关于正整数平方和公式的证明

关于正整数平方和公式的证明
关于正整数平方和公式的证明

关于正整数平方和公式的证明

厦门市前埔厦门特殊教育学校吴光安

在高中阶段,有一个公式一直让我产生兴趣,就是

,这个公式是学习数学归纳法的时候,课后的一个习题结论,而且也是老教材的封面的内容,可见该公式是多么的重要,不然怎么会上了封面呢。的确在实际的解题中,该公式是很有用的:直接用这个公式,可以使一些过程变得很简单。但老师讲到这的时候,叫我们只要记住结论就可以了,虽然可以这样,但它的证明方法却一直让我产生兴趣。在学习的过程中,我发现了6种证明方法:

方法一:

直接求出的和比较难,可以采用代数的方法,为了找出的代数表达式,用去探索

由于

可得:

现在关键是求出:

而:=

于是:

所以:

方法二:

学习了排列与组合的知识,知道有,从而可得:=

于是:

同时有结论:==

于是有:

方法三:

拿到了题目,不知如何下手,于是只好在草稿上写出前几项的和,细心点,嘿!发现有=,于是易得结论!

方法四:

方法五:

方法六:

用数学归纳法。

总结:

方法一思路较简单,而且这种方法具有“移植性”,比如要求则可以类似

而”的角度来求出它的值(当然关于完全可以用观察法来解决)

方法二用到了排列组合中的知识:,=,对于高中生而言,这部分是比较陌生的,遇到这种题目的时候,往往会有畏惧情绪,但高考题却经常会涉及,比如说2003年的一道选择题,又如2001年的考题:

据说当时很多人看到这题目就傻眼了,如果平时能象证明上述公式那样多用偏僻的知识思考问题,那遇到这种高考题的时候,也更从容了。

方法三是数学中常用的方法,其实数学中很多结论都是在“尝试”下生成的,关键是观察能力要强,我认为这种方法对于新课改具有重要意义,这样可以培养学生发现知识的能力。

方法四是在学习“数列”时常用的方法,一定要活学活用这种方法。

方法五显得有些不自然,似乎有些深奥,但如果多用这种语言来解题,思维能力肯定可以提高,以后在学习微积分的级数的时候,可能会觉得轻松点。

Welcome To Download !!!

欢迎您的下载,资料仅供参考!

平方差公式设计

15.2.1《平方差公式》教学设计方案 秦皇岛市卢龙县卢龙教育局教研室郑淑杰 教学内容:人教版《义务教育课程标准实验教科书·数学》八年级上册“15.2乘法公式”(第一课时) 教学目标: 知识与能力: 1、掌握平方差公式的结构特征,能运用公式进行简单的运算; 2、会用语言描述平方差公式内容; 3、会用几何图形说明公式的意义,体会数形结合的思想在解决问题的作用; 过程与方法: 让学生经历“特例──归纳──猜想──验证──用数学符号表示”这一数学活动过程,积累数学活动的经验,进一步发展学生的符号感、推理能力、归纳能力。会用几何图形说明公式的意义,体会数形结合的思想方法的重要性. 情感态度目标 通过自主探究与合作交流的学习方式,让学生经历探索新知、巩固新知和拓展新知这一过程,发挥学生的主体作用,增强学生学数学、用数学的兴趣.同时,让学生在公式的运用中积累解题的经验,体会成功的喜悦. 教学重点:经历探索平方差公式的全过程,并能运用公式进行简单的运算 教学难点:利用数形结合的数学思想方法解释平方差公式,灵活运用平方差公式进行计算. 教材分析: 《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法.因此,平方差公式在初中阶段的教学中也具有很重要地位,是初中阶段的第一个公式. 学情分析

基本不等式(导学案)

基本不等式(导学案) ab,3.4 ab,2 1、学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等 号“?”取等号的条件是:当且仅当这两个数相等 a,b2、理解利用基本不等式ab 证明不等式的方法 ,2 ab,3、进一步掌握基本不等式;会应用此不等式求某些函数的最值;能够解决ab,2 一些简单的实际问题 ab,应用数形结合的思想理解不等式并从不同角度探索不等式的证明过程;ab,2 理解“当且仅当a=b时取等号”的数学内涵 1、回顾:二元一次不等式(组)与简单的线形规划问题。 2、如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案 中找出一些相等关系或不等关系吗? 1、重要不等式: 22如果a,b,R,那么a,b,2ab(当且仅当a,b时取","号) 1

