础。 的发明促进了机械制造和铁路运输等行业发展 . 第二次工业革命,合金钢、铝合金及其他非金属材料的发展是此次工业革命的支撑, 电动机的发明奠定基础.使制造业大力迈入电气化时代 同学们大家好,祝贺同学们考入辽宁工程技术大学材料学院。 相信在座同学除了对大学 生活怎么进行规划感到迷茫, 也会对自己所学专业仍然存在疑虑: 材料学是研究什么的?我 们可以在材料学里学到什么呢?学了这个学科有什么用处呢?因此我们开设这门材料科学 与工程专业概论以解答同学们的这些问题,让咱们对材料学从一个感性认识上升到理性认 识。 一、材料的定义 首先第一节我们介绍一下材料的定义。 材料是人类用于制造物品、器件、构件、机器或其他产品的那些物质。 人类开始大量使 转炉和平炉炼钢

要用高分子材料学练习题及答案

一、名词解释 1.药用高分子材料:主要指在药物制剂中应用的高分子辅料及高分子包装材料。 2.药用高分子材料学:主要介绍一般高分子材料的基础理论知识及药剂学中常用的高分子材料的结构、制备、物理化学性质及其功能与应用。 3.药用辅料:在药物制剂中经过合理的安全评价的不包括生理有效成分或前体的组分。广义上指将药理活性物质制备成药物制剂的各种添加剂,若为高分子则称为药用高分子辅料。 4.高分子化合物(高分子):分子量很高并由多个重复单元以共价键连接所形成的一类化合物。 5.单体:必须含有能使链增长活性中心稳定化的吸电子基团 6.聚合度:大分子重复单元的个数 7.重复单元:重复组成高分子的最小的结构单元。 7.结构单元:聚合物分子结构中出现的以单体结构为基础的原子团 8.均聚物:在合成高分子时,由一种单体成分反应生成的聚合物。 9.共聚物:由两种或多种不同的单体或聚合物反应得到的高分子。 10.高分子链结构:单个高分子链中原子或基团间的几何排列 11.近程结构:单个大分子链结构单元的化学结构和立体化学结构,又叫一次结构或化学结构 12.远程结构:单个分子在整个分子链范围内的空间形态和构象,又叫二次结构 13.聚集态结构:单位体积内许多大分子链之间的排列、堆砌方式,也称三次结构 14.键接顺序:是指高分子链各结构单元相互连接的方式. 15.功能高分子:具有特殊功能与用途但用量不大的精细高分子材料。 16.线型高分子:每个重复单元仅与另外两个单元相连接,形成线性长链分子。 17.支化高分子:当分子内重复单元并不都是线性排列时,在分子链上带有一些长短不一的分枝,这类高分子称为支化高分子 18.支链:支化高分子链上带有的长短不一的分枝称为支链。 19.体型高分子或网状高分子:线型高分子或支化高分子上若干点彼此通过支链或化学键相键接可形成一个三维网状结构的大分子,称为体型高分子或网状高分子。 20.交联:由线型或支链高分子转变成网状高分子的过程叫做交联。 21.端基:高分子链终端的化学基团 22.单键内旋转:高分子主链中的单键可以绕键轴旋转,这种现象称为单键内旋转. 25.玻璃化温度Tg: 27.取向态结构:聚合物在外力作用下,分子链沿外力方向平行排列形成的结构。 31.织态结构:不同聚合物之间或聚合物与其他成分之间的堆砌排列。 32.聚合反应:由低分子单体合成聚合物的反应称为聚合反应。 33.加聚反应:单体经过加成聚合起来的反应称为加聚反应,反应产物称为加聚物。 34.自由基引发剂:是在一定条件下能够分解生成自由基,并能引发单体聚合的化合物。 39.自由基共聚合:共聚物若使用自由基作为聚合的引发剂时,称为自由基共聚合。 40.离子型聚合:链增长活性中心为离子的聚合反应称为离子型聚合。 41.活性链:链活性中心直到单体消耗完仍保持活性称为活性链 开环聚合:环状单体在引发剂或催化剂作用下开环,形成线性聚合物的反应。 42.缩聚反应:是由含有两个或两个以上官能度的单体分子间逐步缩合聚合形成聚合物,同时析出低分子副产物的化学反应。 45.本体聚合:不加其它介质,只有单体本身,在引发剂、热、光等作用下进行的聚合反应。 46.溶液聚合:把单体和引发剂溶在适当溶剂中进行聚合。 47.悬浮聚合:是将不溶于水的单体以小液滴状悬浮在水中进行的聚合。 48.乳液聚合:单体在水介质中,由乳化剂分散成乳液状态进行的聚合。

材料概论

第二章 1 普通的混凝土中有几种相?请分别写出各种相的名称。若在其中加入钢筋,则钢筋起到什么作用?此时又有几种相? 答:3相;砂子、碎石、水泥浆;增强作用;4。 2 比较晶体与非晶体的结构特性,了解晶体的结构不完整性有哪些类型?并区分三大材料的结构类型与比较其各自的特点。 答:晶体结构的基本特征是原子或分子在三维空间呈周期性的规则而有序地排列,即存在长程的几何有序。 结构的不完整性:实际上,极大多数晶体都有大量的与理想原子排列的轻度偏离存在,依据其几何形状而分为点缺陷、线缺陷和面缺陷。 金属材料的结构:一般都是晶体。金属键无方向性,晶体结构具有最致密的堆积方式。体心立方、面心立方和紧密堆积六方结构,金刚石结构。 无机非金属材料的结构:金刚石型结构;硅酸盐结构; 玻璃结构; 团簇及纳米材料 高分子材料的结构包括高分子链的结构及聚集态结构 各自的特点: 3 高分子材料其聚集态结构可分为:晶态和非晶态(无定形)两种,与普通的晶态和非晶态结构比较有什么特点? 答:晶态有序程度远小于小分子晶态,但非晶态的有序程度大于小分子物质液态。 4 如何区分本征半导体与非本征半导体材料? 答:本征半导体:材料的电导率取决于电子-空穴对的数量和温度的材料。 非本征半导体:通过加入杂质即掺杂剂而制备的半导体,杂质的多少决定了电荷载流子的数量。

