人教版七年级数学上册试卷1

合集下载

人教版七年级数学上册第一章测试题含答案

人教版七年级数学上册第一章测试题含答案

人教版数学七年级上册第一章测试卷一、选择题(每小题3分,共30分)1.如果将“收入100元”记作“+100元”,那么“支出50元”应记作( )A.+50元 B.-50元 C.+150元 D.-150元2.在有理数-4,0,-1,3中,最小的数是( )A.-4 B.0 C.-1 D.33.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是( )A.点A B.点B C.点C D.点D4.2016年第一季度,某市“蓝天白云、繁星闪烁”天数持续增加,获得省环境空气质量生态补偿资金408万元.408万用科学记数法表示正确的是( )A.408×104 B.4.08×104C.4.08×105 D.4.08×1065.下列算式正确的是( )A.(-14)-5=-9 B.0-(-3)=3C.(-3)-(-3)=-6 D.|5-3|=-(5-3)6.有理数(-1)2,(-1)3,-12,|-1|,-(-1),-1-1中,化简结果等于1的个数是( )A.3个 B.4个 C.5个 D.6个7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x,则x的值为( )A.4.2 B.4.3 C.4.4 D.4.58.有理数a,b在数轴上的位置如图所示,下列各式成立的是( )A.b>0 B.|a|>-b C.a+b>0 D.ab<09.若|a|=5,b=-3,则a-b的值为( )A.2或8 B.-2或8 C.2或-8 D.-2或-810.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发现的规律得出22016的末位数字是( )A.2 B.4 C.6 D.8二、填空题(每小题3分,共24分)11.-3的相反数是________,-2018的倒数是________.12.在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有______________________________,分数有______________________________.13.绝对值大于4而小于7的所有整数之和是________.14.点A,B表示数轴上互为相反数的两个数,且点A向左平移8个单位到达点B ,则这两点所表示的数分别是________和________.15.如图是一个简单的数值运算程序.当输入x 的值为-1时,则输出的数值为________.输入x ―→×(-3)―→-2―→输出16.太阳的半径为696000千米,用科学记数法表示为________千米;把210400精确到万位是________.17.已知(a -3)2与|b -1|互为相反数,则式子a 2+b 2的值为________.18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出a +b +c =________.三、解答题(共66分)19.(8分)将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来.-112,0,2,-|-3|,-(-3.5).20.(16分)计算:(1)5×(-2)+(-8)÷(-2); (2)⎣⎢⎢⎡⎦⎥⎥⎤2-5×⎝ ⎛⎭⎪⎫-122÷⎝ ⎛⎭⎪⎫-14;(3)(-24)×⎝ ⎛⎭⎪⎫12-123-38; (4)-14-(1-0×4)÷13×[(-2)2-6].21.(10分)小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km 到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?22.(8分)某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?23.(12分)某校七(1)班学生的平均身高是160厘米,下表给出了该班6名学生的身高情况(单位:厘米).学生 A B C D E F身高157 162 159 154 163 165 身高与平均身高的-3 +2 -1 a +3 b差值(1)列式计算表中的数据a和b;(2)这6名学生中谁最高?谁最矮?最高与最矮学生的身高相差多少?(3)这6名学生的平均身高与全班学生的平均身高相比,在数值上有什么关系?(通过计算回答)24.(12分)下面是按规律排列的一列数:第1个数:1-⎝⎛⎭⎪⎫1+-12;第2个数:2-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34; 第3个数:3-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34⎣⎢⎡⎦⎥⎤1+(-1)45⎣⎢⎡⎦⎥⎤1+(-1)56.(1)分别计算这三个数的结果(直接写答案);(2)写出第2017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案与解析1.B 2.A 3.A 4.D 5.B 6.B 7.C 8.D 9.B 10.C 11.3 -1201812.-4,-0.8,-15,-343,-|-24|+8.3,-0.8,-15,-34313.0 14.4 -4 15.1 16.6.96×105 21万 17.10 18.110 解析:找规律可得c =6+3=9,a =6+4=10,b =ac +1=91,∴a +b +c =110.19.解:数轴表示如图所示,(5分)由数轴可知-(-3.5)>2>0>-112>-|-3|.(8分)20.解:(1)原式=-10+4=-6.(4分)(2)原式=⎝⎛⎭⎪⎫2-54×(-4)=-8+5=-3.(8分)(3)原式=-12+40+9=37.(12分)(4)原式=-1-1×3×(-2)=-1+6=5.(16分) 21.解:(1)如图所示:(3分)(2)2-(-1)=3(km).答:小彬家与学校之间的距离是3km.(6分)(3)(2+1.5+1)×2=9(km)=9000m ,9000÷250=36(min). 答:小明跑步一共用了36min.(10分)22.解:由题意,得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),(5分)所以他卖完这8套儿童服装后是盈利,盈利37元.(8分)23.解:(1)a =154-160=-6,b =165-160=+5.(4分) (2)学生F 最高,学生D 最矮,最高与最矮学生的身高相差11厘米.(8分)(3)-3+2+(-1)+(-6)+3+5=0,所以这6名学生的平均身高与全班学生的平均身高相同,都是160厘米.(12分)24.解:(1)第1个数:12;第2个数:32;第3个数:52.(6分)(2)第2017个数:2017-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34 …⎣⎢⎡⎦⎥⎤1+(-1)40324033⎣⎢⎡⎦⎥⎤1+(-1)40334034=2017-12×43×34×…×40344033×40334034=2017-12=201612.(12分) 人教版数学七年级上册 第一章测试卷一、选择题(每小题3分,共30分) 1.如果将“收入100元”记作“+100元”,那么“支出50元”应记作( )A .+50元B .-50元C .+150元D .-150元 2.在有理数-4,0,-1,3中,最小的数是( ) A .-4 B .0 C .-1 D .33.如图,数轴上有A ,B ,C ,D 四个点,其中表示2的相反数的点是( )A .点AB .点BC .点CD .点D4.2016年第一季度,某市“蓝天白云、繁星闪烁”天数持续增加,获得省环境空气质量生态补偿资金408万元.408万用科学记数法表示正确的是( )A .408×104B .4.08×104C .4.08×105D .4.08×106 5.下列算式正确的是( ) A .(-14)-5=-9 B .0-(-3)=3 C .(-3)-(-3)=-6 D .|5-3|=-(5-3)6.有理数(-1)2,(-1)3,-12,|-1|,-(-1),-1-1中,化简结果等于1的个数是( )A.3个 B.4个 C.5个 D.6个7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x,则x的值为( )A.4.2 B.4.3 C.4.4 D.4.58.有理数a,b在数轴上的位置如图所示,下列各式成立的是( )A.b>0 B.|a|>-b C.a+b>0 D.ab<09.若|a|=5,b=-3,则a-b的值为( )A.2或8 B.-2或8 C.2或-8 D.-2或-810.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发现的规律得出22016的末位数字是( )A.2 B.4 C.6 D.8二、填空题(每小题3分,共24分)11.-3的相反数是________,-2018的倒数是________.12.在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有______________________________,分数有______________________________.13.绝对值大于4而小于7的所有整数之和是________. 14.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位到达点B ,则这两点所表示的数分别是________和________.15.如图是一个简单的数值运算程序.当输入x 的值为-1时,则输出的数值为________.输入x ―→×(-3)―→-2―→输出16.太阳的半径为696000千米,用科学记数法表示为________千米;把210400精确到万位是________.17.已知(a -3)2与|b -1|互为相反数,则式子a 2+b 2的值为________.18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出a +b +c =________.三、解答题(共66分)19.(8分)将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来.-112,0,2,-|-3|,-(-3.5).20.(16分)计算:(1)5×(-2)+(-8)÷(-2); (2)⎣⎢⎢⎡⎦⎥⎥⎤2-5×⎝ ⎛⎭⎪⎫-122÷⎝ ⎛⎭⎪⎫-14;(3)(-24)×⎝ ⎛⎭⎪⎫12-123-38; (4)-14-(1-0×4)÷13×[(-2)2-6].21.(10分)小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km 到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?22.(8分)某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?23.(12分)某校七(1)班学生的平均身高是160厘米,下表给出了该班6名学生的身高情况(单位:厘米).学生 A B C D E F身高157 162 159 154 163 165 身高与平均身高的-3 +2 -1 a +3 b差值(1)列式计算表中的数据a和b;(2)这6名学生中谁最高?谁最矮?最高与最矮学生的身高相差多少?(3)这6名学生的平均身高与全班学生的平均身高相比,在数值上有什么关系?(通过计算回答)24.(12分)下面是按规律排列的一列数:第1个数:1-⎝⎛⎭⎪⎫1+-12;第2个数:2-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34; 第3个数:3-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34⎣⎢⎡⎦⎥⎤1+(-1)45⎣⎢⎡⎦⎥⎤1+(-1)56.(1)分别计算这三个数的结果(直接写答案);(2)写出第2017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.教师应该——消消气,别发火目标我知道,你为何怒吼声嘶力竭,虚张声势殊不知在众人眼中你已斯文扫地。

人教版七年级上册数学第1章《有理数》单元检测试卷(Word版,含答案)

人教版七年级上册数学第1章《有理数》单元检测试卷(Word版,含答案)