a,b2、基本不等式:如果a,b是正数,那么 ,ab(当且仅当a,b时取","号).2 a,b3、我们称ab为a,b的算术平均数,称的几何平均数为a,b2 a,b224、a,b,2ab和,ab成立的条件是不同的:前者只要求a,b都是实数,2 而后者要求a,b都是正数。 1、已知x、y都是正数,求证: 223333yx(1)?2; (2)(+)(+)(+)?8. xyxyxyxy,xy 92、求(x>5)的最小值. fxx()4,,x,5 283、若x>0,y>0,且,求xy的最小值. ,,1xy 11,4、设a、b?R且a+b=1,求+的最小值 1,a1,b 1、两正数a、b的算术平均数与几何平均数成立的条件。?理解“当且仅当a=b 时取等 号”的数学内涵。 2、当两个正数之积为定值时,其和有最小值 当两个正数之和为定值时,其积有最大值 3、利用基本不等式求最值时必须满足三个条件:一正二定三相等. 4、用均值不等式解决此类问题时,应按如下步骤进行: (1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案. 2

初中几何证明题(完整版)

初中几何证明题 初中几何证明题 第一篇: 初中几何证明题 初中几何证明题 己知m是△ab边b上的中点,,d,e分别为ab,a上的点,且 dm⊥em。 求证:bd+e≥de。 1. 延长em至f,使mf=em,连bf. ∵bm=m,∠bmf=∠me, ∴△bfm≌△em如图,在三角形ab中,bd,e是高,fg分别为ed,b的中点,o是外心,求证ao∥fg 问题补充: 证明:延长ao,交圆o于m,连接bm,则:∠abm=90°,且∠m=∠ab. ∠ae=∠adb=90°,∠ea=∠dab,则⊿ae∽⊿adb,a ead=aab; 又∠ead=∠ab,则⊿ead∽⊿ab,得∠aed=∠ab=∠m. ∴∠aed+∠bam=∠m+∠bam=90°,得ao⊥de.-------------------同理可证:eg=b 故dg=eg. 又f为de的中点,则fg⊥de.所以,ao∥fg. 已知梯形abd中,对角线a与腰b相等,m是底边ab的中点,l 是边da延长线上一点连接lm并延长交对角线bd于n点 延长lm至e,使lm=me。

∵am=mb,lm=me,∴albe是平行四边形,∴al=be,al∥eb,∴lnen=dnbn。 延长n交ab于f,令l与ab的交点为g。 ∵ab是梯形abd的底边,∴bf∥d,∴nfn=dnbn。 由lnen=dnbn,nfn=dnbn,得: lnen=dnbn,∴l∥fe,∴∠glm=∠feb。 由al∥eb,得: ∠lag=∠ebf,∠alm=∠bem。 由∠alm=∠bem,∠glm=∠feb,得: ∠alm-∠glm=∠bem-∠feb, ∴∠alg=∠bef,结合证得的∠lag=∠ebf,al=be,得: △alg≌△bef,∴ag=bf。 ∵a=b,∴∠ag=∠bf,结合证得的ag=bf,得: △ag≌△bf,∴al=∠bn。 如图,三角形ab中,d,e分别在边ab,a上且bd=e,f,g分别为be,d 的中点,直线fg交 ab于p,交a于q.求证:ap=aq 取b中点为h 连接hf,hg并分别延长交ab于m点,交a于n点 由于h,f均为中点 易得: hm‖a,hn‖ab hf=e2,hg=bd2 得到:

一般形式的柯西不等式 教案

澜沧拉祜族自治县第一中学教案 【一般形式的柯西不等式】 学科:数学 年级:高三 班级:202、203 主备教师:沈良宏 参与教师:郭晓芳、龙新荣 审定教师:刘德清 一、教材分析:柯西不等式是人教A 版选修 4-5不等式选讲中的内容,是学生继均值不等式后学习的又一个经典不等式,它在教材中起着承前启后的作用。一方面可以巩固不等式的基本证明方法,和函数最值的求法,另一方面为后面学习三角不等式与排序不等式奠定基础。本节课的核心内容是柯西不等式一般形式的推导及其简单应用。 二、教学目标: 1、知识与技能:.认识柯西不等式的几种不同形式,理解其几何意义; 2、过程与方法:通过柯西不等式与其它基本不等式的关系,感悟柯西不等式的美; 3、情感、态度与价值观:在运用柯西不等式分析、解决问题的过程中,体会柯西不等式的应用方法. 三、教学重点:柯西不等式的一般形式、变形以及它与一些基本不等式的关系,柯西不等式的使用方法. 四、教学难点:在具体问题中怎样使用柯西不等式. 五、教学准备 1、课时安排:1课时 2、学情分析:学生不仅已经掌握了不等式证明的基本方法,还具备了一定的观察、分析、逻辑推理的能力。通过对两种方法的证明,让学生体会对柯西不等式的向量形式和代数法证明的不同之处. 3、教具选择:多媒体 实物展台 六、教学方法:启发引导、讲练结合法 七、教学过程 1、自主导学:一、创设问题情境,检查课后学习情况: 问题1:你知道二维形式的柯西不等式吗?有几种形式? 定理1:(二维柯西不等式)设d c b a ,,,均为实数,则22222)())((bd ac d c b a +≥++, 等号当且仅当bc ad =时成立. 定理2:(向量形式)设α ,β 为平面上的两个向量,则αβαβ? ≥,其中等号当且仅 当两个向量方向相同或相反(即两个向量共线)时成立. 定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+- 问题2:你会用柯西不等式证明下面的两个不等式吗? (1)222a b ab +≥ (2)2221()2 a b a b ++≥ 解析: (1)2222222222))()(2),)(2)a b a b ab ab ab a b ab +++=+∵((≥∴(≥