5 极大多数晶体实际上都存在有种种与理想原子排列的轻度偏离,依据结构不完整性的几何形状可分为哪几种缺陷类型?按溶质原子在溶剂晶格中的位置不同,固溶体可分成哪几种类型? 答:依据其几何形状而分为点缺陷、线缺陷和面缺陷。 按溶质原子在溶剂晶格中的位置不同,固溶体可分成: 置换型固溶体(或称取代型):溶剂A晶格中的原子被溶质B的原子取代所形成的固溶体。原子A同B的大小要大致相同。 填隙型固溶体(也称间隙型):在溶剂A的晶格间隙内有溶质B的原子填入(溶入)所形成的固溶体。B原子必须是充分小的,如C和N等是典型的溶质原子。 6 比较热塑性高分子材料和热固性高分子材料的结构特点,并说明由于结构的不同对其性能的影响。 答:线型结构的高分子化合物:在适当的溶剂中可溶胀or溶解,升高温度时则软化、流动,∴易加工,可反复加工使用,并具有良好的弹性和塑性。(热塑性) 交联网状结构高分子:性能特点:较好的耐热性、难溶剂性、尺寸稳定性和机械强度,但弹性、塑性低,脆性大。∴不能进行塑性加工,成型加工只能在网状结构形成前进行,材料不能反复加工使用。(热固性) 7 聚二甲基硅氧烷的结构式为?其柔顺性怎么样? 答:非常好 8 何为材料的力学强度?影响力学强度的主要因素有哪些?按作用力的方式不同,材料的力学强度可分为哪几种强度? 答:材料在载荷作用下抵抗明显的塑性变形或破坏的最大能力。 通常材料中缺陷越少、分子间键合强度越大,材料的强度也越高。 按作用力的方式不同,可分为:拉伸强度;压缩强度;弯曲强度;冲击强度;疲劳强度等。 9 区分高分子材料的大分子之间的相互作用中的主价力和次主价力,比较两者对其性能的影响。 答:大分子链中原子间、链节间的相互作用是强大的共价键这种结合力称为主价力,大小取决于链的化学组成→键长和键能。对性能,特别是熔点、强度等有重要影响。 大分子之间的结合力是范德华力和氢键,称为次价力,比主价力小得多(只有主价力1-10%),但对高分子化合物的性能影响很大。如乙烯呈气态,而聚乙烯呈固态并有相当强度,∵后者的分子间力较前者大得多。 10 按电阻率的大小,可将材料分成哪几类?何谓超导性? 答:按电阻率的大小,可将材料分:超导体;导体;半导体;绝缘体。 超导性:一旦T< Tc(超导体临界T)时,电阻率就跃变为零。Tc依赖于作用于导体的磁场强度。

高分子材料导论

《高分子材料导论》思考题 1、三大材料:(1)金属材料富于展性和延性,有良好的导电及导热性、较高的强度及耐冲击性。 (2)无机材料一般硬度大、性脆、强度高、抗化学腐蚀、对电和热的绝缘性好。 (3)高分子材料的一般特点是质轻、耐腐蚀、绝缘性好、易于成型加工,但强度、耐磨性及使用寿命较差 2、原子之间或分子之间的结合键一般有哪些形式?试论述各种结合键的特点。 离子键:无方向性,键能较大。由离子键构成的材料具有结构稳定、熔点高、硬度大、膨胀系数小的特点。共价键:具有方向性和饱和性两个基本特点。键能较大,由共价结合而形成的材料一般都是绝缘体。金属键:无饱和性和方向性。具有良好的延展性,并且由于自由电子的存在,金属一般都具有良好的导电、导热性能。氢键具有饱和性。氢键在高分子材料中特别重要,它是使尼龙这样的聚合物具有较大的分子间力的主要因素。 3、原子排列可分为三个等级:无序排列、短程有序,长程无序、长程有序 材料一般是以固体状态使用的。按固体中原子排列的有序程度,固体有非晶态结构、结晶态结构两种基本类型。 4、非晶态结构:原子排列近程有序而远程无序的结构称为非晶态结构或无定形结构,非晶态结构又称玻璃态结构。共同特点是:结构长程无序,物理性质一般是各向同性的;没有固定的熔点,而是一个依冷却速度而改变的转变温度范围;塑性形变一般较大,导热率和热膨胀性都比较小。 5、—(CH2-CH)n— Cl结构单元:又叫链节,是高分子中重复出现的那部分。聚合度:聚合物分子中,结构单元的数目叫聚合度,用n表示。由一种单体聚合而成的聚合物称为均聚物,由两种或两种以上单体共聚而成的聚合物称为共聚物 6、聚合物(按大分子主链)的分类:(1) 碳链聚合物,是指大分子主链完全由碳原子构成。(2) 杂链聚合物,是指大分子主链中除碳原子外,还有氧、氮、硫等杂原子。(3) 元素有机聚合物,是指大分子主链中没有碳原子,主要由硅、硼、铝、氧、氮、硫、磷等原子组成,但侧基却由有机基团如甲基、乙基、乙烯基、芳基等组成。 按性能和用途分类:根据以聚合物为基础组分的高分子材料的性能和用途分类,可将聚合物分成橡胶、纤维、塑料、粘合剂、涂料、功能高分子等不同类别。 7、塑料的成型加工:挤出、压延、注射、压制、吹塑。 8、聚合物的结构常指哪些方面?大分子链的组成和构造包括哪些方面?试加以论述。 聚合物结构:大分子本身的结构、大分子之间的排列大分子链的组成和构造:大分子链的化学组成:碳链大分子、杂链大分子、元素有机大分子等。大分子链的化学组成不同,聚合物的性能也不相同。结构单元的连接方式:大分子链是由许多结构单元通过共价键连接起来的链状分子。在缩聚过程中,结构单元的连接方式比较固定。但在加聚过程中,单体构成大分子的连接方式比较复杂,存在许多可能的连接方式,如头-尾、头-头或尾-尾