人教版七年级上册数学第1章《有理数》单元检测试卷题号一二三总分19 20 21 22 23 24分数1.点A在数轴上表示的数为-3,若一个点从点A向左移动4个单位长度,此时终点所表示的数是()A.-7 B.1 C.7 D.-12.如果水位下降2021m记作﹣2021m,那么水位上升2020m记作()A.﹣1m B.+4041m C.﹣4041m D.+2020m3.将下列四个数表示在数轴上,它们对应的点中,离原点最近的是()A.﹣0.4 B.0.6 C.1.3 D.﹣24.把有理数a、b在数轴上表示如图所示,那么则下列说法正确的是()A.a+b>0 B.a﹣b<0 C.a>﹣b D.﹣b>a5、若x是3的相反数,|y|=4,则x-y的值是()A.-7B.1C.-1或7D.1或-76、下列说法中正确的是()A.任何正整数的正因数至少有两个B.一个数的倍数总比它的因数大C.1是所有正整数的因数D.3的因数只有它本身7.当n为正整数时,(﹣1)2n+1﹣(﹣1)2n的值为()A.0 B.2 C.﹣2 D.2或﹣28.在分数3579,,,8123250中能化成有限小数的有()A.1个B.2个C.3个D.4个9.实数a、b在数轴上的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是()A .0a b +=B .0a b -=C .||||a b <D .0ab >10.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店西边100米处,小明从书店沿街向东走了40米,接着又向西走了60米,此时小明的位置在( ) A .文具店B .玩具店C .文具店西边40米D .玩具店西边60米二、填空题: (每题3分,24分) 11.计算:=____________12.计算(−1.5)3×(−)2−1×0.62=___________. 13.的相反数是________.14.若,则________.15.、在数轴上得位置如图所示,化简:________.16. 当x________时,代数式的值为非负数.17. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是________个单位. 18.观察规律并填空. ⑴⑵⑶________(用含n 的代数式表示,n 是正整数,且 n ≥ 2)三.解答题(共46分,19题6分,20 ---24题8分)。

人教版七年级上册数学第一章测试题(附答案)

人教版七年级上册数学第一章测试题(附答案)

人教版七年级上册数学第一章测试题(附答案)一、单选题(共12题;共24分)1.下列算式中,运算结果为负数的是()A. ﹣(﹣2)B. |﹣2|C. ﹣22D. (﹣2)22.平方根等于本身的数是()A. 0B. 1C. -1D. 0和13.据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学计数法可表示为()A. 0.1031×106B. 1.031×107C. 1.031×108D. 10.31×1094.今年参加我市初中毕业生学业考试的考生总数大约有83720人,将这个数字保留两个有效数字,用科学记数法表示为()A. 84×104B. 8.4×104C. 8.4×105D. 8.372×1045.某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示应为()A. 0.394×105B. 3.94×104C. 39.4×103D. 4.0×1046.下列说法错误的是()。

A. 一个数同0相乘,仍得0B. 一个数同1相乘,仍得原数C. 一个数同-1相乘,得原数的相反数D. 互为相反数的两数积为17.如果两个有理数的和为正数,积也是正数,那么这两个数()A. 都是正数B. 都是负数C. 一正一负D. 符号不能确定8.已知a、b两数在数轴上对应的点如图所示,下列结论正确的是( )A. B. C. D.9.下列各有理数中,最小的数是()A. ﹣1B. 2C. 0D. ﹣10.许多人由于粗心,经常造成水龙头“滴水”或“流水”不断。

根据测定,一般情况下一个水龙头“滴水”1个小时可以流掉3.5千克水。

若1年按365天计算,这个水龙头1年可以流掉( )千克水。

(用科学记数法表示,保留3个有效数字)A. 3.1×104B. 0.31×105C. 3.06×104D. 3.07×10411.下列说法中,正确的是()A. 若a≠b,则a2≠b2B. 若a>|b|,则a>bC. 若|a|=|b|,则a=bD. 若|a|>|b|,则a>b12.2016年某省人口数超过105 000 000,将这个数用科学记数法表示为()A. 0.105×109B. 1.05×109C. 1.05×108D. 105×106二、填空题(共7题;共14分)13.若为任意实数,则的最小值是________.14.在数﹣5,4,﹣3,-6,2中任取两个数相乘,其中最大的积是________.15.用“<"、“>”"=”号填空:-( )________-| |;16. 若,y的倒数为,则________.17.已知a,b,c表示3个互不相等的整数,这3个数的绝对值都大于1,且满足|a|+10b2+100c2=2020,则a+b+c的最小值是________。

人教版七年级上册数学第一单元测试卷

人教版七年级上册数学第一单元测试卷

人教版七年级上册数学第一单元测试卷一、选择题(每题3分,共30分)1. 下列哪个选项是正整数?A. -2B. 0C. 3D. 1.52. 计算下列哪个表达式的结果为正数?A. -3 + 2B. -3 - 2C. 3 × (-2)D. 3 ÷ (-2)3. 下列哪个选项是偶数?A. 1B. 2C. 3D. 54. 计算下列哪个表达式的结果为0?A. 5 - 5B. 5 + 5C. 5 × 0D. 5 ÷ 55. 以下哪个选项表示的是负数?A. +3B. -3C. 0D. 36. 计算下列哪个表达式的结果为负数?A. 4 - 2B. 4 + 2C. -4 - 2D. -4 + 27. 下列哪个选项是质数?A. 1B. 4C. 9D. 78. 计算下列哪个表达式的结果为正整数?A. -5 × 2B. 5 × 2C. 5 ÷ 2D. 5 - 29. 下列哪个选项是合数?A. 2B. 3C. 4D. 510. 计算下列哪个表达式的结果为负整数?A. 3 - 5B. 3 + 5C. -3 - 5D. -3 + 5二、填空题(每题3分,共30分)1. 一个数的绝对值是5,那么这个数可以是______。

2. 一个数的相反数是-3,那么这个数是______。

3. 一个数的倒数是1/2,那么这个数是______。

4. 一个数的平方是16,那么这个数可以是______。

5. 一个数的立方是-8,那么这个数是______。

6. 计算:(-2) × (-3) = ______。

7. 计算:(-5) ÷ (-1) = ______。

8. 计算:(-3) + 4 = ______。

9. 计算:7 - (-3) = ______。

10. 计算:5 × 2 - 3 = ______。

三、解答题(每题10分,共40分)1. 计算:(-3) × (-4) + 5 × (-2) - 6。

新人教版七年级上册数学第1章单元测试卷(有理数)

新人教版七年级上册数学第1章单元测试卷(有理数)

新人教版七年级上册数学第1章单元测试卷一、选择题(每题3分,共30分) 1.12的相反数是( ) A.12B .-12C .2D .-22.化简:|-15|等于( )A .15B .-15C .±15D.1153.在0,2,-1,-2这四个数中,最小的数是( )A .0B .2C .-1D .-24.计算(-3)+5的结果等于( )A .2B .-2C .8D .-85.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4 000 000 000美元,将4 000 000 000用科学记数法表示为( ) A .0.4×109B .0.4×1010C .4×109D .4×10106.下列每对数中,不相等的一对是( )A .(-2)3和-23B .(-2)2和22C .(-2)2 018和-22 018D .|-2|3和|2|37.有理数a ,b 在数轴上对应的点的位置如图所示,则a +bab的值是( )(第7题)A .负数B .正数C .0D .正数或08.下列说法正确的是( )A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.995 1精确到百分位是3.00D .“小明的身高为161 cm”中的数是准确数9.已知|m|=4,|n|=6,且|m +n|=m +n ,则m -n 的值等于( )A .-10B .-2C .-2或-10D .2或1010.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和为(1+3)+(2+6)=(1+2)×(1+3)=12; 12=22×3,则12的所有正约数之和为(1+3)+(2+6)+(4+12)=(1+2+22) ×(1+3)=28;36=22×32,则36的所有正约数之和为(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为( ) A .420B .434C .450D .465二、填空题(每题3分,共24分)11.某蓄水池的标准水位记为0 m ,如果用正数表示水面高于标准水位的高度,那么-0.2 m 表示____________________________.12.有理数-15的倒数为________,相反数为________,绝对值为________.13.将数60 340精确到千位是__________.14.比较大小:-(-0.3)________⎪⎪⎪⎪⎪⎪-13(填“>”“<”或“=”).15.如图,点A 表示的数是-1,以点A 为圆心、12个单位长度为半径的圆交数轴于B ,C 两点,那么B ,C 两点表示的数分别是______________.(第15题)(第17题)16.如果|a -1|+(b +2)2=0,那么3a -b =________.17.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.18.按一定规律排列的一列数依次为:12,-16,112,-120,130,…按此规律排列下去,这列数中的第7个数为________,第n 个数为____________(n 为正整数).三、解答题(19,23题每题8分,20题18分,21,22题每题6分,其余每题10分,共66分)19.(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12.整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|;(2)-49-⎝ ⎛⎭⎪⎫-118+⎝ ⎛⎭⎪⎫-18-59;(3)⎝ ⎛⎭⎪⎫79-1112+16×36; (4)-42÷(-2)3+(-1)2 018-49÷23.21.现规定一种新运算“*”:a*b =a b-2,例如:2*3=23-2=6,试求⎝ ⎛⎭⎪⎫-32*2*2的值.22.每年的春节晚会都是由中央电视台直播的,现有两地的观众,一是与舞台相距25 m 远的演播大厅里的观众,二是距北京2 900 km 正围在电视机前观看晚会的边防战士,这两地的观众谁先听到晚会节目的声音(声速是340 m /s ,电波的速度是3×108 m /s )?23.某景区一电瓶车接到任务从景区大门出发,向东走2 km到达A景区,继续向东走2.5 km到达B景区,然后又回头向西走8.5 km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)若电瓶车充足一次电能行走15 km,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?请计算说明.(第23题)24.点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/s、4个单位长度/s,它们运动的时间为t s.(1)如果点P,Q在点A,B之间相向运动,当它们相遇时,点P对应的数是________;(2)如果点P,Q都向左运动,当点Q追上点P时,求点P对应的数;(3)如果点P,Q在点A,B之间相向运动,当PQ=8时,求点P对应的数.(第24题)25.观察下面三行数:2,-4,8,-16,32,-64,…;4,-2,10,-14,34,-62,…;1,-2,4,-8,16,-32,….(1)第1行的第8个数为________,第2行的第8个数为________,第3行的第8个数为________.(2)第3行中是否存在连续的三个数,使得这三个数的和为768?若存在,求出这三个数;若不存在,说明理由.(3)是否存在这样的一列,使得其中的三个数的和为1 282?若存在,求出这三个数;若不存在,说明理由.答案一、1.B 2.A 3.D 4.A 5.C 6.C7.B 8.C 9.C 10.D 二、11.水面低于标准水位0.2 m12.-5;15;15 13.6.0×104 14.<15.-32,-12 16.5 17.118.156;(-1)n +11n (n +1)三、19.解:(1)整数:{(-1)2,-|-2|,-22,0,…};分数:{-(-2.5),-12,…};正有理数:{-(-2.5),(-1)2,…}; 负有理数:{-|-2|,-22,-12,…}.(2)图略.-22<-|-2|<-12<0<(-1)2<-(-2.5).20.解:(1)原式=-6+10-3+9=(-6-3+9)+10=10;(2)原式=-4+11-1-5=⎝ ⎛⎭⎪⎫-49-59+⎝ ⎛⎭⎪⎫118-18=-1+1=0;(3)原式=79×36-1112×36+16×36=28-33+6=1;(4)原式=-16÷(-8)+1-49×32=2+1-23=73.21.解:⎝ ⎛⎭⎪⎫-32*2*2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-32-2*2=14*2=⎝ ⎛⎭⎪⎫142-2=-3116.22.解:25÷340≈0.074(s );2 900 km =2 900 000 m ,2 900 000÷(3×108)≈0.0097(s ).因为0.074>0.0097,所以是边防战士先听到晚会节目的声音.23.解:(1)如图所示.(第23题)(2)电瓶车一共走的路程为|+2|+|+2.5|+|-8.5|+|+4|=17(km ).因为17>15,所以该电瓶车不能在一开始充好电而途中不充电的情况下完成此次任务. 24.解:(1)-83(2)易得t =16-(-12)4-2=282=14.此时-12-2×14=-40, 即点P 对应的数是-40.(3)当PQ =8时,有以下两种情况: ①P ,Q 相遇前,t =28-82+4=103,此时点P 对应的数是-12+2t =-163;②P ,Q 相遇后,t =28+82+4=6,此时点P 对应的数是-12+2t =0. 综上所述,点P 对应的数是-163或0.25.解:(1)-256;-254;-128(2)存在.设中间数为m ,根据题意,有m÷(-2)+m +m×(-2)=768. 解得m =-512,符合第3行数的规律. 此时m÷(-2)=256,m×(-2)=1 024. 所以这三个数分别为256,-512,1 024. (3)存在.因为同一列的数符号相同, 所以这三个数都是正数.设这一列的第一个数为2n (n 为正整数). 根据题意,有2n +(2n +2)+12×2n =1 282,即2n =512=29. 所以n =9.此时2n+2=514,12×2n=256.所以这三个数分别为512,514,256.。