平方差公式教案(教学设计)

《平方差公式》 【教学目标】 (一)知识与技能: 1.经历探索平方差公式的过程,进一步发展符号感和推理能力。 2.会推导平方差公式,并能运用公式进行简单计算。 (二)过程与方法:  1.认识平方差公式及其几何背景,使学生明白数形结合的思想。  2.在合作、交流和讨论中发掘知识,并体验学习的乐趣。 (三)情感态度与价值观:培养学生灵活运用知识、勇于探求科学规律的意识。 【教学重点】 平方差公式的推导和应用 【教学难点】 理解平方差公式的结构特征,灵活应用平方差公式。 【教学过程】 新课讲授: 一、创设情境,引出新课 教师活动:播放《周老财与李老汉的故事》视频。 周老财是个贪心狡猾的地主,李老汉是个老实巴交的农民。有一天,李老汉找到周老财租土地。周老财对李老汉说“那我把这块边长为a米的正方形土地租给你吧,每年给我200斤粮食就可以了。”李老汉答应了。和周老财签了三年的合约。租到了土地李老汉非常勤劳,三年的收成都挺好。这时周老财打起了李老汉的主意。于是周老财对李老汉说,土地租期到了,要不这样,我把这块土地的一边减少5米,相邻的另一边增加5米,租金不变,继续租给你怎么样?李老汉一听,觉得没什么问题就爽快答应了。事后李老汉跟村里人说起了这事,大伙都说他被周老财骗了,吃大亏了。李老汉想不明白,土地看上去没什么变化,租金也没变,为什么会吃亏呢?李老汉实在想不明白。 提问:李老汉究竟有没有吃亏呢?(让学生做片刻思考)我相信通过这节课的学习,同学们肯定都能轻松地找到答案。 设计意图:引用小故事,设置课堂悬念,激发学生的求知欲望,让学生有兴趣和信心学习新的知识。同时也为说明平方差公式的几何意义做好铺垫。 二、温故知新,探究发现

(基本不等式)公开课教案知识分享

基本不等式 2a b +≤ 授课人:祁玉瑞 授课类型:新授课 一、知识与技能: 使学生了解基本不等式的代数、几何背景,学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;学会应用基本不等式解决简单的数学问题。 过程与方法: 通过探索基本不等式的过程,让学生体会研究数学问题的基本思想方法,学会学习,学会探究。 情感态度与价值观: 在探索过程中,鼓励学生大胆尝试,大胆猜想,并能对猜想进行证明,增强学生的信心,获得探索问题的成功情感体验。逐步养成学生严谨的科学态度及良好的思维习惯。同时通过本节内容的学习,让学生体会数学来源于生活,提高学习数学的兴趣。 二、重点及难点 重点:应用数形结合的思想理解不等式,2 a b +≤的证明过程。 难点:2a b +≤等号成立条件。 三、教学过程 1.课题导入 2a b +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系。 2.讲授新课 1.探究图形中的不等关系

将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。 设直角三角形的两条直角边长为a,b 那么正方形的边长为22a b +。这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的 面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时 有222a b ab +=。 2.得到结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为 222)(2b a ab b a -=-+ 当 22,()0,,()0,a b a b a b a b ≠->=-=时当时 所以,0)(2≥-b a ,即 .2)(22ab b a ≥+ 4.1)从几何图形的面积关系认识基本不等式2a b ab +≤ 特别的,如果a>0,b>0,我们用分别代替a 、b ,可得2a b ab +≥, 通常我们把上式写作:(a>0,b>0)2a b ab +≤ 22a b ab +≤ 用分析法证明: 32a b ab +≤的几何意义 探究:课本第98页的“探究” 在右图中,AB 是圆的直径,点C 是AB 上的一点,AC=a,BC=b 。过 点C 作垂直于AB 的弦DE ,连接AD 、BD 。你能利用这个图形得出基本 2a b ab +≤的几何解释吗?