高分子材料概论-张玥

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 《高分子材料概论》课程是材料科学与工程专业的专业知识教育层面的选修课程。该课程全面介绍了高分子科学和高分子材料的基本知识,同时,简要介绍通用高分子材料及加工工艺,功能高分子材料及新技术研究。 2.设计思路: 该课程的内容共六章,前四章介绍高分子化学和分子物理的基本概念和理论,后两章分别介绍通用高分子材料和功能高分子材料的种类、特性和加工使用方法。学生可在有限的时间内,系统掌握高分子材料科学的基本内容。依据材料的“组成-结构-性能-加工、使用”为主线,综合了解高分子科学全貌。 3.课程与其他课程的关系 该课程是构建于《有机化学》的基础知识之上的,为后续复合材料课程的学习,以及毕业论文和创新创业等实践训练课程提供理论基础。 - 1 -

二、课程目标 通过本课程的学习,使得学生了解高分子科学和高分子材料的基本知识,了解塑料、橡胶、纤维、涂料和粘合剂及功能高分子等各种高分子材料的性能和用途,了解各种高分子材料的加工技能,熟悉高分子材料的各个领域,了解高分子材料科学的发展前沿。 三、学习要求 根据该课程的内容和安排,有部分的知识需要学生自学,这就要求上课注意听讲,积极思考,才能利用讲授的内容进行自学,以便很好完成学习心得。使学生通过学习不仅对高分子科学有所了解,而且具备了一定的自学能力,为今后进一步的学习培养良好的学习习惯和学习方法。 四、教学内容 - 1 -

五、参考教材与主要参考书 1、选用教材(告知学生需要购买的教材) 《高分子材料概论》,吴其晔,2004,机械工业出版社 2、主要参考书 《高分子材料概论》,:张春红等编,2016年,北京航空航天大学出版社 《高分子材料导论》(英文版),李坚等编,2014年,化学工业出版社 《高分子材料概论》,张镭等编,2006,科学出版社 《高分子材料科学导论》,张德庆等编,1999年,哈尔滨工业大学出版社 六、成绩评定 (一)考核方式 A :.闭卷考试 B.开卷考试 C.论文 D.考查 E.其他 (二)成绩综合评分体系: 七、学术诚信 学习成果不能造假,如考试作弊、盗取他人学习成果、一份报告用于不同的课程等,均属造假行为。他人的想法、说法和意见如不注明出处按盗用论处。本课程如有发现上述不良行为,将按学校有关规定取消本课程的学习成绩。 八、大纲审核 教学院长:院学术委员会签章: - 1 -

有机高分子材料概述

有机高分子材料概述和发展趋势 陈彪 2011327120112 材料科学与工程11(1)班 摘要:有机高分子材料包括木材、棉花、皮革等天然高分子材料和朔料、合成纤维及合成橡胶等有机聚合物合成材料。它们质地轻、原料丰富、性能良好、用途广泛,因而发展速度很快。塑料、橡胶和合成纤维是有机高分子材料的典型的代表,此外,还有涂料和粘合剂等。 关键词:有机高分子材料;发展趋势 高分子材料是由可称为单体的原料小分子通过聚合反应而合成的。绝大部分原料单体为有机化合物。在有机高分子化合物中,除碳原子外,其他主要元素为氢、氧、氮等。在碳原子与碳原子之间、碳原子与其他元素的原子之间能够形成稳定的共价键组成高分子化合物。 人们使用高分子材料的历史很早,由于它们质地轻、原料丰富、性能良好、用途广泛,因而发展速度很快,自20世纪20年代以来,就已经发展了人工合成的各种高分子材料。 高分子材料有各种不同的分类方法。例如,按来源可以分为天然高分子材料和合成高分子材料。按大分子主连接结构可分为碳链高分子材料、杂链高分子材料及元素有机高分子材料等。最常用的是根据高分子材料的性能和用途进行分类。 根据性能和用途,高分子材料可分为橡胶、塑料、纤维、粘合剂、涂料、功能高分子材料以及复合材料等不同的类别。 下面以介绍这几大类高分子材料为主。 1橡胶 橡胶是有机高分子弹性化合物。在很宽的温度范围内具有优异的弹性,所以又称为高弹体。按其来源可分为天然橡胶和合成橡胶两大类。天然橡胶是从自然界含胶植物制取的一种高弹物质。合成橡胶是用人工合成的方法制得的高分子弹性材料。 橡胶具有独特的高弹性,还具有良好的疲劳强度、点绝缘性、耐化学腐蚀以及耐磨性等使它成为国民经济中不可缺少和难以代替的重要材料。 2塑料 塑料是以聚合物为主要成分,在一定条件下可塑成一定形状并且在常温下保持其形状不变的材料,习惯上包括塑料的半成品,如压塑粉等。 作为塑料基础组分的聚合物,不仅决定塑料的类型而且决定塑料的主要性能。一般而言,塑料用聚合物的内聚能介于纤维与橡胶之间,使用温度范围在其脆化温度和玻璃化温度之间。应当注意,同一种聚合物,由于制备方法、条件及加工方法的不同,常常既可作塑料用,也可做纤维用。 塑料是一类重要的高分子材料,具有质地轻、电绝缘、耐化学腐蚀、容易加工成型等特点,其性能可调范围宽,具有广泛的应用领域。 3纤维 纤维是指长度比直径大很多倍,并具有一定韧性的纤细物质。纤维的特点是分子间次价力大、形变能力小、模量高,一般为结晶聚合物。 纤维可分为两大类:一类是天然纤维,如棉花、羊毛、蚕丝和麻等,另一类是化学纤维,即用天然或合成高分子化合物经化学加工而制得的纤维。