【最新3套】人教版初中数学七年级上册 第1章 《有理数》单元测试题(11)

【最新3套】人教版初中数学七年级上册 第1章 《有理数》单元测试题(11)

人教版七年级数学上册单元试题:第1章有理数(含答案)一、单选题(本题共有10个小题,每题2分,共20分)1.比-7.1大,而比1小的整数的个数是( ).A .6B .7C .8D .92.室内温度是15 0C,室外温度是-3 0C,则室外温度比室内温度低( )(A) 12 0C (B) 18 0C (C) -12 0C (D) -18 0C3.两个非零有理数的和为零,则它们的商是( ) A .0 B . C .+1 D .不能确定4、如果一个数的平方与这个数的差等于0,那么这个数只能是( )A.0B.-1 C .1 D.0或15、绝对值大于或等于1,而小于4的所有的正整数的和是( )A. 8B.7C. 6D.56.有理数a ,b 在数轴上的位置如图所示,下列各式正确的是( ).A .a >0B .b <0C .a >bD .a <b 7.下列各组数中,相等的是( ).A .32与23B .-22与(-2)2C .-|-3|与|-3|D .-23与(-2)38、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………( ) A 、B 、C 、D 、 9、不超过的最大整数是………………………………………( )A 、–4B –3C 、3D 、410、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28%二、填空题(本题共有9个小题,每小题2分,共18分)11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为 ;地下第一层记作 ;数-2的实际意义为 ,数+9的实际意义为 。