平方差公式教学设计知识讲解

《14.2.1平方差公式》教学设计 明水二中刘培国 一、内容和内容解析 内容 人教版数学八年级上册“14.2乘法公式”(第一课时) 内容解析 《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法.因此,平方差公式在初中阶段的教学中也具有很重要地位,是初中阶段的第一个公式. 本节课的教学重点是:经历探索平方差公式的全过程,并能运用公式进行简单的运算. 二、目标和目标解析 目标 1、经历平方差公式的探索过程,进一步发展学生的符号感和推理能力、归纳能力; 2、掌握平方差公式的结构特征,能运用公式进行简单的运算; 3、会用几何图形说明公式的意义,体会数形结合的思想方法. 目标解析: 1、让学生经历“特例──归纳──猜想──验证──用数学符号表示”这一数学活动过程,积累数学活动的经验,进一步发展学生的符号感、推理能力、归纳能力,同时体会数学的简洁美、培养他们的合情推理和归纳的能力以及在解决问题过程中与他人合作交流的重要性. 2、让学生了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题.在数学活动中,引导学生观察、分析公式的结构特征以及公式中字母的广泛含义,并在练习中,对发生的错误做具体分析,加深学生对公式的理解.

《基本不等式》教案

普安县第五届中小学优质课评选授课教案 【课题】3.4 基本不等式(1) 【执教人】吴应艳 【上课时间】2013、12、 【教学方法】探究学习、学案导学 【教学手段】投影仪、彩笔 【课型】新授课 【总课时数】1课时 【教学内容分析】 本节课是必修5第3章第4节的内容,内容安排在实数的性质与不等式性质之后,所以对于不等式的证明不存在太大难度。本节课内容的应用又十分广泛,因此引导学生学习好本节内容显得十分重要。 【学生学习情况分析】 授课的班级学生程度不太高,基础差不多,学习的知识结构较为合理。因此设计时也注重对探究能力的培养,同时也注意对基本不等式的应用教学。【教学目标】 知识目标:1、使学生了解基本不等式及其证明;2、让学生感知与基本不等式相近的一些不等式的证明与几何背景。 能力目标:1、通过对基本不等式的探究,培养学生观察、归纳、抽象的能力和语言表达能力;2、让学生初步了解用分析法证明不等式,培养学生分析问题能力与逻辑思维能力 情感目标:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好的探究学习习惯及勇于探索精神及灌输问题教学法。 【教学重点与难点】 重点:应用数形结合的思想理解基本不等式并从不同角度探索不等式的证明

过程,并能说明基本不等式的意义 难点:利用基本不等式推导一些与其相似的不等式 一、教学过程 (一)情景设置 【探究】右图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。 现将图中的“风车”抽象成下图, 这个会标中含有怎样的几何图形?你能否在这个图案中找出一些相等关系或不等关系? 问题1:我们把“风车”造型抽象成图一.在正方形ABCD 中有4个全等的直角三角形.如果设直角三角形的两直角边长为a、b,你能用a、b表示哪些图形的面积,这些面积有什么关系?那么正方形的边长为多少?面积为多少呢?4个直角三角形的面积和是多少呢?(由学生回答,培养学生独立思考问题的能力) (22 a b +,22a b +、2ab ) 问题2:比较大正方形的面积与4个直角三角形的面积,你能找到怎样的不 等关系? (根据观察4个直角三角形的面积和正方形的面积,我们可容易得到一个不等 式, >(a ≠b)) 图一 2 2 b a +a b 2

由平方差公式的几何证明谈代数

由平方差公式的几何证明谈几何对代数运算的作用 22()() a b a b a b -=-+

↓把四边形EBCF移动跟四边形CFGD构成长方形DEBG ↓ 求证:22()() a b a b a b -=-+ 证明:设|AD|=a , |AG| =b则 S AEFG=2a,S ABCD=2b S AEFG–S ABCD ==S EBFC+S CFGD 而S EBFC+S CFGD=|DG| .|DE| =(|AD| -|AG| ).(|DC| +|CE| ) =(a-b)(a+b) (就是把四边形EBCF移动跟四边形CFGD构成长方形DEBG算面积) 这种用几何的方法证明平方差公式很容

易理解,也让人容易接受,可以把抽象的代数运算用几何的方法具体化。我们知道代数主要研究的是数字与数字之间的逻辑联系,是代数式与代数式的运算。而几何是图形中各种边角面积之间的必然联系。有些代数运算可以用几何图形表示而还有些代数运算不能用几何图 形表示。 我在上面用几何的方法证明了我们常用的,也是最简单的平方差公式,同样的方法也可以证明单项式和多项式的相乘,多项式和多项式相乘公式等等。用几何方法可以解决很多复杂的难题。 每个函数有它相对应的几何图形,有图形我们就可以看出函数的很多性质,特征。例如: 上面这个心形的函为