高分子材料发展史

高分子材料发展史随着生产和科学技术的发展,人们不断对材料提出各种各样的新要求。而高分子材料的出现逐渐满足了人们的需要。并对人类的生产生活产生了巨大的影响。 高分子材料是以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1870年,美国人Hyatt用硝化纤维素和樟脑制得的赛璐珞塑料,是有划时代意义的一种人造高分子材料。1907年出现合成高分子酚醛树脂,真正标志着人类应用合成方法有目的的合成高分子材料的开始。1953年,德国科学家Zieglar和意大利科学家Natta,发明了配位聚合催化剂,大幅度地扩大了合成高分子材料的原料来源,得到了一大批新的合成高分子材料,使聚乙烯和聚丙烯这类通用合成高分子材料走人了千家万户,确立了合成高分子材料作为当代人类社会文明发展阶段的标志。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。并且高分子材料资源丰富、原料广,轻质、高强度,成形工艺简易。很容易为人所用。 高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。尽管高分子材料因普遍具有许多金属和无机材料所无法取代的优点而获得迅

高分子材料概论-胶粘剂与涂料

第二章:高分子材料概论 2.6胶粘剂与涂料 主要内容:2.6.1 涂料概述 2.6.2 主要的涂料用树脂 2.6.3 印刷油墨 2.6.4 胶粘剂概述 2.6.5 主要的胶粘剂树脂 2.6.6 思考题 2.6.1 涂料概述 涂料是指用于涂覆在物体表面起保护、装饰作用或赋予某些特殊功能的材料。涂料俗名油漆,因为中国古代用漆树的树脂作涂覆层用于涂覆木制家具和其它器物上,称为漆或大漆。后来用合成树脂和干性油、半干性油熟制成涂料可代替中国漆使用,把这种合成的涂料称为油漆,习惯使然至今许多人仍改不过口来。涂料操作时,底涂层、面涂层很少称涂料,还是叫底漆、面漆。 涂料应用的场合很多,被涂覆的表面材料常称基材,基材有金属和非金属,以及其它材料,如钢铁、铝、合金、木材、混凝土、砖石、塑料、皮革、纸张等。

涂料涂覆在物体表面,形成一层涂膜,涂膜和它的组成不同,就有不同的作用。一般说来,涂料或涂膜、涂层的作用主要是起保护作用和某些功能作用。涂料涂层的保护作用是不言而喻的,由于涂层膜的隔绝,使大气中的氧、水气、CO2、微生物、盐雾、污垢物以及紫外线、昆虫等不能直接接触到被涂覆的竹、木、纸、皮革、金属、砖石等,从而起保护作用或者起到防腐作用,这在工业上的应用是屡见不鲜的。有些场合就称防锈漆、防腐漆等等。涂料的功能作用可分为装饰性、标志性和特殊功能性三种。 装饰性是人类运用得较早的一种功能;许多涂层也许初期出于装饰的想法,后来“意外”地发现它们还有其它作用,因此,涂料从一开始就注意颜色和颜料的运用。随着人们对生活质量的注重,对美化工作环境、生活环境的涂料提出了高的要求,既要求绚丽多彩的外观,又要求无毒、不脱落等等。这些都有赖于彩色涂料来实施。至于标志的作用,已广泛用于道路、路标、警示牌、信号牌等,而化工产品的包装和管道、容器,甚至都有标准规定的色彩标志,如氧气钢瓶涂上天蓝色,氯气钢瓶为墨绿色.危险物管道涂上红色,氢气钢瓶要涂有红色条杠等等。现在,功能涂料已层出不穷,如迷彩涂料、伪装涂料、防辐射涂料、防火涂料、防水涂料、耐高温涂料、导电涂料、防污涂料,防结露涂料、静电屏蔽涂料、发射红外线的涂料、干扰红外线的涂料、干扰电磁波的涂料、示温涂料等等,不一而足。涂料的运用与环境协调的问题已引起人们的重视。许多“绿色”的或者水基性涂料纷纷开发应用,对涂料的基础研究还在深入。

