小学奥数模块教程染色问题(一)

合集下载

小学奥数中的涂色问题

小学奥数中的涂色问题

小学奥数中的涂色问题Revised on November 25, 2020涂色问题的常见方法与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。

解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。

本文拟总结涂色问题的常见类型及求解方法。

一、区域涂色问题1、根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。

例1、用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种4种方法,接着给③号涂色方法有34种涂法,根据分步计数原理,不同的涂色方法有5434240⨯⨯⨯=2、根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色方法种数。

例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。

分析:依题意只能选用4种颜色,要分四类:(1)②与⑤同色、④与⑥同色,则有44A;①②③④⑤⑥(2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有44A ;(4)③与⑤同色、②与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有44A ;所以根据加法原理得涂色方法总数为544A =120例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种分析:依题意至少要用3种颜色1) 当先用三种颜色时,区域2与42) 区域3与5必须同色,故有34A 种;3) 当用四种颜色时,若区域2与4同色,4) 则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4不同色,有44A 种,故用四种颜色时共有244A 种。

由加法原理可知满足题意的着色方法共有34A +244A =24+2 24=723、根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用加法原理求出不同涂色方法总数。

小学奥数构造、论证与染色、操作问题

小学奥数构造、论证与染色、操作问题

第十三讲:构造与论证教学目标1.掌握最佳安排和选择方案的组合问题.2.利用基本染色去解决相关图论问题.知识点拨各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。

若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。

若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.例题精讲模块一最佳安排和选择方案【例 1】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填“黑”或者“白”).【解析】在每一次操作中,若拿出的两枚棋子同色,则补黑子1枚,所以拿出的白子可能为0枚或2枚;若拿出的两枚棋子异色,则补白子1枚,“两枚棋子异色”说明其中一黑一白,那么此时拿出的白子数为0枚.可见每次操作中拿出的白子都是偶数枚,而由于起初白子有200枚,是偶数枚,所以每次操作后剩下的白子都是偶数枚,因此最后1枚不可能是白子,只能是黑子.【例 2】5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【解析】因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第l卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第l卷的位置最少需2次,得到的顺序为54312;最后将第l卷和第2卷对调即可.所以,共需调换4+3+2+1=10次.【例 3】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:、(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?【解析】(1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(O,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.【例 4】n支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n=4是否可能?(2)n=5是否可能?C场比赛,而每场比赛有2【解析】(1)我们知道4个队共进行了24C×2=12.因为每一队至少分产生,所以4个队的得分总和为24胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以4个队得分最少2+3+4+5=14>12,不满足.即n=4不可能。

小学奥数杂题染色问题【三篇】

小学奥数杂题染色问题【三篇】

小学奥数杂题染色问题【三篇】
导读:本文小学奥数杂题染色问题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇】 1.如图是一套房子的平面图,图中的方格代表房间,每个房间都有通向任何一个邻室的门.有人想从某个房间开始,依次不重复地走遍每一个房间,他的想法能实现吗?
解析:对房间染色,使最下面的两个房间染成黑色,与黑色相邻的房染成白色,
则图中有7个黑色房间和5个白色房间.
如果要想不重复地走过每一个房间,黑色与白色房间数应该相等.故题中的想法是不能实现的.
点评:完成本题也可根据要求据图中的房间实际找下路线,看是否能够找到.【第二篇】展览会有36个展室(如图),每两相邻展室之间均有门相通.能不能从入口进去,不重复地参观完全部展室后,从出口出来呢? 答案:不能.对展室进行染色,使相邻两房间分别是黑色和白色的.此时入口处展室的颜色与出口处展室的颜色是相同的,而不重复参观完36个展室,入口与出口展室的颜色应该不相同. 【第三篇】染色问题基本解法:三面涂色和顶点有关8个顶点。

两面染色和棱长有关。

即新棱长(棱长-2)×12一面染色和表面积有关。

同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*6 0面染色和体积有关。

用新棱长计算体积公式(棱
长-2)×(棱长-2)×(棱长-2)长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。

五年级奥数:染色问题

五年级奥数:染色问题

五年级奥数:染色问题染色问题的解题思路染色问题是数奥解题中的难点,这类问题初看起来好像无从着手,其实只要认真思考问题也很容易解决,下面就染色问题的解题思路说一下。