2 /1sin *cos 1617/(a )θθρ-= 我们用代数式能画出各种各样漂亮的图形,且解决很多问题。抽象的代数式可以用具体的几何图像来表示。对学数学的专业人士代数和几何都一样,但是对不是专业人理解几何图形比理解代数式容易很多,所以我们要让别人看懂我们做的成果就要用一些几何图形来表示。用几何图形表示的时候可以看出这个函数的定义域,值域,最大最小值等等一些性质。总之几何在代数运算中有何大的作用,几何使代数运算简单化,具体化。 我这个图像是用超级画板做出来的,下面 谈谈我个人学超级画板的感受,对超级画板的看法以及超级画板对代数和几何中的作用。 动态几何是我们数学专业学生的专业选修课,要学超级画板软的用法,用它做图,做教学案例等等。超级画板是张景中院士专为新课标打造的软件,原名智能教育平台,与几何画板有共性,在色彩、多媒体效果上优与几何画板,且作直线与圆锥曲线交点方面很方便。超级画板这个软件比较好掌握,我们用一个学期的时间掌握了软件的基本操作,

一般形式的柯西不等式全面版

课 题:§3.2一般形式的柯西不等式 教学目标:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并 应用其解决一些不等式的问题.. 教学重点:会证明一般形式的柯西不等式,并能应用. 教学难点:理解证明中的函数思想. 教学过程: 一、复习引入: 1. 提问:二维形式的柯西不等式、三角不等式? 几何意义? 答案:22222()()()a b c d ac bd ++≥+2. 思考:如何将二维形式的柯西不等式拓广到三维?四维呢? 答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++。。。。。。 二、讲授新课: 1. 一般形式的柯西不等式: ① 提问:由平面向量的柯西不等式||||||αβαβ?≤ ,如何得到空间向量的三维形式的柯西不等式及代数形式? ② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,,,,,,,n n a a a b b b R ∈ ,则 222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++ 讨论:什么时候取等号? 联想:设1122n n B a b a b a b =+++,222 12n A a a a =++ ,22212n C b b b =+++ ,则有 20B AC -≥,可联想到一些什么? ③ 讨论:如何构造二次函数证明n 维形式的柯西不等式?(注意分类) 要点:令2222121122)2()n n n f x a a a x a b a b a b x =++???++++???+()(222 12()n b b b +++???+ ,则 22 21122 ()()())0n n f x a x b a x b a x b =++++???+≥+(. 又222120n a a a ++???+>,从而结合二次函数的图像可知, []2 2221122122()4()n n n a b a b a b a a a ?=+++-++? 22212()n b b b +++ ≤0 即有要证明的结论成立. ④分析什么时候等号成立? 二次函数f x ()有唯一零点时,判别式0?=,这时不等式取等号; 00i i a x b ?=?+=0i b ?=或i i a kb =(1,2,,i n = ) 定理4:(一般形式的柯西不等式):设n 为大于1的自然数,i i b a ,(=i 1,2,…,n )为任意实数,则: 21 1 2 1 2)(∑∑∑===≥n i i i n i i n i i b a b a ,当且仅当0=i b (=i 1,2,…,n )或存在 一个数k ,使得i i a kb =(1,2,,i n = )时等号成立。 ⑤探究:一般形式的三角不等式是怎样的?(可以让学生课后去探究) 利用一般形式的柯西不等式,容易推导出一般形式的三角不等式: (,,1,2,,)i i x y R i n ∈= 具体证法为:展开2 ,然后由柯西不等式推出展开式中的,进而完成全部证明。教学中可由学生探究具体证明过程,以加强其对一般形式柯西不等式与一般形式三角不等式之间联系的认识。 ⑤ 变式:222212121()n n a a a a a a n ++≥++???+ . (讨论如何证明) 2. 柯西不等式的应用:

平方差公式 教学案例

数学教学案例(人教版八年级数学上册14.2.1) 案例名称:《平方差公式》 所属课程:数学 所属专业:初中数学 授课课时:一课时

《平方差公式》教学案例 一、教学内容与分析 1.内容 平方差公式——两个数的和与这两个数的差的积,等于这两个数的平方差。 2.内容分析 本节内容主要研究的是平方差公式的推导和应用。平方差公式是学生学习了整式的加减及整式乘法等知识的基础上,在已经掌握了单项式乘法、多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为完全平方公式的学习提供了方法,同时也为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础。因此,平方差公式在初中阶段的教学中具有承上启下的作用。 3.教学重点与难点 本节课的重点:理解平方差公式,掌握其结构特点,并能运用公式进行运算。 本节课的难点:①理解公式中字母的含义,即公式:22))((b a b a b a -=-+中的字母a ,b 可以是具体的数、单项式、多项式、分式乃至任何代数式。正确找准哪个数或式相当于公式中的a ,b.②平方差公式的变式应用。 二、教学目标与解析 1.目标 (1)知识目标:掌握平方差公式的结构特征,能运用公式进行计算。 (2)能力目标:在探索平方差公式的过程中,感悟从具体到抽象研究问题的方法;在验证平方差公式的过程中,感知数形结合的思想,进一步发展学生的符号感和推理能力、归纳能力;在运用公式的过程中,渗透转化、建模等数学思想,培养学生的思维能力和数