12.在数轴上,与表示-5的点距离为4的点所表示的数是____________.13、某数的绝对值是5,那么这个数是 。

人教版七年级上册数学期末考试试题及答案

人教版七年级上册数学期末考试试卷一、单选题1.12-的相反数是()A .2-B .2C .12-D .122.下列方程为一元一次方程的是()A .y +3=0B .x +2y =3C .x 2=2xD .12y y+=3.将3922亿用科学记数法表示为()A .8392210⨯B .93.92210⨯C .113.92210⨯D .123.92210⨯4.单项式xmy 3与4x 2yn 的和是单项式,则nm 的值是()A .3B .6C .8D .95.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A .两点之间,线段最短B .两点确定一条直线C .过一点,有无数条直线D .连接两点之间线段的长度叫做两点间的距离6.下列运算中,正确的是()A .-2-1=-1B .-2(x-3y )=-2x+3yC .3÷6×12=3÷3=1D .5x 2-2x 2=3x 27.某商品的标价为200元,8折销售仍赚60%,则商品进价为()元.A .140B .120C .160D .1008.一个角的补角是它的余角的三倍,则这个角为()A .45︒B .30°C .15︒D .60︒9.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是()A .B .C .D .10.已知方程216x y -+=,则整式3610x y --的值为A .5B .10C .12D .15二、填空题11.多项式3x 2y-7x 4y 2-xy 4的次数是______.12.计算77°53′26″+43°22′16″=_____.13.已知关于x 的方程(m+1)x |m |+2=0是一元一次方程,则m=______14.已知3a -4与-5互为相反数,则a 的值为______.15.|x-y|=y-x ,则x ___y .16.若2214x x -+=,则2247x x -+的值是______.17.如图,已知点C 为AB 上一点,AC =12cm ,CB =23AC ,D 、E 分别为AC 、AB 的中点;则DE 的长为_____cm .三、解答题18.计算:(1)(+15)+(-30)-(+14)-(-25)(2)-42+3×(-2)2×(13-1)÷(-113)19.解方程:2(x+8)=3(x-1)20.如图,平面上有A 、B 、C 、D 四个点,根据下列语句画图.(1)画直线AB ,作射线AD ,画线段BC ;(2)连接DC ,并将线段DC 延长至E ,使DE =2DC .21.先化简,再求值:(3a2b﹣ab2)﹣2(ab2﹣3a2b),其中a=13,b=﹣3.22.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?x x<的正方形拼成的图形.23.如图是由边长分别为4和3的长方形与边长为()3(1)用含有x的代数式表示图中阴影部分的面积并化简;(2)当2x=时,求这个阴影部分的面积.24.为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?25.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求△BOE的度数;(3)试判断OF是否平分∠AOC,请说明理由.26.如图,点A,B,C在数轴上对应数为a,b,c.(1)化简|a﹣b|+|c﹣b|;(2)若B,C间距离BC=10,AC=3AB,且b+c=0,试确定a,b,c的值,并在数轴上画出原点O;(3)在(2)的条件下,动点P,Q分别同时都从A点C点出发,相向在数轴上运动,点P 以每秒1个单位长度的速度向终点C移动,点Q以每秒0.5个单位长度的速度向终点A移动;设点P,Q移动的时间为t秒,试求t为多少秒时P,Q两点间的距离为6.参考答案1.D【分析】根据相反数的性质,互为相反数的两个数的和为0即可求解.【详解】解:因为-12+12=0,所以-12的相反数是12.故选:D.【点睛】本题考查求一个数的相反数,掌握相反数的性质是解题关键.2.A 【分析】根据一元一次方程的定义,形如0ax b +=(0a ≠),含有一个未知数,且未知数的最高次数是一次的方程即为一元一次方程,逐项判断作答即可.【详解】A.y +3=0含有一个未知数,且未知数的最高次数是一次,是一元一次方程,故选项A 符合题意;B.x +2y =3含有两个未知数,不是一元一次方程,故选项B 与题意不符;C.x 2=2x 最高次数是二次,不是一元一次方程,故选项C 与题意不符;D.12y y+=不是整式方程,不是一元一次方程,故选项D 与题意不符.故选A .【点睛】本题主要考查了一元一次方程的定义,0ax b +=(0a ≠)的方程即为一元一次方程;含有一个未知数,且未知数的最高次数是一次,是判断是否是一元一次方程的依据.3.C 【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:3922亿=392200000000=3.922×1011.故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.4.D 【分析】同类项的定义:字母相同,并且相同字母的指数也相同的两个单项式叫同类项,据此求出m 、n ,代入求解即可.【详解】解:由两个单项式的和还是单项式可得xmy³与4x²yn 同类项∴m=2,n=3,∴nm=3²=9,故选:D .【点睛】本题考查代数式求值、同类项的定义、合并同类项,能得出两个单项式是同类项是解答的关键.5.B 【分析】依据直线基本事实两点确定一条直线来解答即可.【详解】在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据直线基本事实是两点确定一条直线.故选择:B .【点睛】本题考查了直线的性质,掌握直线的性质是解题的关键.6.D 【分析】计算出各选项中式子的值,即可判断哪个选项是正确的.【详解】A 、213--=-,故选项错误;B 、()2326x y x y --=-+,故选项错误;C 、11113632624÷⨯=⨯⨯=,故选项错误;D 、222523x x x -=,故选项正确.故选D .【点睛】本题考查有理数混合运算、合并同类项、去括号与添括号,解题的关键是明确它们各自的计算方法.7.D 【分析】设进价为x 元,根据售价=标价×打折数=进价×(1+利润率)列方程求解即可.【详解】解:设进价为x 元,则依题可得:200×0.8=(1+0.6)x ,解得:x=100,故选:D .【点睛】本题考查一元一次方程的应用,理解题意,熟知打折销售中的等量关系是解答的关键.8.A 【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列方程求出这个角的度数即可.【详解】设这个角是α,则它的补角为180°-α,余角为90°-α,根据题意得,180°-α=3(90°-α),解得α=45°.故选:A .【点睛】本题考查了余角与补角,是基础题,熟记概念并列出方程是解题的关键.9.B 【分析】根据题意作出图形,即可进行判断.【详解】将如图所示的直角三角形绕直线l 旋转一周,可得到圆锥,故选:B .【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.10.A 【分析】根据题意求出x-2y ,利用添括号法则把原式变形,代入计算即可.【详解】解:∵x-2y+1=6,∴x-2y=5,∴3x-6y-10=3(x-2y)-10=3×5-10=5,故选A.【点睛】本题考查的是代数式求值,灵活运用整体思想是解题的关键.11.6次【分析】直接利用多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式3x2y-7x4y2-xy4次数最高的项为-7x4y2,次数是:6次.故答案为:6次.【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.12.121°15′42″【分析】把秒和秒相加,分和分相加,度和度相加,满60向上一位近1.【详解】解:77°53′26″+43°22′16″=(77°+43°)+(53′+22′)+(26″+16″)=120°+75′+42″=121°15′42″.故答案为121°15′42″.【点睛】本题考查了度分秒的加法,将度与度相加,分与分相加,秒与秒相加,满60向上一位近1.13.1【分析】直接利用一元一次方程的定义分析得出答案.【详解】∵关于x的方程(m+1)x|m|+2=0是一元一次方程,∴|m|=1,m+1≠0,解得:m=1.故答案为1.【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.14.3【分析】根据相反数的性质互为相反数的和为0列方程求解即可.【详解】解:由题意,得3a–4+(-5)=0,解得a=3,故答案为:3.【点睛】本题考查了一元一次方程,相反数的性质,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆,互为相反数的两个数的和为0是解题关键.15.≤【分析】利用绝对值的性质:|a|≥0,可以先去掉绝对值再进行判断大小.【详解】解:∵|x-y|=y-x ,∴y-x≥0,∴y≥x ,故答案为:≤.16.13【分析】根据已知等式得到223x x -=,再利用整体思想代入求值即可.【详解】∵2214x x -+=,∴223x x -=,∴2246x x -=,∴22476713x x -+=+=.故答案为:13.【点睛】本题考查了代数式求值,熟练掌握整体思想是解题的关键.17.4【分析】根据AC =12cm ,CB =23AC ,求出CB 的长度,从而得到AB 的长度,根据D 、E 分别为AC 、AB 的中点,分别求出AD ,AE ,最后根据DE =AE−AD 即可求出DE 的长.【详解】解:∵AC =12cm ,CB =23AC ,∴CB =12×23=8(cm ),∴AB =AC +CB =12+8=20(cm ),∵D 、E 分别为AC 、AB 的中点,∴AD =12AC =12×12=6(cm ),AE =12AB =12×20=10(cm ),∴DE =AE−AD =10−6=4(cm ),故答案为:4.【点睛】本题考查了两点间的距离,线段中点的定义,解题的关键是:根据D 、E 分别为AC 、AB 的中点,求出AD ,AE 的长.18.(1)-4;(2)-10.【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】(1)解:原式=-15-14+25=-4(2)解:原式=-16+3×4×(-23)×(-34)=-16+12×12=-10.【点睛】此题主要考查有理数的混合运算,解题的关键是熟知其运算法则.19.(1)x=19;(2)x=38【分析】(1)根据去括号、移项、合并同类项、化系数为1的计算过程解答即可;(2)根据去分母、去括号、合并同类项、化系数为1的计算过程解答即可.【详解】(1)解:去括号,得:2x+16=3x-3,移项、合并同类项,得:-x=-19,化系数为1,得:x=19;(2)解:去分母,得:2(5x+1)-(2x-1)=6,去括号,得:10x+2-2x+1=6,移项、合并同类项,得:8x=3,化系数为1:x=3 8.【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.20.(1)见解析;(2)见解析【分析】(1)根据直线,射线,线段的定义画出图形.(2)在DC的延长线上截取CE=CD即可.【详解】解:(1)如图,直线AB,射线AD,线段BC即为所求作.(2)如图,线段DE即为所求作.【点睛】本题考查作图-复杂作图,直线,射线,线段的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.9a2b-3ab2,-12【分析】先去括号,再合并同类项,最后将a=13,b=﹣3代入化简后的结果,即可求解.【详解】解:()()2222323a b ab ab a b ---2222326a b ab ab a b =--+2293a b ab =-当a =13,b =﹣3时,原式()()22119333391233⎛⎫=⨯⨯--⨯⨯-=--=- ⎪⎝⎭.【点睛】本题主要考查了整式的加减混合运算,熟练掌握整式的加减混合运算法则是解题的关键.22.应该分配8人生产螺钉.【详解】分析:根据每人每天平均生产600个螺钉或800个螺母,以及一个螺钉与两个螺母配套,进而得出等式求出即可.本题解析:设生产螺钉x 人,螺母(20-x )人,()800206002x x -=,x=8,答:应该分配8人生产螺钉.点睛:本题考查了一元一次方程的应用,属于基础题,解答本题关键是得出生产的螺母数是螺钉的2倍这一等量关系.23.(1)21122x x +;(2)3【分析】(1)根据阴影部分的面积等于长方形和正方形的面积和减去三个三角形的面积可列代数式;(2)将2x =代入计算可求解阴影部分的面积.【详解】解:阴影部分的面积为:()()22111123443222x x x x +--⨯+-⨯-2221311126622222x x x x x x =+----+=+;(2)当2x =时,阴影部分的面积为1142322⨯+⨯=,答:阴影部分的面积为3.【点睛】本题主要考查列代数式,代数式求值,列代数式求解阴影部分的面积是解题的关键.24.(1)甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米;(2)选择方案①完成施工费用最少【分析】(1)设乙工程队每天能完成绿化的面积是x 平方米,根据甲队与乙队合作一天能完成800平方米的绿化改造面积,列出方程,求解即可;(2)利用施工费用=每天的施工费用×施工时间,即可求出选择各方案所需施工费用,再比较后即可得出结论.【详解】解:(1)设乙队每天能完成绿化的面积是x平方米,则甲队每天能完成绿化的面积是(x+200)米,依题意得:x+x+200=800解得:x=300,x+200=500∴甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米.(2)选择方案①甲队单独完成所需费用=1200060014400500⨯=(元);选择方案②乙队单独完成所需费用=1200040016000300⨯=(元);选择方案③甲、乙两队全程合作完成所需费用=()1200040060015000800+⨯=(元);∴选择方案①完成施工费用最少.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出方程;(2)利用总费用=每天支出的费用×工作时间,分别求出选择各方案所需费用.25.(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.26.(1)c﹣a;(2)a=﹣10,c=5,b=﹣5;(3)点P,Q移动6秒或14秒时,P,Q两点间的距离为6.【分析】(1)根据数轴可得c>b>a,再去绝对值合并即可求解;(2)根据相反数的定义和等量关系即可求解;(3)由题意得运动t秒后,点P,Q对应的点在数轴上所对的数为P:﹣10+t,Q:5﹣0.5t,然后根据P,Q两点间的距离为6,列出方程计算即可求解.【详解】解:(1)由数轴及题意得:∵c>b>a,∴原式=b﹣a+c﹣b=c﹣a;(2)原点位置如图:∵BC=10,∴c﹣b=10,又∵b+c=0,∴c=5,b=﹣5,又∵BC=10,AC=3AB,∴BC=2AB=10,∴AB=5,∴b﹣a=5,∴a=﹣10;(3)∵AC=15,最短运动时间15÷1=15秒,运动t秒后,点P,Q对应的点在数轴上所对的数为P:﹣10+t,Q:5﹣0.5t,若P,Q两点间的距离为6,则有()-+--=,t t1050.56解得t=6或t=14,均小于15秒,∴点P,Q移动6秒或14秒时,P,Q两点间的距离为6.【点睛】本题主要考查数轴上的动点问题、两点距离、线段的和差关系及一元一次方程的应用,熟练掌握数轴上的动点问题、两点距离、线段的和差关系及一元一次方程的应用是解题的关键.。