高分子材料学

高分子发展浅谈 摘要:本文介绍了高分子材料的历史以及在当今社会的重要作用,并简单介绍了高分子材料和材料性能的发展趋势。 关键字:高分子材料、性能、发展趋势。 一、高分子科学 材料、能源、信息是21世纪科学技术的三大支柱,其中材料科学是当今世界的带头学科。材料是一切技术发展的物质基础,人类的生活和社会的发展总是离不开材料,而新材料的出现是推动生活和社会的发展动力。人们使用及制造材料虽已有几千年的历史,但材料成为一门科学——材料科学,仅有30多年的时间,此为一门新兴学科,是一门集众多基础学科与工程应用学科相互交叉、渗透、融合的综合学科,因而对于材料科学的研究,具有深远的意义[9]。 其中,高分子科学作为材料科学发展的带头学科之一,它的发展具有蓬勃的生命力。高分子科学是研究高分子材料化合物的合成、改性,及其聚集态的结构、性能,聚合物的成型加工等内容的一门综合性学科,其主要研究目标是为人类获取高分子新材料提供理论依据和制备工艺。高分子科学具有广阔的开发新材料的背景,二十世纪三十年代首先由有机化学派生出高分子化学,当时恰好处在世界经济飞跃发展的氛围中,对新材料的需求日益迫切,因此高分子化学进而又融合了物理化学、物理学、数学、工程学、医学等有关学科的内容,逐渐形成了高分子科学这门独立的综合性学科,现在的高分子科学已经形成了高分子化学、高分子物理、高分子工程三个分支领域相互交融、相互促进的整体学科。 二、高分子材料的历史 高分子材料是材料领域中的新秀,它的出现带来了材料领域中的重大变革。目前高分子材料在航空航天、国防建设和国民经济等各个领域得到广泛应用,已成为现代社会生活中衣、食、住、行、用各个方面所不可缺少的材料。高分子材料由于原料来源丰富、制造方便、品种繁多、用途广泛、性价比高,因此在材料领域中的地位日益突出,增长最快,产量与于金属、木材和水泥的用量总和持平。高分子材料不仅为工农业生产及人们的日常生活提供不可缺少的材料,而且为发展高新技术提供更多更有效的高性能结构材料、高功能材料以及满足各种特殊用途的专用材料。 高分子材料的发展大致经历了三个时期,即:天然高分子的利用与加工,天然高分子的改性和合成,高分子的工业生产(高分子科学的建立)。

高分子材料概论-有机硅

_| II 章:高分子材料概论 2.8有机硅材料 |[ 2.8.2主要有机硅的合成单体 2.8.3 _主要有机硅聚合物性能和应用简 IT 2.8.4思考题 2.8.1有机硅材料概述’ II 一、医用高分子的定义 “有机硅就是指一种元素有机化合物,凡是硅原子上- I I I r —接有传统的有机基团的(烃及其衍生物1)都叫有机硅,这实际上是一个最广义的定义。19世纪人们对以碳为骨架的有机化合物认 识比较多了,因此对碳的同族元素硅有了 I L I I 主要内容: 2.8.1有机硅材料概述 |[

极大的兴趣,想发现像碳族物质一样的奇迹,从研究甲 硅烷(SiH4或叫硅甲烷)到研究硅烯(Si = Si化合物),投入 I I I r _|

了不少力量,收效甚微,但人们却发现了许多甲硅烷的 衍生物并不难获得,先后合成了卤代硅烷、烃代硅烷、 烃氧基硅烷等等,并制定了相应的命名原则。 II 20世纪20年代之后,高分子学科形成并迅速发展, 许多科学家致力于研究硅 烷的水解缩合反应,希望制得 像玻璃一样的耐热性有机(半有机)聚合物。到三十年代, 研究取得长足进展,先后合成厂有机硅树脂和线性聚合 二物,其主要骨架是一 Si — 0 — Si —O — Si ,通称为聚硅氧= 烷,后来简称为“有机硅”, 起来的聚硅氧烷类化合物,尤其是高分子聚合物,称为 “有机硅”,后来又把合成 地称为“有机硅”。“ 再后来又把一些可作单体,也可作其它用途的一些 I 低分子(如现在常说的硅烷偶联剂)也归入“有机硅”。现 在合成了一些不是一 Si — 0— Si —O 骨架,而是一Si —Si —Si 骨架的聚合物,还叫有机硅。不过我们 通常讲的“有 II 机硅”,仍然是SilicOne 的含义,即指聚硅氧烷高分子物 质,并略微扩大到合成它们的单体,因为现在许多单体 己商品化了,统称它们为“有机硅单体”,也可简称“有 II 机硅”。 按照中国习惯,根据聚硅氧烷的结构特征,把那些 含有体型结构或者具有可交 联基团,以利于形成网状立 体结构的预聚物称为有机硅树脂,简称硅树脂 。把线性 聚合物中分子量较小的,叫有机硅抽,常称为硅油 其中分子量较大的、可以适当硫化的则叫有机硅橡胶, 常简称硅橡胶二。根据单体或主链上侧基的种类,又在硅 II 'I Il 中国的习惯是把那些聚合 “有机硅”--的单体,也笼统 - II 。而