图一首先,拿到一道题先认真观察,看这个题的突破点。

什么是染色问题的突破点呢?那就是找染色区域中的一个最多,这个最多是指一个区域,其他区域与它连接的最多。

例如图一中A区域A与B、C、D、E、 F连接最广所以A为特殊区域。

找到这个区域问题就容易解决了。

这个区域可以任意添色就是染最多的颜色。

本题中有4种颜色那么A可以染4种颜色了。

完成这个事件需要A、B、C、D、E、F6步所以用乘法原理。

这道题找到了最特殊的A区域第二特殊区域和第三区域的确定也就容易了,C区域是与A相连,连接区域的数量仅次于A区域图一中的C和E区域都可以做第二个特殊区域了,但只能选一个,我们把C当成第二特殊的区域,则C可以染3种颜色。

区域B跟A、C相连那么 B可以染2种。

D与A、C、E相连则只能选1种,对吗?我们仔细观察,按顺序说A----4,C------3,B-------2,D则连接A、C当A 选色后C有3种可能,D在A、C选色后只有2种可能。

E连接A、D也有两种可能。

F也是连接着A、E有两种可能。

这道题就解出来了。

有4×3×2×2×2=96种可能。

这道题跟以下一道题有异曲同工之效,大家不妨一起看下图二。

图二图中A与B、C相连有4种染色方式,为第一特殊区域。

而B是与A相连的第二特殊区域(切记,此时选第二特殊区域,乃是跟第一特殊区域相连的一个区域)B有3种可能,C连接A、B则有2种可能,D连接B、C则有2种可能,同理E也有2种可能。

所以此题有4×3×2×2×2=96种可能的染色。

再来看一个稍微复杂点的问题如图三 图三图中A有5种染色方式C------ 4,B-----3,D-----3,E------3,F------3,G------3。

小学奥数 长方体正方体染色问题、三视图 知识点+例题+练习 (分类全面)

小学奥数 长方体正方体染色问题、三视图 知识点+例题+练习 (分类全面)

教学内容长方体正方体染色问题、沉浸问题、三视图教学目标掌握长方体正方体染色问题、沉浸问题、三视图重点染色问题、沉浸问题、三视图难点染色问题、沉浸问题、三视图教学过程一、染色问题一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。

在这些小正方体中:(1)三个面涂有红色的有多少个?(2)两个面涂有红色的有多少个?(3)一个面涂有红色的有多少个?(4)六个面都没有涂色的有多少个?下面我们结合图示,分别来看看这几个问题。

(1)三个面涂有红色的小正方体在大正方体的顶点处,正方体有8个顶点,所以三个面涂有红色的有8个。

(2)两个面涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,所以两个面涂有红色的有8×12=96个。

(3)一个面涂有红色的小正方体在大正方体的面上,每个面上有8×8=64个,正方体有6个面,所以一个面涂有红色的有8×8×6=384个。

(4)六个面都没有涂色的在大正方体的中间,有两种算法:算法1: 1000-8-96-384=512(个);算法2: 8×8×8=512(个)。

公式:(1)正方体有8个顶点、12条棱、6个面假设把棱n等分(n≥3),那么:N的三次方个小立方体组成的立方体的表面图涂上颜色,则未被涂色的小立方体有(n-2)3个.一面被涂色的小立方体为(n-2)2*6个.两面被涂色的小立方体有(n-2)*12个.三面被涂色的有8个.(2)长方体, 有a*b*c个立方体组成的长方体表面涂上颜色.则未被涂色的小立方体有(a-2)*(b-2)*(c-2)个一面被涂色的小立方体有(a-2)* (b-2)*2+(b-2)* (c-2)*2+(c-2)* (a-2)*2两面被涂色的小立方体有(a-2)*4+(b-2)*4+(c-2)*4三面被涂色的有8个【例 1】下图是333⨯⨯正方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?0面:1; 1面:6;两面:2;三面:8【巩固】下图是456⨯⨯长方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?0面:24; 1面:52;两面:36;三面:8图1图2【巩固】小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如图2所示,从上面看如图3所示,那么这个几何体至少用了块木块.26图2图3课堂作业:1.一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切3刀,沿着高边等距离切_______次后,要使各面上均没有红色的小方块为40块.5.用一些棱长是1的小正方体码放成一个立体,从上、从右看这个立体都如下图,则这个形体最少由________个小正方体构成,6.小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如图2所示,从上面看如图3所示,那么这个几何体至少用了块木块.。