人教版七年级数学上册第一章《有理数》综合测试卷【含答案】

人教版七年级数学上册第一章《有理数》综合测试卷一.选择题(共12小题,满分36分,每小题3分)1.2021的相反数是( )A.﹣2021B.2021C.D.﹣2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为( )A.44×108B.4.4×109C.4.4×108D.4.4×10103.下列各数:﹣,﹣0.7,﹣9,25,π,0,﹣7.3中,分数有( )个.A.1B.2C.3D.44.近似数35.04万精确到( )A.百位B.百分位C.万位D.个位5.在下列气温的变化中,能够反映温度上升5℃的是( )A.气温由﹣5℃到5℃B.气温由﹣1℃到﹣6℃C.气温由5℃到0℃D.气温由﹣2℃到3℃6.下列说法正确的是( )A.非负数包括零和整数B.正整数包括自然数和零C.零是最小的整数D.整数和分数统称为有理数7.已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是( )A.B.C.D.8.绝对值大于2小于5的正整数有( )个.A.2B.3C.4D.59.用分配律计算()×,去括号后正确的是( )A.﹣B.﹣C.﹣D.﹣10.计算(﹣2)200+(﹣2)201的结果是( )A.﹣2B.﹣2200C.1D.220011.在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是( )A .a +b >0B .a +b <0C .ab >0D .|a |>|b |12.若a 2=25,|b |=3,则a +b 所有可能的值为( )A .8B .8或2C .8或﹣2D .±8或±2二.填空题(共8小题,满分32分,每小题4分)13.有理数中,最大的负整数是 .14.比较大小:﹣2 ﹣3.(填“<”或“>”)15.若m 与﹣2互为相反数,则m 的值为 .16.1.95≈ (精确到十分位);≈ (精确到万位).17.数轴上表示数﹣5和表示﹣14的两点之间的距离是 .18.填空:|﹣1+|+|﹣+|+|﹣+|+…+|﹣+|= .19.规定图形表示运算a ﹣b ﹣c ,图形表示运算x ﹣z ﹣y +w .则+= .20.若a 、b 为整数,且|a ﹣2|+(b +3)2020=1,则b a = .三.解答题(共7小题,满分52分)21.(8分)把下列各数填在相应的大括号内:﹣35,0.1,,0,,1,4.01001000…,22,﹣0.3,,π.正 数:{  …};整 数:{  …};负{  …};非负整数:{  …}.22.(6分)计算:(1)8+(﹣6)+5+(﹣8). (2)0.47﹣4﹣(﹣1.53)﹣1.23.(8分)计算:(1)(﹣+﹣)×36 (2)(﹣3)2×(﹣)+4+22×24.(8分)把下列各数在数轴上表示出来,再按从小到大的顺序用“<”连接起来:﹣3,0,+3.5,25.(6分)王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?26.(8分)已知|a|=8,|b|=2;(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.27.(8分)请你研究以下分析过程,并尝试完成下列问题.13=1213+23=9=32=(1+2)213+23+33=36=62=(1+2+3)213+23+33+43=100=102=(1+2+3+4)2(1)13+23+33+ (103)(2)13+23+33+ (203)(3)13+23+33+…+n3= (4)计算:113+123+133+…+203的值.答案一.选择题(共12小题,满分36分,每小题3分)1.解:2021的相反数是:﹣2021.故选:A.2.解:4 400 000 000=4.4×109,故选:B.3.解:下列各数:﹣,﹣0.7,﹣9,25,π,0,﹣7.3中,分数有:﹣,﹣0.7,﹣7.3,共3个,故选:C.4.解:∵35.04万末尾数字4表示4百,∴近似数35.04万精确到百位.故选:A.5.解:A.气温由﹣5℃到5℃,上升了5﹣(﹣5)=10(℃),不符合题意;B.气温由﹣1℃到﹣6℃,上升了﹣6﹣(﹣1)=﹣5(℃),不符合题意;C.气温由5℃到0℃,上升了0﹣5=﹣5(℃),不符合题意;D.气温由﹣2℃到3℃,上升了3﹣(﹣2)=5(℃),符合题意;故选:D.6.解:非负数包括零和正数,A错误;正整数指大于0的整数,B错误;没有最小的整数,C错误;整数和分数统称为有理数,这是概念,D正确.故选:D.7.解:已知a+b+c=0,A.由数轴可知,a>0>b>c,当|a|=|b|+|c|时,满足条件.B.由数轴可知,a>b>0>c,当|c|=|a|+|b|时,满足条件.C.由数轴可知,a>c>0>b,当|b|=|a|+|c|时,满足条件.D.由数轴可知,a>0>b>c,且|a|<|b|+|c|时,所以不可能满足条件.故选:D.8.解:绝对值大于2小于5的正整数有3,4,共2个,故选:A.9.解:()×=,故选:D.10.解:(﹣2)201=(﹣2)×(﹣2)200,所以(﹣2)200+(﹣2)201=(﹣2)200+(﹣2)×(﹣2)200=﹣(﹣2)200=﹣2200.故选:B.11.解:由数轴可知,a为正数,b为负数,且|a|<|b|,∴a+b应该是负数,即a+b<0,又∵a>0,b<0,ab<0,故答案A、C、D错误.故选:B.12.解:∵a2=25,|b|=3,∴a=±5,b=±3,a=5,b=3时,a+b=5+3=8,a=5,b=﹣3时,a+b=5+(﹣3)=2,a=﹣5,b=3时,a+b=﹣5+3=﹣2,a=﹣5,b=﹣3时,a+b=﹣5+(﹣3)=﹣8,综上所述,a+b所有可能的值为±8或±2.故选:D.二.填空题(共8小题,满分32分,每小题4分)13.解:有理数中,最大的负整数是﹣1,故﹣1.14.解:∵|﹣2|<|﹣3|,∴﹣2>.故>.15.解:∵﹣2的相反数是2,∴m=2.故2.16.解:1.95≈2.0(精确到十分位);≈58万(精确到万位),故2.0;58万.17.解:|﹣5﹣(﹣14)|=9.18.解:原式=1﹣+﹣+﹣+…+﹣=1﹣=,故19.解:根据题中的新定义得:原式=(1﹣2﹣3)+(4﹣6﹣7+5)=﹣4﹣4=﹣8,故﹣820.解:∵|a﹣2|≥0,(b+3)2020≥0,而a、b为整数,∴|a﹣2|=1,(b+3)2020=0或|a﹣2|=0,(b+3)2020=1,∴a=1或3,b=﹣3或a=2,b=﹣4或﹣2,当a=1,b=﹣3时,b a=﹣3;当a=3,b=﹣3时,b a=(﹣3)3=﹣27;当a=2,b=﹣4,b a=(﹣4)2=16;当a=2,b=﹣2时,b a=(﹣2)2=4;综上所述,b a=(﹣3)3=﹣27;的值为﹣3或﹣27或4或16.故答案为﹣3或﹣27或4或16.三.解答题(共7小题,满分52分)21.解:正数:{0.1,1,4.01001000…,22,,π,…};整数:{﹣35,0,1,22,,…};负{,,﹣0.3,…};非负整数:{0,1,22,,…}.故0.1,1,4.01001000…,22,,π;﹣35,0,1,22,;,,﹣0.3;0,1,22,.22.解:(1)原式=8+(﹣8)+(﹣6)+5=0+(﹣1)=﹣1;(2)原式=0.47+1.53﹣(4+1)=2﹣6=﹣4.23.解:(1)原式=﹣6+27﹣15=6;(2)原式=9××(﹣)+4+4×(﹣)=﹣﹣+4=﹣.24.解:如图所示:数轴上的点表示的数右边的总比左边的大,得<0.5<+3.5.25.解:(1)(+6)+(﹣3)+(+10)+(﹣8)+(+12)+(﹣7)+(﹣10),=6﹣3+10﹣8+12﹣7﹣10,=28﹣28,=0,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3×(|+6|+|﹣3|+|+10|+|﹣8|+|+12|+|﹣7|+|﹣10|),=3×(6+3+10+8+12+7+10),=3×56,=168(m),∴他办事时电梯需要耗电168×0.2=33.6(度).26.解:(1)∵|a|=8,|b|=2,且a,b同号,∴a=8,b=2;a=﹣8,b=﹣2,则a+b=10或﹣10;(2)∵|a|=8,|b|=2,且a,b异号,∴a=8,b=﹣2;a=﹣8,b=2,则a+b=6或﹣6.27.解:(1)13+23+33+…+103=3025;(2)13+23+33+…+203=44100;(3)13+23+33+…+n3=;(4)113+123+133+…+203=41075.故(1)3025;(2)44100;(3);(4)41075。

(人教版)初中数学七年级上册 全册测试卷一(附答案)