高分子材料与工程专业排名

一、工科:偏合成的:浙江大学(国内高分子鼻祖,尤其在合成方面)、华东理工、北京化工大学、清华大学;偏加工和应用的:四川大学、华南理工、东华大学(原中国纺织大学)、上海交通大学 理科:偏合成的:北京大学(好像北大遥遥领先,其他象南开、南京大学明显差一些);偏性能形态研究的:南京大学、复旦大学、北京大学 5-10年这个行业发展都会不错。 二、高分子材料与工程就业前景分析高分子材料与工程专业排名一览表 【北京市】清华大学、北京理工大学、北京航空航天大学、北京化工大学、北京服装学院、北京石油化工学院、北京工商大学 【天津市】天津大学、天津科技大学 【河北省】河北工业大学、河北科技大学、河北大学、燕山大学 【山西省】太原理工大学、华北工学院 【辽宁省】大连轻工业学院、沈阳化工学院、大连理工大学、大连轻工业学院、沈阳工业大学、沈阳工业学院 【吉林省】吉林大学、长春工业大学、吉林建筑工程学院 【黑龙江省】哈尔滨工业大学、哈尔滨理工大学、齐齐哈尔大学、东北林业大学 【上海市】复旦大学、华东理工大学、东华大学、上海大学 【江苏省】江苏大学、南京理工大学、江南大学、扬州大学、南京工业大学、江苏工业学院、江苏大学、南京林业大学、华东船舶工业学院 【浙江省】浙江大学、浙江工业大学 【安徽省】中国科学技术大学、合肥工业大学、安徽大学、安徽建筑工业学院、安徽工业大学、安徽理工大学 【福建省】福建师范大学 【江西省】南昌大学、华东交通大学 【山东省】山东大学、青岛大学、青岛科技大学、济南大学、烟台大学六 【河南省】郑州大学、河南科技大学、郑州轻工业学院 【湖北省】湖北大学、武汉理工大学、湖北工学院、武汉化工学院、武汉科技学院、湖

高分子材料工程技术专业

高分子材料工程技术专业(中德技术学院)人才培养方案 一、专业代码、名称 530602,高分子材料工程技术(专科) 二、培养目标 培养具有良好的思想道德品质和强烈的社会责任感,具备国际视野、科学素养和人文素养,掌握高分子材料工程技术专业的基础知识和专业知识、橡塑材料加工与测试的基本技能,能在橡胶工业、塑料工业及高分子复合材料、功能智能高分子材料等各部门从事橡塑制品及复合材料等结构设计、配方设计、加工成型、模具设计及产品制造、工艺管理的工程技术人才。 三、培养要求 本专业要求学生掌握自然科学、工程基础知识和专业知识,掌握高分子材料领域的基本理论与基本技能,提高学生分析和解决工程实践问题的能力。 本专业的毕业生应达到以下知识与能力的培养要求: 1.具有科学素养、社会责任感和工程职业道德; 2.掌握高分子化学、高分子物理和橡塑加工的基本原理和基本理论; 3.掌握橡塑原材料、加工工艺、成型模具及设备等方面的基本知识; 4.掌握橡塑制品结构以及模具的设计方法及计算机辅助设计技能; 5.具有对新产品、新工艺和新技术进行实验研究和应用开发的初步能力; 6.掌握高分子功能材料和智能材料等领域前沿发展趋势,具有终身学习能力。 四、主干学科 材料科学与工程、化学 五、核心知识领域 高分子化学、高分子材料合成原理、橡塑材料的结构与性能、橡塑材料的加工工艺、橡塑制品的结构设计、橡塑制品的加工设备与成型模具等。 六、核心课程 材料科学基础、高分子化学、高分子物理、高分子材料分析测试方法、橡胶工艺学、塑料成型工艺学、橡塑制品设计等。 七、主要实践性环节 认识实习、橡塑制品课程设计、毕业实习与毕业设计(论文)。 八、修业年限及最低学分要求 基本修业年限3年。毕业最低学分要求105学分。其中,必修课76学分,专业选修课6学分,通识选修课4学分,实践教学环节19学分。实践教学(含实验、上机及独立实践教学环节)学分占总学分数比例为30.2%。 九、教学计划进程及课程学分(学时)分配表

高分子材料学

第一章高分子材料学 1、影响高分子材料性能的化学因素有哪些? 答:高分子材料的化学结构,即构成元素的种类及其连接方式(重复结构单元的特性)、端基、支化与交联、结构缺陷、基团的空间位置等是决定其性能的主要化学因素。 2、按高分子材料的主链构成元素可将其分成哪几类?试举例。答:(1)碳链高分子主链以碳-碳共价键相联结而成,大多由加聚反应制得,分子间主要以次价力(范德华力)或氢键相吸引而显示一定强度,耐热性较低,不易水解。如PE、PP、PVC、PS、PMMA 等。 (2)杂链高分子由碳-氧、碳-氮、碳-硫等以共价键相联结而成,主要是由缩聚反应或开环聚合制得。特点是链刚性较大,耐热性和力学性能较高,但一般易水解、醇解或酸解。如PET、PA、PF、POM、PSF、PEEK等。 (3)元素有机高分子主链中常含硅、磷、硼等,常见的为有机硅高分子化合物,热稳定性好,具有较好的弹性和塑性,高耐热性是其特征。 3、影响高分子材料性能的物理因素有哪些? 答:一、相对分子质量及其分布;二、结晶性;三、粒径与粒度分布; 四、成型过程中的取向;五、熔体粘度与成形性 4、相对分子质量对高分子材料制品的哪些性能影响较大,哪些性 能影响较小?