学应用意识。 (3)情感目标:让学生在合作探究的学习过程中体验成功的喜悦,培养学生勇于探索、善于观察、大胆猜想的创新思维品质。 2.目标解析 (1)理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题。在数学活动中,引导学生观察、分析公式的结构特征以及公式中字母的广泛含义,加深学生对公式的理解。 (2)让学生经历具体——抽象的过程。从中发现、体会、理解公式,积累数学活动的经验,进一步发展学生的符号感、观察、归纳、猜想、推理能力,利用几何图形的面积验证公式的过程中,感知数形结合的思想。在运用公式的过程中,渗透转化、建模等数学思想,培养学生的思维能力和数学应用意识。 (3)通过自主探究与合作交流的学习方式,让学生经历探索新知、巩固新知和拓展新知这一过程,发挥学生的主体作用,在解决问题过程中与他人合作交流的重要性,让学生在公式的运用中积累解题的经验,体会成功的喜悦。 三、学生情况分析 学生已经较熟练地掌握了多项式乘法,为学习本节知识做了知识准备;学生已经具备了小组合作能力、探究能力、归纳分析能力,能通过合作交流完成学习任务;通过创造问题情境,让学生探索相应问题,建立并运用公式,从而拓展学生知识技能成为可能。 四、教学问题诊断分析 学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛含义的解。因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解。

基本不等式

基本不等式2 b a a b +≤ (一) 学习目标:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并 掌握定理中的不等号“≥”取等号的条件. 学习重点:基本不等式的证明,正确运用基本不等式. 你看到市场买鸡蛋,商贩用不等臂天平秤称量,先把鸡蛋放在左盘,砝码放 在右盘,砝码质量为x ,然后把鸡蛋放在右盘,砝码放在左盘,此时,砝码质量为y ,最后商贩告诉你,鸡蛋质量为 2 y x +,并让你付钱,请问你觉得公平吗? 学习任务:阅读课本第97页至第100页,完成下列问题: 1.对于基本不等式2 b a a b +≤ ,你用能什么方法证明? 2.比较不等式ab b a 22 2≥+与2 b a ab +≤ ,它们有什么关系?有什么区别?它们适用范围和等号成立的条件各是什么? 3.基本不等式2 b a a b +≤ 有何结构特点?利用这个结构可以解决什么问题?应用时应注意什么? 4.精读课本P 97例1,思考:0,0>>y x (1)如果y x ?是定值P ,和y x +有最值吗?若有,是多少?何时取得最值? (2)如果y x +是定值S ,积y x ?有最值吗?若有,是多少?何时取得最值? 5.动手做例2. 6.证明:0,0>>y x (1) 2≥+x y y x (2)21 ≥+x x (3)(y x +)(2 2 y x +)(3 3 y x +)≥83 3y x 必做题: P 100练习2、3、4基本不等式2 b a a b +≤ (二) 芅蚀芃螆蒇罿袃 学习目标:会应用基本不等式求某些函数的最值,能够解决一些简单的实际问 题. 膀膁羃芆莀螂袄 学习重点:会恰当地运用基本不等式求数学问题中的最值. 学习任务: 1.(1)若0>x ,求x x x f 312 )(+= 的最小值. (2)若0>y x ,且 19 1=+y x ,求y x +的最小值. (2)已知:0,0>>y x ,且082=-+xy y x ,求y x +的最小值. (3)已知:1->x ,求1 3 32+++=x x x y 的最小值. 4. 学校食堂定期从某粮店以每吨1500元的价格买大米,每次购进大米需支付 运输劳务费100元. 已知食堂每天需要大米1吨,储存大米的费用为每吨每天2元,假如食堂每次均在用完大米的当天购买,问食堂多少天购买一次大米能使平均每天所支付的费用最少? 5. 经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量y (千辆/ 时)与汽车的平均速度V (千米/时)之间的函数关系为y = 1600 39202 ++V V V (V > 0). (1)在该段时间内,当汽车的平均速度V 为多少时,车流量最大?最大车流 量是多少?