(人教版)初中数学七年级上册全册测试卷一(附答案)第一章综合测试一、选择题(每小题4分,共28分) 1.(舟山中考)6-的绝对值是( ) A.6B.6-C.16D.16-2.(台州中考)在12,0,1,2-这四个数中,最小的数是( )A.12B.0C.1D.2-3.下列各数:0.8-,123-,8.2--(), 2.7+-(),17-+(), 2 012+-.其中负数的个数是( ) A.6B.5C.4D.34.下列运算结果等于1的是( ) A.33-+-()() B.33---()() C.33-⨯-()D.33-÷-()()5.(福州中考)2010年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达到51 800 000 000元人民币.将51 800 000 000用科学记数法表示正确的是( ) A.105.1810⨯ B.951.810⨯ C.110.51810⨯D.851810⨯6.(吉林中考)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )ABCD7.(舟山中考)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,被截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( )A.2 010B.2 011C.2 012D.2 013二、填空题(每小题5分,共25分) 8.3-的倒数是_______.9.(河南中考)计算:212-+-=()_______.10.用“<”“>”或“=”填空: (1)0.02-_______1;(2)45-_______56-;(3)34⎛⎫-- ⎪⎝⎭_______[(0.75)]-+-.11.绝对值大于1而小于4的整数有_______,其和为_______. 12.若a ,b 互为相反数,x ,y 互为倒数,则()xa b xy y+-=_______ 三、解答题(共47分)13.(14分)(1)2432232(2)(4)5⨯-÷---⨯;(2)2531324524864⎡⎛⎫⎤-+-⨯÷ ⎪⎢⎥⎣⎝⎭⎦.14.(10分)“十一”黄金周期间,某商场家电部大力促销,收银情况一直看好.下表为当天与前一天的营业额的涨跌情况(单位:万元).已知9月30日的营业额为26万元:(1)黄金周内营业额最低的是哪一天?那天的营业额是多少?(直接回答,不必写过程) (2)黄金周内平均每天的营业额是多少?15.(11分)有一出租车在一条南北走向直的公路上进行出租运营服务,如果规定向北为正,向南为负,出租车运营8次的行车里程如下(单位:千米):13+,7-,11+,10-,5-,9+,12-,8+.(1)将最后一位乘客送到目的地时,该出租车在出发点的什么方向?距离出发点多远? (2)若出租车耗油量为a 升/千米,则以上8次出租运营服务共耗油多少升?16.(12分)(中山中考)阅读下列材料:112(123012)3⨯=⨯⨯-⨯⨯,123(234123)3⨯=⨯⨯-⨯⨯,134(345234)3⨯=⨯⨯-⨯⨯,由以上三个等式相加,可得1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完以上材料,请你计算下列各题:(1)1223341011⨯+⨯+⨯+⋯+⨯(写出过程); (2)122334(1)n n ⨯+⨯+⨯+⋯+⨯+=_______; (3)123234345789⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯=_______.第一章综合测试答案解析一、 1.【答案】A 2.【答案】【解析】正数大于0,负数小于0,正数大于负数,所以上述四个数中最小的数是2-. 3.【答案】C 4.【答案】D【解析】因为336-+-=-()(); 330---=()(); 339-⨯-=();331÷-=(-)().5.【答案】A6.【答案】C7.【答案】D 二、8.【答案】13- 9.【答案】5 10.【答案】(1)< (2)> (3)=【解析】(1)因为负数小于正数,所以0.02-<1.(2)因为40.85-=,50.836-≈,又因为5465-->,所以4556-->.(3)因为330.7544⎛⎫--== ⎪⎝⎭,[(0.75)]0.75-+-=, 所以3[(0.75)]4⎛⎫--=-+- ⎪⎝⎭.11.【答案】23±±, 0 12.【答案】1- 三、13.【答案】(1)原式2916(8)165=⨯-÷--⨯18280=+- 60=-(2)原式253131242424248645⎛⎫-⨯-⨯+⨯⨯ ⎪⎝⎭= 2519418245⎛⎫=--+⨯ ⎪⎝⎭ 2515245⎛⎫=+⨯ ⎪⎝⎭25115551124552424=⨯+⨯=+=.14.【答案】(1)10月7日的营业额最低,营业额是26万元.(2)30333535343126732++++++÷=(),即黄金周内每天的平均营业额是32万元. 15.【答案】(1)137111059128+-+--+-+ 131198710512=++++----()()4134=- 7=(千米).答:将最后一位乘客送到目的地时,该出租车在出发点向北方向,距离出发点有7千米. (2)()1371111059128175a a ++-+++-+-+++-++⨯=(升). 答:以上8次出租运营服务共耗油75a 升. 16.【答案】(1)1223341011⨯+⨯+⨯+⋯+⨯111(123012)(23412 3) (10111291011)333=⨯⨯-⨯⨯+⨯⨯-⨯⨯++⨯⨯-⨯⨯L 11011124403=⨯⨯⨯=. (2)1(1)(2)3n n n ++(3)123234345789⨯⨯+⨯⨯+⨯⨯++⨯⨯L1111(23451234)(12340123)(789106789)444=⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯L 178910 1 2604=⨯⨯⨯⨯=.第二章综合测试一、选择题(每小题4分,共28分) 1.下列说法正确的是( ) A.x 的指数是0B.x 的系数是0C.3-是一次单项式D.23ab -的系数是23-2.下列式子中,整式的个数为( )1x a +,abc ,225b ab -,πy x+,2xy -,5- A.3B.4C.5D.63.若A 是3次多项式,B 也是3次多项式,则A B +一定是( ) A.6次多项式B.次数不低于3次的多项式C.次数不高于3次的整式D.以上答案都不正确4.单项式233πxy z -的系数和次数分别是( )A.π-,5B.1-,6C.3x -,6D.3-,7 5.四个连续偶数中,最小的一个为22n -(),则最大的一个是( ) A.2(2)3n -+ B.2(1)n + C.23n +D.2(2)n +6.()223422x x x x --+=-,括号内应填( )A.2532x x --B.23x x -+C.232x x -++D.232x x -+-7.(衢州中考)如图,边长为3m +()的正方形纸片剪出一个边长为m 的正方形之后剩余部分又剪拼成一个长方形(不重叠无缝隙).若拼成的长方形一边长为3,则另一边长是( )A.23m +B.26m +C.3m +D.6m +二、填空题(每小题5分,共25分)8.已知单项式312n a b +与223m a b --是同类项,则23m n +=______. 9.254143a b ab --+是______次______项式,常数项为______. 10.若40.5m x y -与36m x y 的次数相同,则m =______. 11.(绥化中考)若2345x x --的值为7,则2453x x --的值为______. 12.如图所示,它是一个程序计算器,用字母及符号把它的程序表达出来为______,如果输入3m =,那么输出______.三、解答题(共47分)13.(10分)试说明把一个两位数的十位上的数字与个位上的数字互换位置后所得的新两位数与原两位数之和可被11整除。