答:受相对分子量影响大的性能有:拉伸强度、弯曲强度、弹性模量、冲击强度、玻璃化转变温度、熔点、热变形温度、熔融粘度、溶液粘度、溶解性、溶解速度等。 受相对分子量影响较小的性能有:比热、热传导率、折射率、透光性、吸水性、透气性、耐化学药品性、热稳定性、耐候性、燃烧性等。5、高分子材料相对分子质量分布与其成型性及制品性能的关系任 何?为兼顾成型性和制品的性能,可采取什么措施? 答:对于塑料制品,一般要求相对分子量分布较窄,这样成型加工性和制品性能都较均一。相对分子量分布过宽说明其中存在相对分子量偏低和过高部分。当相对分子量偏低部分所占比例过高时,有利于改善加工性能,但力学性能、耐热性、热稳定性、电气绝缘性能和耐老化性能均有下降;而当相对分子量过高的部分比例过高时,则塑化困难,影响制品的内在质量,降低外观质量,甚至出现象“鱼眼”一样的未塑化颗粒。对于塑料的成型加工来说,相对分子量分布可适当宽些。往往采用双峰分布的树脂,其相对分子量高的部分赋予制品优良的机械性能,而相对分子量低的部分则提供足够的成型加工流动性。对于合成纤维,则希望相对分子量分布尽可能窄些。 6、高分子化合物的哪些链结构因素有利于其结晶? 答:有利于结晶性的因素有: 1)链结构简单,重复结构单元较小,相对分子量适中; 2)主链上不带或只带极少的支链; 3)主链化学对称性好,取代基不大且对称;

高分子材料与工程专业

高分子材料与工程专业 高分子材料科学与工程是研究高分子材料的设计、合成、制备以及结构、性能和加工应用的材料类学科。本专业面向传统和新兴的诸如塑料、橡胶、纤维、涂料、石油化工、纺织、新能源、海洋、国防等各类行业,培养具有高分子材料与工程专业的基础知识和专业知识,了解材料科学与工程领域的相关专业知识,能在高分子材料的设计、合成、表征、改性、加工成型及应用等领域从事科学研究、技术开发、工艺设计、生产及经营管理等方面工作的高级科学和工程技术人才。高分子材料正在向高性能化、高功能化、智能化、低污染、低成本方向发展,逐渐渗透到航天航空、现代通讯、电子工程、生物工程、医疗卫生和环境保护等各个新兴高技术领域,在未来发展中具有广阔的应用前景。 高分子材料科学与工程专业基础课程有高等数学、外语、普通物理、计算机文化基础、化工机械基础、基础化学、有机化学、物理化学、基础课实验、化工原理,专业核心课程包括高分子化学、高分子物理、高分子科学实验、聚合物加工工程、聚合物制备工程、聚合物表征,专业方向分为塑料加工工程、弹性体加工工程、高分子材料制备工程、复合材料四个模块课程群,学生可在四年级选择其中一个方向学习。专业开设有二十余门研究性前沿课程和多门国际化课程,学生在校内就能接受到国内外学术大师的培养和熏陶。本专业非常注重实践能力和工程能力的培养,开设的实践课程有金工实习、社会实践、电工电子实习、认识实习、高分子专业实验、毕业环节、素质拓展与创新、应用软件实践、生产实习、军事训练,开设的工程设计类课程有工程制图、机械设计基础、材料力学、自动化仪表、化工原理以及四个专业方向的工艺课、设计课以及实践课。此外,专业课程学习还涵盖了英语、计算机、通识教育、素质拓展、技术经济与企业管理等,使学生在语言能力、计算机能力、个人素养、管理能力等方面均衡发展,培养具有良好专业素质和创新精神的综合型高级科学和工程技术人才。 材料科学与工程专业 材料是人类用于制造物品、器件、构件、机器或其他产品的那些物质,是人类赖以生存和发展的物质基础。按物理化学属性,材料可分为金属材料、无机非金属材料、有机高分子材料和不同类型材料所组成的复合材料。本专业旨在培养能够在金属材料、无机非金属材料和复合材料等领域从事科学研究、技术开发、工程设计、技术和经济管理等方面的工作的高级专业人才。 信息、材料和能源被誉为当代文明的三大支柱。以高技术群为代表的新技术革命,又把新材料、信息技术和生物技术并列为新技术革命的重要标志。这主要是因为材料与国民经济建设、国防建设和人民生活密切相关。材料又是信息、能源的重要物质基础,例如磁记录、芯片等信息技术的硬件要有材料作为物质保证;太阳能、燃料电池等能源技术要依靠材料提供的催化等功能。 未来人们对材料的结构可以进行更为精细的分析,从原子层次深入到电子层次,从而对材料性能有更深入的理解,进而根据性能需求制备出特殊结构的材料,如纳米复合结构,满足不同场合对材料性能的特殊需要,如智能材料、催化材料、能源材料、信息记录材料、生态环境材料等。 这个专业的专业基础课程和专业方向课程包括: 基础化学、大学化学实验、有机化学、物理化学、工程制图、计算机绘图、机械设计基础、应用电工学、化工原理、材料导论、C语言程序设计、VB语言程序设计、微机原理、文献查阅与科技写作、技术经济与企业管理、计算机在材料科学中的应用、科技报告与演讲、材料概论、材料物理、材料化学、材料合成制备

材料学概论

02任选五题,每题20分 1.试述材料在人类社会发展中的作用。1. 2.试述复合材料的分类、性能特点及发展趋势。 3.试述特种陶瓷制备工艺、应用及发展趋势。 4.简述金属材料的强化机制。 5.试述玻璃的结构。 6.聚合物的力学三态及特点。 7.试比较五大硅酸盐水泥的异同点。 03论述题(总分150分,每题30分) 1.特种陶瓷与传统陶瓷的区别,特种陶瓷的制备、应用及发展趋势。 2.光导纤维的导光原理及应用前景。 3.聚合物的结构、性能与应用。 4.复合材料定义、分类、特性及发展趋势。 5.论述你对材料学的认识。 04每题30分,任选五题 1.论述金属材料的晶体结构及物理性能之间的关系。 2.试述高温结构陶瓷的种类及特点。 3.试述非晶态聚合物三种力学状态及其与晶体聚合物的异同。 4.试述聚合物基复合材料的性能及用途。 5.试述玻璃的熔制工艺过程。 6.论述材料学研究现状与发展趋势。