柯西不等式的几何意义

柯西不等式的几何意义和推广 3. 柯西不等式的几何意义 柯西不等式的代数形式十分简单,但却非常重要。数学当中没有巧遇,凡是重要的结果都应该有一个解释,一旦掌握了它,就使这个结果变得不言而喻了。而一个代数结果最简单的解释,通常驻要借助于几何背景。现在就对柯西不等式的二维、三维情况做出几何解释。 (1)二维形式 2222()()()a b c d a c b d ++ ≥+ y x Q (c ,d ) P (a ,b ) O 图3-1 如图,可知线段OP ,OQ 及PQ 的长度分别由下面的式子给出: OP OQ PQ ===θ表示OP 与OQ 的夹角。由余弦定理,我们有 2 2 2 2cos PQ OP OQ OP OQ θ=+-? 将OP ,OQ ,PQ 的值代入,化简得到cos θ= 而2 0cos 1θ≤≤,故有2 2 2222 ()cos 1()() ac bd a b c d θ+=≤++ 于是 2222()()()a b c d a c b d ++≥ + 这就是柯西不等式的二维形式。 我们可以看到当且仅当2cos 1θ=,即当且仅当θ是零或平角,亦即当且仅当

,,O P Q 在同一条直线上是时等号成立。在这种情形,斜率之间必定存在一个等 式;换句话说,除非0c d ==,我们们总有 a b c d =. (2)三维形式 2222 22 12312311 2233()()()a a a b b b a b a b a b ++++ ≥++ 对于三维情形,设123123(,,),(,,)P a a a Q b b b 是不同于原点(0,0,0)O 的两个点,则OP 与OQ 之间的夹角θ的余弦有 2 3c o s θ= 又由2cos 1θ≤,得到柯西不等式的三维形式: 2222 2 2 12312311 2233()()()a a a b b b a b a b a b +++ + ≥++ 当且仅当,,O P Q 三点共线时,等号成立;此时只要这里的123,,b b b 都不是零,就有 3 12123 a a a b b b == 4. 柯西不等式的推广 前面的柯西不等式都是限制在实数范围内的,在复数范围内同样也有柯西不等式成立。 定理:若12(,,)n a a a a =???和12(,,,)n b b b b =???是两个复数序列,则有 2 2 2 1 1 1 ()()n n n k k k k k k k a b a b ===≤∑∑∑, 当且仅当数列a 和b 成比例时等式成立。 证明:设λ是复数,有恒等式 2 22 2 1 1 1 1 1 ()()2Re()n n n n n k k k k k k k k k k k k k k a b a b a b a b a b λλλλ λ=====-=--=+-∑∑∑∑∑ 若12 1n k k k n k k a b b λ=== ∑∑(其中0b ≠),则有 22 2 1 2 1 1 1 0n k k n n k k k k n k k k k a b a b a b λ====-=- ≥∑∑∑∑ 由此推出了复数形式的柯西不等式。

基本不等式学习知识梳理

基本不等式 【考纲要求】 1. 2 a b +≤ 的证明过程,理解基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2. 2 a b +≤ 解决最大(小)值问题. 3.会应用基本不等式求某些函数的最值;能够解决一些简单的实际问题 【知识网络】 【考点梳理】 考点一:重要不等式及几何意义 1.重要不等式: 如果,R a b ∈,那么2 2 2a b ab +≥(当且仅当a b =时取等号“=”). 2.基本不等式: 如果,a b 是正数,那么 2a b +≥(当且仅当a b =时取等号“=”). 要点诠释:22 2a b ab +≥ 和2 a b +≥ (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;

(2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”。 (3)2 2 2a b ab +≥可以变形为:222a b ab +≤,2a b ab +≥可以变形为:2()2 a b ab +≤. 3.如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD . 易证~Rt ACD Rt DCB ??,那么2 CD CA CB =?,即CD ab = . 这个圆的半径为2b a +,它大于或等于CD ,即ab b a ≥+2 ,其中当且仅当点C 与圆心重合,即a b =时,等号成立. 要点诠释:1.在数学中,我们称 2 b a +为,a b 的算术平均数,称ab 为,a b 的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2.如果把 2 b a +看作是正数,a b 的等差中项,ab 看作是正数,a b 的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项. 考点二:基本不等式2 a b ab +≤的证明 1. 几何面积法 如图,在正方形ABCD 中有四个全等的直角三角形。 设直角三角形的两条直角边长为a 、b 22a b +4个直角三角形 的面积的和是2ab ,正方形ABCD 的面积为2 2 a b +。由于4个直角三角形的面积小于正方形的面积,所 以:22 2a b ab +≥。当直角三角形变为等腰直角三角形,即a b =时,正方形EFGH 缩为一个点,这时有2 2 2a b ab +=。