人教版数学七年级上册第一章有理数《单元综合测试卷》附答案

人教版数学七年级上学期 第一章有理数测试一、单选题1.下列各个运算中,结果为负数是( ) A. 2-B. ()2--C. 2(2)-D. 22-2.3的倒数是( ). A.13B. -13C. 3D. -33.计算(-8)×(-2)÷(- 12)的结果为( ) A. 16B. -16C. 32D. -324.2018年国庆假期里,民航提供的运力满足了旅客出行需求,中国民航共保障国内外航班近77800班,将77800用科学记数法表示应为( ). A. 0.778×105B. 7.78×105C. 7.78×104D. 77.8×1035.下列各组中的两个项,不属于同类项的是( ) A. 2x 2y 与﹣12yx 2B.213m n 与n 2m C. a 2b 与5a 2bD. 1与﹣326.下列各组数的大小关系正确的是( ) A. 1167-> B. 3423->- C.110001000<- D. -3.5>-3.67.如果单项式x m+2n y 与x 4y 4m ﹣2n 和是单项式,那么m,n 的值为( ) A. m=﹣1,n=1.5 B. m=1,n=1.5C. m=2,n=1D. m=﹣2,n=﹣18.单项式23m hπ的系数和次数分别是( )A.3π,1 B.3π ,2 C.3π ,3 D.3π ,4 9.如果a =a 3成立,则a 可能的取值有( ) A. 1个B. 2个C. 3个D. 无数个10.已知等式3a =2b +5,则下列等式不一定成立的是( )A. 3a ﹣5=2bB. 3a +1=2b +6C. 3ac =2bcD. a =2533b + 11.微信红包是沟通人们之间感情的一种方式,已知小明在2016年”元旦节”收到微信红包为300元,2018年为363元,若这两年小明收到的微信红包的年平均增长率为x ,根据题意可列方程为( ) A. 363(1+2x)=300 B. 300(1+x 2)=363 C. 300(1+x)2=363D. 300+x 2=36312.若x=-3是方程2(x-m )=6的解,则m 的值为( ) A. 6B. 6-C. 12D. 12-二、填空题13.比-1小2的数是______.14.3.1415精确到百分位的近似数是_____. 15若|x|=3,则x=_____.16.已知A=x 2+32y 2-5xy,B=2xy+2x 2-y 2,则A-3B 的值为_________17.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12-,则这个常数是_______. 18.若x 2m +1=3是关于x 一元一次方程,则m=______.三、解答题19.计算: (1)11623⎛⎫-⨯- ⎪⎝⎭(2)42÷2-243()92⨯-. 20.解方程:(1)30564x x--= (2) 1.7210.70.3x x --=21.已知30.5x m n -与45y m n 是同类项,求2223232(543)(2532)x y x y x x x y y x y --+---- 的值22.一艘货轮货舱容积是2000立方米,可载重500吨,现有甲、乙两种货物待装,已知甲种货物每吨体积为7立方米,乙种货物每吨体积为2立方米,两种货物各装多少吨最合理?23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表:若每袋标准质量为450g,则这批样品的总质量是多少?与标准质量差值(单位:g) -3 -2 0 1 1.5 2.5袋数(单位:袋) 1 4 3 4 5 324.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总数的2 3,若提前购票,则给予不同程序的优惠:若在五月份内,团体票每张12元,共售出团体票数的35;零售票每张16元,共售出零售票数的一半;如果在六月份内,团体票按每张16元出售,并计划在六月份售出全部余票,设六月份零售票按每张x元定价,总票数为a张.(1)五月份的票价总收入为_____元;六月份的总收入为______元;(2)当x为多少时,才能使这两个月的票款收入持平?25.(1)已知x=2是关于x的一元一次方程(a-1)x2+(b+2)x=2的解,求a,b的值(2)一个三角形的周长是48,第一边长为3a+2b,第二边长比第一边的2倍少a,求第三边长.26.燕尾槽的截面如图所示(1)用整式表示图中阴影部分的面积;(2)若x=5,y=2,求阴影部分的面积答案与解析一、单选题1.下列各个运算中,结果为负数的是( ) A. 2- B. ()2--C. 2(2)-D. 22-【答案】D 【解析】 【分析】先把各项分别化简,再根据负数的定义,即可解答. 【详解】A 、|-2|=2,不是负数; B 、-(-2)=2,不是负数; C 、(-2)2=4,不是负数; D 、-22=-4,是负数. 故选D .【点睛】本题考查了正数和负数,解决本题的关键是先进行化简. 2.3的倒数是( ). A.13B. -13C. 3D. -3【答案】A 【解析】乘积为1的两数互为倒数,故选A 3.计算(-8)×(-2)÷(- 12)的结果为( ) A. 16 B. -16C. 32D. -32【答案】D 【解析】 【分析】先把除法转化为乘法,然后根据乘法法则计算即可. 【详解】(-8)×(-2)÷(- 12) =(-8)×(-2) ×(- )=-32.故选D.【点睛】本题考查了乘除混合运算,一般先把除法转化为乘法,再按照乘法法则计算.4.2018年国庆假期里,民航提供的运力满足了旅客出行需求,中国民航共保障国内外航班近77800班,将77800用科学记数法表示应为().A. 0.778×105B. 7.78×105C. 7.78×104D. 77.8×103【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.所以确定n的值是看小数点向左移动的个数.【详解】解:77800=7.78 ×104.故选:C【点睛】本题考查科学记数法,掌握科学计数法的形式是本题的解题关键.5.下列各组中的两个项,不属于同类项的是( )A. 2x2y与﹣12yx2 B. 213m n与n2mC. a2b与5a2bD. 1与﹣32【答案】B【解析】【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】A、2x2y与-12yx2符合同类项的定义,是同类项;B、13m2n与n2m不符合同类项的定义,不是同类项;C、a2b与5a2b符合同类项的定义,是同类项;D、1与-32符合同类项的定义,是同类项.故选B.【点睛】本题考查了同类项,同类项是字母项且相同字母的指数也相同.6.下列各组数的大小关系正确的是( )A. 1167-> B. 3423->- C.110001000<- D. -3.5>-3.6【答案】D 【解析】 【分析】根据有理数的大小比较方法比较即可求出答案. 【详解】A. ∵ 1167-< ,故不正确; B. ∵3423->-,∴ 3423-<- ,故不正确; C. ∵110001000>-,故不正确; D. ∵ 3.5 3.6-<-,∴ -3.5>-3.6,故正确; 故选D.【点睛】本题考查了有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.7.如果单项式x m+2n y 与x 4y 4m ﹣2n 的和是单项式,那么m,n 的值为( ) A. m=﹣1,n=1.5 B. m=1,n=1.5C. m=2,n=1D. m=﹣2,n=﹣1【答案】B 【解析】分析:根据两个单项式的和还是单项式可知它们是同类项,根据同类项的概念列出方程组,解答即可. 详解:两个单项式的和还是单项式可知它们是同类项,24421,m n m n +=⎧∴⎨-=⎩ 解得:11.5.m n =⎧⎨=⎩故选B.点睛:所含字母相同,并且相同字母的指数也相同的项叫做同类项. 8.单项式23m hπ的系数和次数分别是( )A.3π,1 B.3π ,2 C.3π ,3 D.3π ,4 【答案】C 【解析】 【分析】数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和. 【详解】单项式23m hπ的系数是3π,次数分别是3. 故选C.【点睛】本题考查了单项式的有关概念,解决本题的关键是熟练掌握单项式的概念. 9.如果a =a 3成立,则a 可能的取值有( ) A. 1个 B. 2个C. 3个D. 无数个【答案】C 【解析】 【分析】根据乘方的意义求解即可. 【详解】∵03=0,13=1,(-1)3=-1, ∴a 可能的取值有0,1,-1. 故选C.【点睛】本题考查了乘方的意义,正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数,0的任何正整数次幂都等于0.10.已知等式3a =2b +5,则下列等式不一定成立的是( ) A. 3a ﹣5=2b B. 3a +1=2b +6C. 3ac =2bcD. a =2533b + 【答案】C 【解析】 【分析】根据等式的性质,依次分析各个选项,选出等式不一定成立的选项即可. 【详解】解:A .3a =2b +5,等式两边同时减去5得:3a ﹣5=2b ,即A 项正确, B .3a =2b +5,等式两边同时加上1得:3a +1=2b +6,即B 项正确,C .3a =2b +5,等式两边同时乘以c 得:3ac =2bc +5c ,即C 项错误,D .3a =2b +5,等式两边同时除以3得:a =2533b +,即D 项正确, 故选C .【点睛】本题考查了等式的性质,正确掌握等式的性质是解题的关键.11.微信红包是沟通人们之间感情的一种方式,已知小明在2016年”元旦节”收到微信红包为300元,2018年为363元,若这两年小明收到的微信红包的年平均增长率为x ,根据题意可列方程为( ) A. 363(1+2x)=300 B. 300(1+x 2)=363 C. 300(1+x)2=363 D. 300+x 2=363【答案】C 【解析】 【分析】这两年小明收到的微信红包的年平均增长率为x ,则2017年收到300(1+x ),2018年收到300(1+x )2,根据题意列方程解答即可. 【详解】由题意可得, 300(1+x )2=363. 故选C.【点睛】本题考查了一元二次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为a (1+x )n =b ,其中n 为共增长了几年,a 为第一年的原始数据,b 是增长后的数据,x 是增长率. 12.若x=-3是方程2(x-m )=6的解,则m 的值为( ) A. 6 B. 6-C. 12D. 12-【答案】B 【解析】把x=-3代入方程2(x ﹣m)=6得,2(-3-m)=6,解得:m=-6, 故选B.二、填空题13.比-1小2的数是______. 【答案】-3 【解析】 【分析】用-1减2计算出结果即可. 详解】-1-2=-3. 故答案为-3.【点睛】本题考查了有理数的减法,解答本题的关键是根据题意正确列出算式. 14.3.1415精确到百分位的近似数是_____. 【答案】3.14 【解析】 分析】把千分位四舍五入得到的数就是精确到百分位的数. 【详解】3.1415精确到百分位的近似数是3.14. 故答案为3.14.【点睛】】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近视数的最后一个数字实际在什么位上,即精确到了什么位.取近似数的时候,要求精确到某一位,应当对下一位的数字进行四舍五入. 15.若|x|=3,则x=_____. 【答案】±3. 【解析】 ∵|x|=3, ∴x=±3.16.已知A=x 2+32y 2-5xy,B=2xy+2x 2-y 2,则A-3B 的值为_________【答案】2251135x xy y --+【解析】 【分析】把A =x 2+32y 2-5xy ,B =2xy +2x 2-y 2代入则A -3B ,然后去括号合并同类项即可. 【详解】把A =x 2+32y 2-5xy ,B =2xy +2x 2-y 2代入则A -3B ,得 A -3B = x 2+32y 2-5xy -3(2xy +2x 2-y 2) = x 2+32y 2-5xy -6xy -6x 2+3y 2 =2251135x xy y --+.故答案为2251135x xy y --+.【点睛】本题考查了整式的加减,即去括号合并同类项.解去括号法则:当括号前是“+”号时,去掉括号和前面的“+”号,括号内各项的符号都不变号;当括号前是“-”号时,去掉括号和前面的“-”号,括号内各项的符号都要变号.17.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12- ,则这个常数是_______. 【答案】1 【解析】 【分析】设¤=a ,把y = 12- 代入122y y +=--¤,解关于a 的方程即可求出a 的值. 【详解】设¤=a ,把y = 12- 代入122y y +=--¤,得1112? 222⨯-+=---()()a ,∴11122-+=-a ,∴a =1, ∴¤=a =1. 故答案为1.【点睛】本题考查了一元一次方程解得定义,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.本题也考查了一元一次方程的解法.18.若x 2m +1=3是关于x 的一元一次方程,则m=______. 【答案】0.5 【解析】 【分析】根据未知数的次数等于1列式求解即可. 【详解】由题意得, 2m =1, ∴m =0.5. 故答案为0.5.【点睛】本题考查了一元一次方程的定义,方程的两边都是整式,只含有一个未知数,并且未知数的次数都是1,像这样的方程叫做一元一次方程.三、解答题19.计算:(1)11623⎛⎫-⨯-⎪⎝⎭ (2)42÷2-243()92⨯-. 【答案】(1)-1;(2)7.【解析】【分析】(1)根据乘法的分配律计算即可;(2)根据先算乘方,再算乘除,后算加减顺序计算即可.【详解】(1)11623⎛⎫-⨯-⎪⎝⎭ =-6×12-(-6)×13=-3+2=-1; (2)22434292⎛⎫÷-⨯- ⎪⎝⎭=16÷2-4994⨯ =8-1=7.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序. 20.解方程:(1)30564x x --= (2) 1.7210.70.3x x --= 【答案】(1)30 ;(2)1417 .【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可;(2)先化整,然后按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】(1)30564x x --= , 2x -3(30-x )=60,2x -90+3x =60,2x +3x =60+905x =150,x =30;(2) 1.7210.70.3x x --=, 101720173x x --=, 30x-7(17-20x )=21,30x -119+140x =21,30x +140x =21+119,170x =140,x =1417. 【点睛】本题考查了一元一次方程的解法,解一元一次方程的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.21.已知30.5x m n -与45y m n 是同类项,求2223232(543)(2532)x y x y x x x y y x y --+----的值【答案】-95.【解析】【分析】先根据30.5x m n -与45y m n 是同类项求出x 和y 的值,再把()()22232325432532x y x y x x x y y x y --+----去括号合并同类项,然后把x 和y 的值代入计算即可. 【详解】∵30.5x m n -与45y m n 是同类项,()()22232325432532x y x y x x x y y x y --+---- =222543x y x y x --+-32322532x x y y x y +++=2223x y x -+-3323x y +当x =4,y =3时,原式=2223x y x -+-3323x y +=-2×42×3+3×42-2×43+3×33=-96+48-128+81=-224+129=-95.【点睛】本题是整式的加减—化简求值类型的题目,解决本题需要掌握整式的加减法运算法则、合并同类项、代数式求值等知识点22.一艘货轮货舱容积是2000立方米,可载重500吨,现有甲、乙两种货物待装,已知甲种货物每吨体积为7立方米,乙种货物每吨体积为2立方米,两种货物各装多少吨最合理?【答案】甲种货物装200吨,乙种货物装300吨.【解析】试题分析:设甲种货物装x 吨,根据货舱容积2000立方米,可载重500吨,即可列方程求解.设甲种货物装x 吨,则乙种货物装(500-x)吨,由题意得7x+2(500-x)=2000解得x=200,500-x=300答:甲种货物装200吨,乙种货物装300吨.考点:本题考查了一元一次方程的应用点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解. 23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表:若每袋标准质量为450g,则这批样品的总质量是多少?【答案】9008.【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,求出20袋食品与标准质量差值的和,再与20袋食品的标准质量的和相加即可.【详解】(-3)×1+(-2)×4+0×3+1×4+1.5×5+2.5×3=-3-8+0+4+7.5+7.5=8(g),20×450+8=9008(g).∴这批样品的总质量是9008g.【点睛】主要考查了有理数混合运算在实际生活中的应用.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总数的2 3,若提前购票,则给予不同程序的优惠:若在五月份内,团体票每张12元,共售出团体票数的35;零售票每张16元,共售出零售票数的一半;如果在六月份内,团体票按每张16元出售,并计划在六月份售出全部余票,设六月份零售票按每张x元定价,总票数为a张.(1)五月份的票价总收入为_____元;六月份的总收入为______元;(2)当x为多少时,才能使这两个月的票款收入持平?【答案】(1)11215a,641156a ax;(2)19.2.【解析】【分析】(1)根据五月份的票价总收入=五月份团体票的收入+五月份零售票的收入即可求解;根据六月份的票价总收入=六月份团体票的收入+六月份零售票的收入即可求解;(2)本题的等量关系为:五月份票款数=六月份票款数,据此列方程求解即可.【详解】(1)五月份的票价总收入为:23a ×35×12+13a ×12×16=11215a ; 六月份的票价总收入为:23a ×25×16+13a ×12×x =641156a ax +; (2)由题意得,11215a =641156a ax +, ∵a >0, ∴11215=641156x +, 解得x =19.2.∴六月份零售票应按每张19.2元定价.【点睛】本题考查了一元一次方程的应用,有多个未知数的问题要抓住所求问题设为主元,问题中所涉及的其他未知量设为参量.在解方程中必然能消去参量,求出主元x 的值.同学们掌握了这个方法,就不必再惧怕有多个未知量的问题了.25.(1)已知x=2是关于x 一元一次方程(a-1)x 2+(b+2)x=2的解,求a,b 的值(2)一个三角形的周长是48,第一边长为3a+2b ,第二边长比第一边的2倍少a ,求第三边长.【答案】(1)a=1,b=-1; (2)48-8a-6b.【解析】【分析】(1)根据一元一次方程的定义求出a 的值,然后把x =2代入(b +2)x =2可求出b 的值;(2)先根据第一边长为3a +2b ,第二边长比第一边的2倍少a 求出第二条边的长,然后用周长减去第一和第二条边的长即可求出第三条边的长.【详解】(1)∵方程(a -1)x 2+(b +2)x =2是一元一次方程,∴a -1=0,∴a =1;把x =2代入(b +2)x =2,得2(b +2)=2,解之得,b =-1;(2)第二边:2(3a +2b )-a = 5a +4b ,第三边:48-(3a +2b )-(5a +4b )=48-3a -2b -5a -4b=48-8a -6b .【点睛】本题考查了一元一次方程的定义及解法,整式加减的应用,熟练掌握一元一次方程的定义和整式的加减法则是解答本题的关键.26.燕尾槽的截面如图所示(1)用整式表示图中阴影部分的面积;(2)若x=5,y=2,求阴影部分的面积【答案】(1)y(x-y); (2)6.【解析】【分析】(1)由图可知,阴影部分是两个直角三角形,根据三角形的面积公式求解即可,(2)把x =5,y =2代入(1)中的结果计算即可.【详解】(1)()()122y x y y x y ⨯-=-; (2)把x =5,y =2代入y (x -y ),得y (x -y )=2×(5-2)=6.【点睛】本题考查了列代数式,仔细观察图形,得出阴影部分是两个直角三角形是解答本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学第 二 次 月 考 试 卷
3
一.精心选一选(每小题2分,共24分,将唯一正确的答案代号填在相应的表格中) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 1.-1/2的相反数是( ) A.2 B.1/2 C.-2 D.-1/2 2、下列说法正确的是( ) A 整数就是正整数和负整数 B 0的相反数、倒数均是0 C 立方等于8的数是±2 D 绝对值最小的有理数是0 3.4(2)与 —42( ) A 相等 B 互为相反数 C 互为倒数 D 它们的和是正数 4.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,那么这个数是( ) A.5或-5 B.5522或 C.552或 D.552或 5.下列多项式中是二次三项式的是( ) A.a + 3b B.3a + 4 a2b+ 5 b C.122aa D.33ba 6.关于单项式 32nm2 的叙述正确的是( ) A.系数是-2 B.系数是32 C.次数是5次 D.次数是6次 7.下列结论中正确的是( ) A.在等式3a-b=3b+5的两边都除以3,可得等式a-2=b+5;
B.在等式0.1x=5的两边都除以0.1,可得等式x=0.5;
C.如果2=-x,那么x=-2; D.如果ac=bc,那么a=b;
8. 一个数和它的倒数相等,则这个数是( )

