弹簧类专题

合集下载

弹簧问题

弹簧问题

弹簧问题(动力学)知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。

数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。

说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。

2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。

(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。

(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。

弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。

如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。

由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。

性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。

其伸长量等于弹簧任意位置受到的力和劲度系数的比值。

如图1和2中相同的轻弹簧,其端点受到相同大小的力时,无论弹簧是处于静止、匀速还是加速运动状态,各个弹簧的伸长量都是相同的。

性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间变化——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。

如在图1、2、3、4、中撤出任何一个力的瞬间,弹簧的长度不会变化,弹力的大小也不会变化;但是在图5中撤出力F的瞬时,弹簧恢复原长,弹力变为零。

高中物理复习——弹簧专题

高中物理复习——弹簧专题

一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-= 1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:【答案】x xT F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g . 【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变. 【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向图 3-7-4图 3-7-2 图 3-7-1 图 3-7-3下撤离的瞬间,小球的加速度为 ( ) A.0 B.大小为23g ,方向竖直向下C.大小为23g ,方向垂直于木板向下 D. 大小为23g , 方向水平向右【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=. 撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos N F g a g m θ=== 【答案】 C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =. 则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 . 【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k + 故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++【答案】221221()m m m g k + 21121211()()m m m g k k ++五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题. 【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜图 3-7-5图 3-7-7图 3-7-6面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ== 解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ= 设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--= 解得:()sin A B AF m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化. 结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,往往能达到事半功倍的效果.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量0mgx k =, 物体B 刚要离开地面时弹簧的伸长量也是0mgx k=.(1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F所做的功等于物体A 增加的动能及重力势能的和. 即:201222F x mg x mv ⋅=⋅+得: 022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.图 3-7-8在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度. 在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-= 而0kx mg =,简谐运动在上、下振幅处12a a =,解得:也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg k F +=,解得: 032mg F =.【答案】022gx32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关.八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储存一定的弹性势能,因此弹簧的弹性势能可以与机械能守恒规律综合应用,我们用公式212P E kx =计算弹簧势能,弹簧在相等形变量时所具有的弹性势能相等一般是考试热点.弹簧弹力做功等于弹性势能的减少量.弹簧的弹力做功是变力做功,一般可以用以下四种方法求解:(1)因该变力为线性变化,可以先求平均力,再用功的定义进行计算; (2)利用F x -图线所包围的面积大小求解;(3)用微元法计算每一小段位移做功,再累加求和; (4)根据动能定理、能量转化和守恒定律求解.由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.特别是涉及两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消或替代求解.【例10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块A 和B 大小可忽略,它们分别带有A Q +和B Q +的电荷量,质量分别为A m 和B m .两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B 连接,另一端连接轻质小钩.整个装置处于场强为E 、方向水平向左的匀强电场中,A 、B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的库仑力, A 、B 所带电荷量保持不变,B 不会碰到滑轮. (1)若在小钩上挂质量为M 的物块C 并由静止释放,可使物块A 对挡板P 的压力恰为零,但不会离开P ,求物块C 下降的最大距离h .(2)若C 的质量为2M ,则当A 刚离开挡板P 时, B 的速度多大?【解析】 通过物理过程的分析可知,当物块A 刚离开挡板P 时,弹力恰好与A 所受电场力平衡,弹簧伸长量一定,前后两次改变物块C 质量,在第(2)问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解.设开始时弹簧压缩量为1x ,由平衡条件1B kx Q E =,可得1B Q Ex k=① 设当A 刚离开挡板时弹簧的伸长量为2x ,由2A kx Q E =,可得: 2A Q Ex k= ②故C 下降的最大距离为: 12h x x =+ ③图 3-7-13由①②③三式可得: ()A B E h Q Q k=+ ④(2)由能量守恒定律可知,物块C 下落过程中,C 重力势能的减少量等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和. 当C 的质量为M 时,有:B MgH Q Eh E =+∆弹 ⑤当C 的质量为2M 时,设A 刚离开挡板时B 的速度为v ,则有:212(2)2B B MgH Q Eh E M m v =+∆++弹 ⑥由④⑤⑥三式可得A 刚离开P 时B 的速度为:2()(2)A B B MgE Q Q v k M m +=+ ⑦【答案】(1)()A B E h Q Q k=+(2)2()(2)A B B MgE Q Q v k M m +=+【例11】如图3-7-14所示,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,物体A B 、都处于静止状态.一不可伸长的轻绳一端绕过轻滑轮连接物体A ,另一端连接一轻挂钩.开始时各段绳都处于伸直状态,物体A 上方的一段绳沿竖直方向.现给挂钩挂一质量为2m 的物体C 并从静止释放,已知它恰好能使物体B离开地面但不继续上升.若将物体C 换成另一质量为12()m m +的物体D ,仍从上述初始位置由静止释放,则这次物体B 刚离地时物体D 的速度大小是多少?已知重力加速度为g【解析】 开始时物体A B 、静止,设弹簧压缩量为1x ,则有:11kx m g =悬挂物体C 并释放后,物体C 向下、物体A 向上运动,设物体B 刚要离地时弹簧伸长量为2x ,有22kx m g =B 不再上升表明此时物体A 、C 的速度均为零,物体C 己下降到其最低点,与初状态相比,由机械能守恒得弹簧弹性势能的增加量为:物体C 换成物体D 后,物体B 离地时弹簧势能的增量与前一次相同,由能量关系得:22211211211211()()()()22m m v m v m m g x x m g x x E ++=++-+-∆联立上式解得题中所求速度为:2112122()(2)m m m g v m m k+=+【答案】2112122()(2)m m m g v m m k+=+说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转化守恒的结合往往在一些题目中需要综合使用. 九、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.【例12】如图3-7-15所示,质量为m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b 、对质点的作用力均为F ,则弹簧c 对质点作用力的大小可能为 ( ) A 、0 B 、F mg + C 、F mg - D 、mg F - 图 3-7-14 图 3-7-15【解析】 由于两弹簧间的夹角均为0120,弹簧a b 、对质点作用力的合力仍为F ,弹簧a b 、对质点有可能是拉力,也有可能是推力,因F 与mg 的大小关系不确定,故上述四个选项均有可能.正确答案:ABCD 【答案】 ABCD 十、弹簧振子弹簧振子的位移、速度、加速度、动能和弹性势能之间存在着特殊关系,弹簧振子类问题通常就是考查这些关系,各物理量的周期性变化也是考查的重点. 十一、弹簧串、并联组合弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例14】 如图3-7-17所示,两个劲度系数分别为12k k 、的轻弹簧竖直悬挂,下端用光滑细绳连接,并有一光滑的轻滑轮放在细线上;滑轮下端挂一重为G 的物体后滑轮下降,求滑轮静止后重物下降的距离. 【解析】 两弹簧从形式上看似乎是并联,但因每根弹簧的弹力相等,故两弹簧实为串联;两弹簧的弹力均2G ,可得两弹簧的伸长量分别为112G x k =,222G x k =,两弹簧伸长量之和12x x x =+,故重物下降的高度为:1212()24G k k x h k k +== 【答案】1212()4G k k k k + 十三、物体沿弹簧螺旋运动【例16】如图3-7-19所示,长度为L 的光滑钢丝绕成高度为H 的弹簧,将弹簧竖直放置.一中间有孔的小球穿过钢丝并从弹簧的最高点A 由静止释放,求经多长时间小球沿弹簧滑到最低点B . 【解析】 小球沿光滑弹簧下滑时机械能守恒,可以假想在不改变弹簧上各处倾角的条件下将弹簧拉成一条倾斜直线,如图3-7-20所示,小球沿此直线下滑的时间与题中要求的时间相等.小球沿直线下滑的加速度为sin a g θ=由几何知识可得:sin H Lθ=;由位移公式可知:212L at =,联立上式解得:2t L gH=【答案】2LgH弹簧类模型中的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