柯西不等式

教学要求:认识二维柯西不等式的几种形式,理解它们的几何意义, 并会证明二维柯西不等式及向量形式. 教学重点:会证明二维柯西不等式及三角不等式. 教学难点:理解几何意义. 教学过程: 一、复习准备: 1. 提问: 二元均值不等式有哪几种形式? 答案: (0,0)2 a b a b +≥ >>及几种变式. 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ 证法:(比较法)22222()()()a b c d ac bd ++-+=….=2()0a d b c -≥ 二、讲授新课: 1. 教学柯西不等式: ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法? 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222 ()()( )a c b d a d b c a c b d =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b = ,(,)n c d = ,则||m = ,||n = ∵ m n ac bd ?=+ ,且||||cos ,m n m n m n =<> ,则||||||m n m n ≤ . ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 2 2 ()()()f x ax c bx d =-+-≥0恒成立. ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③ 讨论:二维形式的柯西不等式的一些变式? ||ac bd + 或 ||||ac bd ≥+ ac bd +. ④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤ . 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立?(β 是零向量,或者,αβ 共线) ⑤ 练习:已知a 、b 、c 、d ≥. 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 三、巩固练习: 1. 练习:试写出三维形式的柯西不等式和三角不等式 2. 作业:教材P 37 4、5题.

知识点060 平方差公式的几何背景(选择)

知识点060 平方差公式的几何背景(选择) 1、(2010?达州)如图所示,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b ),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( ) A .(a-b )2=a2-2ab+b2 B .(a+b )2=a2+2ab+b2 C .a2-b2=(a+b )(a-b ) D .a2+ab=a (a+b ) 考点:平方差公式的几何背景. 分析:可分别在正方形和梯形中表示出阴影部分的面积,两式联立即可得到关于a 、b 的恒等式. 解答:解:正方形中,S 阴影=a2-b2; 梯形中,S 阴影=2 1(2a+2b )(a-b )=(a+b )(a-b ); 故所得恒等式为:a2-b2=(a+b )(a-b ). 故选C . 点评:此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键. 2. (2009?内江)在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ) A .(a+b )2=a2+2ab+b2 B .(a-b )2=a2-2ab+b2 C .a2-b2=(a+b )(a-b ) D .(a+2b )(a-b )=a2+ab-2b2 考点:平方差公式的几何背景. 分析:利用正方形的面积公式可知:阴影部分的面积=a2-b2=(a+b )(a-b ). 解答:解:阴影部分的面积=a2-b2=(a+b )(a-b ). 故选C . 点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式. 3. (2006?襄阳)如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ) A .(a-b )(a+2b )=a2-2b2+ab B .(a+b )2=a2+2ab+b2 C .(a-b )2=a2-2ab+b2 D .(a-b )(a+b )=a2-b2

知识讲解_基本不等式_基础

基本不等式 【学习目标】 1. 理解基本不等式的内容及其证明. 2. 能应用基本不等式解决求最值、证明不等式、比较大小求取值范围等问题. 【要点梳理】 要点一、基本不等式 1.对公式222a b ab +≥ 及2 a b +≥. (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数; (2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”. 2.由公式222a b ab +≥ 和 2a b +≥ ①2b a a b +≥(,a b 同号); ②2b a a b +≤-(,a b 异号); ③2 0,0)112a b a b a b +≤≤>>+或22 2()(0,0)22a b a b ab a b ++≤≤>> 要点诠释: 22 2a b ab +≥可以变形为:222a b ab +≤ ,2a b +≥可以变形为:2()2a b ab +≤. a + b 2 的证明 方法一:几何面积法 如图,在正方形ABCD 中有四个全等的直角三角形 . 设直角三角形的两条直角边长为a 、b 这样,4个直角三角形的面积的和是2ab ,正方形ABCD 的面积为22 a b +.由于4个直角三角形的面积小于正方形的面积,所以:222a b ab +≥.当直角三角形变为等腰直角三角形,即a b =时,正方形EFGH 缩为一个点,这时有222a b ab +=.

得到结论:如果+,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”) 特别的,如果0a >,0b >,a 、b ,可得: 如果0a >,0b >,则a b +≥a b =时取等号“=”). 通常我们把上式写作:如果0a >,0b >2 a b +≤ ,(当且仅当a b =时取等号“=”) 方法二:代数法 ∵2222()0a b ab a b +-=-≥, 当a b ≠时,2()0a b ->; 当a b =时,2()0a b -=. 所以22()2a b ab +≥,(当且仅当a b =时取等号“=”). 要点诠释: 特别的,如果0a >,0b >,a 、b ,可得: 如果0a >,0b >,则a b +≥a b =时取等号“=”). 通常我们把上式写作: 如果0a >,0b >2 a b +≤,(当且仅当a b =时取等号“=”). 2 a b +≤的几何意义 如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD . 易证~Rt ACD Rt DCB ??,那么2CD CA CB =?,即CD =这个圆的半径为2b a +,它大于或等于CD ,即ab b a ≥+2 ,其中当且仅当点C 与圆心重合,即a b =时,等号成立. 要点诠释: 1.在数学中,我们称2 b a +为,a b 的算术平均数,称ab 为,a b 的几何平均数. 因此基本不等式可叙

相关文档
最新文档