A、1 B、1 C、1 D、10和
9.如果|a|=a ,则 ( )
A. a是正数; B. a是负数; C. a是零; D. a 是正数或零
10.李华同学买80分邮票与1元邮票共花了16元,已知所买的1元邮票比
80•分邮票少2枚,设买了80分邮票x枚,则依题意得到的方程是( ).
A.0.8x+(x-2)=16 B.0.8x+(x+2)=16
C.80x+(x-2)=16 D.80x+(x+2)=16
11.下面去括号错误的是( )

A.()abcabc B.()abcabc
C.3()3abab D.(2)2abab

12.当 时,代数式 的值等于2011,那么当
2x
时,代数式 的值为( )

A.2011 B.-2011 C.2012 D.-2012

13qxpx
13qxpx
2x
二、用心填一填(每小题2分,共20分) 13.有理数0,2,-7,215,3.14,37,-3,-0.75中,整数有_____个;非负数有__ 个。 14. 绝对值小于4的整数是_______,它们的和是_______。 15.多项式1213232xxx按照x的降幂排列为_____________ 。 16. 101万千米用科学记数法可表示为____________千米,精确到____________位。 17. 某种零件的直径规格是20±0.02mm,它表示的意思是__________________经检查,一个零件的直径是19.9mm,该零件____________(填“合格”或“不合格”)。 18.一艘轮船在静水中的速度是50千米/时,水流速度是a千米/时,则该轮船在逆水中航行3小时的路程为___________千米;该轮船在顺水中航行1.5小时的路程为___________千米。 19、若x>y , xy<0, 且|x|=3 ,y2=16 , 则x-y= 20. 已知单项式32bam与-3214nba的和还是单项式,那么m-3n=_________。 21、若方程2x+1=3 和 2-3xa=0 的解相同,则a的值是___________。 22. 单项式2345111111,,,,,,23456xxxxx……,它有一定的规律性,则第2011个单项式为____________ 。 三、细心算一算(共52分) 23. 计算:(每小题4分,共16分)
(1) -12(18)(7)15 (2) 72656575

(3)49351020082231 (5)(143-87-127)×(-171)

24.化简与求值:(1-4小题,每小题4分;5—6小题,每题5分,共26分)
(1) 5a2-3a3-a-4+a3+2a-a5-9 (2) 4(x-3y)-2(y-2x)

(3)2237(43)2xxxxx
(4)5253432222xyyxxyyx
(5)先化简再求值: 3333222yxxyzxyxyz,其中x=1,
y=2,z=-3. (6)已知│x-1│+(y+2)2=0,求222(5)(3)xyxyxyxy的值 25.解方程:(每小题5分,共10分) (1)5(x+8)-5=6(2x-7) (2) 54x -(x-5)= 33x -22x

四.认真解一解(每小题6分,共24分):要写出必要的文字说明或演算步

26. 中国移动开设适合普通用户的两种通讯业务分别是:“天山通”用户先
缴25元月租,然后每分钟通话费用0.2元;“神州行”用户不用缴纳月租费,
每分钟通话0.4元。
(1)设一个月内通话时间约为x分钟,这两种用户每月需缴的费用是多少
元?(用含x 的式子表示)

(2)一个月内通话多少分钟,两种移动通讯方式费用相同?
(3)若李老师一个月通话约80分钟,请你给他提个建议,应选择哪种移动
通讯方式合算一些?请说明理由。
27.整理一批数据,由一人做需80小时完成。现在计划由一些人做2小时,
再增加5人做8小时,完成这项工作的四分之三。怎样安排参与整理数据的
具体人数?

28.一运输队运输一批货物,每辆车装8吨,最后一辆车只装6吨,如果每
辆车装7.5吨,则有3吨装不完。运输队共有多少辆车?这批货物共有多少
吨?

29.在“计算4a2-2ab+3b-a2+2ab-5-3a2的值,其中a=-52,
b=3 ”的解题过程中,小芳把a=-52错写成a=52,小华错写成
a=53.但他们的答案都是正确的,你知道这是什么原因吗?请你
做出正确的结果。

相关文档
最新文档