05 (1—6题必做,7、8任选一题) 1.材料的分类及应用.(20分) 2.常见特种玻璃有哪些?举例说明两种特种玻璃原料、加工工艺、功能原理、应用领域。(25分) 3.试述陶瓷材料的显微结构。(20分) 4.试述金属材料热处理方法。(20分) 5.试述高聚物的结构.(20分) 6.试进复合材料种类、月途和发展趋势(25分) 7.新型高分子材料的种类、特点和发展趋势(20 分) 8.试谈对电介质陶瓷的理解和认认。(20分) 06 1、概述材料在国民经济中的地位及作用。(20分) 2、金属材料热处理及相变特征。(20分) 3、试述纳米材料的特性及应用。(20分) 4、举例说明功能陶瓷制备,性能及应用。(30分) 5、高分子材料结构、性能特点及应用,请举例说明。(30分) 6、试比较聚合物基复合材料与金属基复合材料的结构、性能及应用特征。(30分) 07 1.陶瓷制备的一般工艺及结构特点。(20分) 2.举例说明材料性能与成分、结构及制备之间的关系。(25分) 3.金属材料强度提高的途径与方法。(25分) 4.试说明高分子新材料研究现状、应用及发展趋势。(25分) 5.复合材料的复合原理,并说明纤维增强和颗粒增强的机理。(25分) 6.举例说明材料在人类社会发展进步中的地位与作用(30分)

《高分子材料概论》

《高分子材料概论》考试重点 考试时间:第13周周二(2016年11月29日)上午8:00-10:00 考试地点:东10B-304 考试题型 一、名词解释 5个×2分=10分 二、填空题 20空×1分=20分 三、不确定项选择题 20个×1分=20分 四、问答题 5个×8分=40分 五、能力题 1个×10分=10分 考试重点内容 一、概念: 高分子化合物:或称聚合物,是由许多单个高分子(聚合物分子)组成的分子质量很大(104~107)的物质。 缩聚反应和缩聚物:指所生成的聚合物结构单元在组成上比其相应的原单体分子少了一些原子的聚合反应和聚合物。这是因为在这些聚合物反应中官能团间进行聚合反应时失去了某些小分子(如H2O)。 玻璃化温度: ●定义:高聚物分子链开始运动或冻结的温度。 ●玻璃化温度的使用价值:玻璃温度是非晶态高聚物作为塑料使用的最高温度;是作为橡胶使用的最低温度。 触变性流体:在恒定的将切速率和剪切力作用下,一些流体的粘度随时间的增加而降低,这种流体称为触变性流体。 多分散聚合物:由许多不同相对分子质量的分子组成的高分子。 离子聚合反应:单体在阳离子或阴离子作用下,活化为带正电荷或带负电荷的活性离子,再与单体连锁聚合形成高聚物的化学反应,统称为离子型聚合反应。属于连锁聚合反应的一种。 热塑性:热塑性高分子在受热后会从固体状态逐步转变为流动状态。这种转变理论上可重复无穷多次。或者说,热塑性高分子是可以再生的。 聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯和涤纶树脂等均为热塑性高分子。热固性:(热固性高分子)在受热后先转变为流动状态,进一步加热则转变为固

体状态。这种转变是不可逆的。换言之,热固性高分子是不可再生的。通过加入固化剂使流体状转变为固体状的高分子,也称为热固性高分子。 典型的热固性高分子如:酚醛树脂、环氧树脂、氨基树脂、不饱和聚酯、聚氨酯、硫化橡胶等。 二、掌握: 高分子材料的分类 答:可分为合成高分子和天然高分子两大类。 高分子材料分子链的几何形状 答:(1)线型链状:由于c-c链旋转,很难伸展到完全伸直长度,而以许多不同形状,即构象存在。 (2)支化:使高分子主链带上了长短不一的支链,有梳形、星形、无规支链等类型。对材料物理、力学性能影响很大。 (3)交联:大分子链之间通过支链或某种化学链相链接,形成一个分子量无限大的三维网状结构。 共聚物结构单元的连接方式 答:无规连接(无规共聚物)交替连接(交替共聚物) 嵌段连接(交替共聚物)分叉连接(接枝共聚物) 聚合物的结晶结构形式 答:(1)曲折链结晶结构(2)扭曲的曲折链结晶结构(3)螺旋链结晶结构化学纤维的纺丝方法 答:(1)熔融纺丝:适用于凡能加热熔融或转变为粘流态而不发生显著分解的成纤聚合物。 (2)溶液纺丝:将聚合物制成溶液,经过喷丝板或帽挤出形成纺丝液细流,然后该细流经凝固裕凝固以形成丝条的纺丝方法。 按凝固浴不同分为湿法纺丝和干法纺丝。 湿法纺丝:凝固浴为水、溶剂或溶液等介质,如晴纶、粘胶。 干法纺丝:凝固浴为热空气 大多数聚合物在不同温度下的力学状态、 答:线型非晶高聚物的物理状态:玻璃态、高弹态、黏流态

相关文档
最新文档