小学奥数-长方体正方体染色问题、三视图-知识点+例题+练习-(分类全面)精选全文完整版

小学奥数-长方体正方体染色问题、三视图-知识点+例题+练习-(分类全面)精选全文完整版

可编辑修改精选长方体正方体染色问题、沉浸问题、三视图全文完整版教学内容教学目标掌握长方体正方体染色问题、沉浸问题、三视图重点染色问题、沉浸问题、三视图难点染色问题、沉浸问题、三视图教学过程一、染色问题一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。

在这些小正方体中:(1)三个面涂有红色的有多少个?(2)两个面涂有红色的有多少个?(3)一个面涂有红色的有多少个?(4)六个面都没有涂色的有多少个?下面我们结合图示,分别来看看这几个问题。

(1)三个面涂有红色的小正方体在大正方体的顶点处,正方体有8个顶点,所以三个面涂有红色的有8个。

(2)两个面涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,所以两个面涂有红色的有8×12=96个。

(3)一个面涂有红色的小正方体在大正方体的面上,每个面上有8×8=64个,正方体有6个面,所以一个面涂有红色的有8×8×6=384个。

(4)六个面都没有涂色的在大正方体的中间,有两种算法:算法1: 1000-8-96-384=512(个);算法2: 8×8×8=512(个)。

公式:(1)正方体有8个顶点、12条棱、6个面假设把棱n等分(n≥3),那么:N的三次方个小立方体组成的立方体的表面图涂上颜色,则未被涂色的小立方体有(n-2)3个.一面被涂色的小立方体为(n-2)2*6个.两面被涂色的小立方体有(n-2)*12个.三面被涂色的有8个.(2)长方体, 有a*b*c个立方体组成的长方体表面涂上颜色.则未被涂色的小立方体有(a-2)*(b-2)*(c-2)个一面被涂色的小立方体有(a-2)* (b-2)*2+(b-2)* (c-2)*2+(c-2)* (a-2)*2两面被涂色的小立方体有(a-2)*4+(b-2)*4+(c-2)*4三面被涂色的有8个【例 1】下图是333⨯⨯正方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?0面:1; 1面:6;两面:2;三面:8【巩固】下图是456⨯⨯长方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?看如右下图,那么他最少用了_____块木块。

五年级奥数排列组合之染色

答案:八
东坡踏翠 (打一中国数学家)
答案:苏步青
介绍一位数学家的成就或故事.
恭喜!恭喜! 请按这个按钮! 傻瓜哈!罚哈你!再对按自!己 说:“你太粗心了!
没做出来啊?罚!你 是哪队的就学哪队的 叫声。哈哈!
泰山中无人无水。 (猜一数字)
答案:三
旭日东升。 (猜一数字)
答案ቤተ መጻሕፍቲ ባይዱ九
语言不通口难开。 (猜一数字)
一个数字3,走在 路上翻了一个跟头, 结果不小心以翻了 一个。(打一成语)
答案:三翻两次
俄国大文豪托尔斯泰在谈到 对人的评价时说:“一个人 就好像一个分数,它的实际 才能好比分子,而他对自己 的估价好比分母。分母越大, 则分数值就越小。”
把这句话背下来。
两只鸟儿并排飞,一 只瘦来一只肥,一年 中来一次,一月当中 来三回。(打一数字)
一个点或同一条线段只能经过一
次.这只甲虫最多有多少种不同
的走法? A
B
C
D
E
例3:从学校到少年宫有4条 东西向的马路和3条南北向的 马路相通,小杰从学校步行到 少年宫(只许向东或向南行进), 最多有多少种走法?
学校
少年宫
如图,从P到Q共有多少种 不同的最短路线?
P
Q
如图,长方体有12条棱,8个顶 点,一只小蚂蚁从A点出发沿 棱爬行,要经过每个顶点一次,且 只经过一次.问共有多少种不同 的走法?
例1:用红、黄、蓝三色 给边长分别为3、4、5、 6、7的五边形的各边 染色,要求相邻两边 不许同色,共有多少 种不同染法?
例3:地图上有A、B、C、
D、E五个国家用五种颜
色去染,要求相邻国家染
不同的颜色。问:有多少
种不同染法?

六年级奥数题及答案-有多少种不同染色方法?

六年级奥数题及答案-有多少种不同染色方法?
如图,地图上有A,B,C,D四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法?
解答:为了按要求给地图上的这四个国家染色,我们可以分四步来完成染色的工作:
第一步:给A染色,有5种颜色可选。

第二步:给B染色,由于B不能A与同色,所以B有4种颜色可选。

第三步:给C染色,由于C不能与A、B同色,所以C有3种颜色可选。

第四步:给D染色,由于D不能与B、C同色,但可以与A同色,所以D有3种颜色可选。

根据分步计数的乘法原理,用5种颜色给地图染色共有种5*4*3*3=180不同的染色方法。

四年级数学奥数题知识点《染色问题》专项训练及答案

四年级数学奥数题知识点《染色问题》专项训练
及答案
题型:染色问题难度:★★
如图,把A、B、C、D、M这五个部分用5种不同的颜色染色,且相邻的部分不能使用同一种颜色,有的颜色也可以不用,不相邻的部分可以使用同一种颜色,那么这幅图一共有多少种不同的染色方法?
【答案解析】
如果5种颜色全部使用,那么共有5×4×3×2×1=120种染色方法。

如果只使用4种颜色,可以是B和D同色,也可以是A和C 同色,那么共有5×4×3×2×2=240种染色方法。

如果只使用3种颜色,那么有B和D同色并且A和C同色,共有5×4×3=60种染色方法。

120+240+60=420,所以这幅图一共有420种不同的染色方法。

题型:染色问题难度:★★
如图,9条小线段组成了4个小三角形,现在将每条线段分别染上红、黄、蓝三种颜色之一,使得每个三角形三条边的颜色互不相同,那么共有多少种不同的染色方式?
【答案解析】
任选一个小三角形的一条边,当这条边的颜色确定时,这个小三角形的染色方法有2种,同时每种方法都会确定与其相邻的小三角形的一条边的颜色。

24×3=48,所以共有48种不同的染色方式。

小学奥数模块教程染色问题(一)

染色问题(一)染色问题是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案。

因此,这里的染色问题指的是一种解题方法。

这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意学会集中典型的染色方法。

根据具体题目的研究对象,染色方法大致可以分为对点染色、对线段染色、对方格染色和对区域染色。

对方格染色常用的是黑白方格相间染色,也叫自然染色。

例1如右图,在5×5方格的A格中有一只爬虫,它每次总是朝上下左右方向爬到相邻的方格中。

那么他能否不重复的爬满每个方格再回A到A格中?解:有小虫的爬法,可黑白相间对方格自然染色,于是小虫只能由黑格爬到白格或白格爬到黑格。

所以它由A出发回到A,即黑格爬到黑格,必须经过偶数步。

而小方格为5×5=25个,每格爬过一次,就应该为25步,不是偶数。

于是这只爬虫不可能不重复地爬遍每格再回到A格。

例2 有一次车展有6×6=36个展室,如图。

每格展室与相邻的展室都有门相通,入口和出口如图所示。

参观者能否从入口进去,不重复地参观完每格展室在从出口出来?解:如图,对每个展室黑白相间染色,同样每次只能冲黑格到白格或者从白格到黑格。

入口和出口都是白格,故线路黑白相间,首位都是白格,于是应该白格比合格多1个,而实际上白格、黑格都是18个,故不能做到不重复走遍每个展室。

例3 右图是某一套房子的平面图,共12个房间,每相邻两间房间都有门相通。

请问,你能从某个房间出发,不重复地走完每个房间吗?解:如图所示,将房间黑白相间染色,发现只有5个黑格、7个白格。

因为每次只能从黑到白或者白到黑,路线必然是黑白相间,显然应该从多的白格开始。

但路线上1白1黑......直至5白5黑后还多余2白格,不可能从白到黑。

故无法实现不重复地走遍每个房间。

小结:染色问题的解题技巧主要在于染色具体方案的构造,其基本原则是使题目条件出现一定的规律,以利于解题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

染色问题(一)
染色问题是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案。

因此,这里的染色问题指的是一种解题方法。

这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意学会集中典型的染色方法。

根据具体题目的研究对象,染色方法大致可以分为对点染色、对线段染色、对方格染色和对区域染色。

对方格染色常用的是黑白方格相间染色,也叫自然染色。

例1如右图,在5×5方格的A格中有一只爬虫,它每次总是朝上
下左右方向爬到相邻的方格中。

那么他能否不重复的爬满每个方格再回
A
到A格中?
解:有小虫的爬法,可黑白相间对方格自然染色,于是小虫只能
由黑格爬到白格或白格爬到黑格。

所以它由A出发回到A,即黑格爬到
黑格,必须经过偶数步。

而小方格为5×5=25个,每格爬过一次,就应该为25步,不是偶
数。

于是这只爬虫不可能不重复地爬遍每格再回到A格。

例2 有一次车展有6×6=36个展室,如图。

每格展室与相邻的展室都有门相通,入口和出口如图所示。

参观者能否从入口进去,不重复地参观完每格展室在从出口出来?
解:如图,对每个展室黑白相间染色,同样每次只能冲黑格到白格或
者从白格到黑格。

入口和出口都是白格,故线路黑白相间,首位都是白格,于是应该
白格比合格多1个,而实际上白格、黑格都是18个,故不能做到不重
复走遍每个展室。

例3 右图是某一套房子的平面图,共12个房间,每相邻两间房间都有
门相通。

请问,你能从某个房间出发,不重复地走完每个房间吗?
解:如图所示,将房间黑白相间染色,发现只有5个黑格、7个白格。

因为每次只能从黑到白或者白到黑,路线必然是黑白相间,显然应该从多
的白格开始。

但路线上1白1黑......直至5白5黑后还多余2白格,不可能从白到黑。

故无法实现不重复地走遍每个房间。

小结:染色问题的解题技巧主要在于染色具体方案的构造,其基本原则是使题目条件出现一定的规律,以利于解题。

例4 用11个和5个能否盖住8×8的大正方形?
解:题目中的这两个形状似乎比较复杂,可能需要特殊染色方法。

然而先把常用的自然染色法一试,却发现两种形状仍然满足规律。

如图,对8×8正方形黑白相间染色后,发现必然覆盖住2白2黑,5个则盖住
10白10黑。

则盖住3白1黑或1白3黑,从奇偶性考虑都是奇数。

而这种形状共11个,奇数个相加仍为奇数,故这个形状盖住的黑格和白格都是奇数,加上另一种性状盖住的10白10黑,两种形状共盖住奇数个白格奇数个黑格。

但实际染色后共32个白格、32个黑格,故不可能按题目要求盖住。

例5 某班有45名同学按9行5列坐好。

老师想让每位同学都坐在他
的邻座(前后左右)上去,问这样能否办到?
解:如图,将5×9长方形自然染色,发现黑格的邻座都是白格,
白格邻座都是黑格,因此每位同学坐到他相邻的座位上相当于所有白格
的坐到黑格上,所有黑格坐到白白格上。

而实际中图上有23个黑格、22个白格,个数不等,故不能办到。

小结:进一步深化研究本题,5×9的队列不能换到邻位,5×6的、5×7的、8×9的、6×8的队列行不行?模仿本题,不难发现,5×7的队列不行。

那么,一般地,m×n的队列,当m和n满足什么要求时不行呢?总结规律,可以猜想到,当m和n都是奇数时,队列不能每人换到邻座。

练习
1、班上有49名同学,坐成7行7列,每个座位的前后左右均称为它的邻座。

要使全班每个同学都坐到邻座上。

这种坐法能行吗?
2、某个展览会有25个展览室(如右图),相邻两个展室都有门相通。


个小朋友从A室开始,打算一次而又不重复地看过每一展室,最后回到A
室。

试问这个小朋友的打算能实现吗?
A
3、能否用1个“田”字和15个“”字形纸片恰好盖住一个8行8列的棋盘?
4、圆周上有20个点,其中10个染红,另10个染蓝。

能否用10条线段连此20个点,每条线段连不同色的两个点,且这10条线段无公共点?
5、有一个11×12棋盘,还有共计19片6×1与7×1的矩形纸片,问能否用这些小矩形盖满这个11×12的棋盘?
练习参考答案
1、不行。

(提示:画一个7×7方格表,染成黑白色,黑白色格子数相差1)
2、不能。

3、不能(提示:8×8方格染成黑白两色,一个田字形只能覆盖2黑2白,而T字形可覆盖3黑1白或3白1黑,如能盖住,15个T字形纸片盖住黑格数(或白格数)为15个奇数,1个田字形纸片盖住两个黑或白格,总和为奇数,但,8×8方格表中黑白均为偶数)
4、能。

5、不能。

相关文档
最新文档