高考物理之弹簧类问题

高考物理之弹簧类问题

高考物理之弹簧类问题由于弹簧与其相连接的物体构成的系统的运动状态具有很强的综合性和隐蔽性;由于弹簧与其相连接的物体相互作用时涉及到的物理概念和物理规律较多,因而多年来,弹簧试题深受高考命题专家们物理教师的青睐,在物理高考中弹簧问题频频出现已见怪不怪了。

弹簧问题不仅能考查学生分析物理过程,理清物理思路,建立物理图景的能力,而且对考查学生知识综合能力和知识迁移能力,培养学生物理思维品质和挖掘学生学习潜能也具有积极意义。

因此,弹簧问题也就成为高考命题专家每年命题的重点、难点和热点。

与弹簧相连接的物理问题表现的形式固然很多,但总是有规律可循,有方法可依,存在基于弹簧特性分析问题的突破口。

一、以弹簧遵循的胡克定律为分析问题的突破口弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即F=kx 或ΔF=kΔx。

显然,弹簧的长度发生变化的时候,胡克定律首先成了弹簧问题分析的突破口。

例1劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。

解析物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。

由匀变速直线运动公式及牛顿定律得:①G-kx-N=ma②N=0③解以上三式得:。

显然,能否分析出弹力依据胡克定律随着物体的下降变得越来越大,同时托盘的压力越来越小直至为零成了解题的关键。

.二、以弹簧的伸缩性质为分析问题的突破口弹簧能承受拉伸的力,也能承受压缩的力。

在分析有关弹簧问题时,分析弹簧承受的是拉力还是压力成了弹簧问题分析的突破口。

G1固定的大环半径为R,轻弹簧原长为L(所示,小圆环重L<2R),其劲如图例21度系数为k,接触光滑,求小环静止时。

弹簧与竖直方向的夹角。

解析以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。

弹簧种类大全

弹簧种类大全

我们的日常生活中有各种各样的弹簧,例如洗衣机的触摸弹簧、遥控器里的电池弹簧、健身器的拉伸弹簧和自行车的压缩弹簧等等,但是你们对这些弹簧又有多少了解呢?这些弹簧的特性又知道多少呢?接下来让我们一起来看看吧。

一、压缩弹簧:用途最广,在制造时,绕成分开的螺旋圈,使各圈有间隙(节距),以便受力收缩,保持有向两端伸张的张力。

受最大负荷时,不能被完全压缩,必须在有效圈数间保留间隙,以免摩擦或其他物质嵌入,引起疲劳破坏。

弹簧自由长度应等于弹簧之实长加上间隙,再加变形量,压缩弹簧为增加接触面,面应予磨平,以获取60~80%接触面。

其端部形状有多种:两端坐圈,两端磨平等。

乃各圈分绕,因能承受压力,两端可为开式或闭式或绕平或磨平。

压缩弹簧乃变体弹簧第一种,由直筒型、锥形至缩、凸腰形,乃至各种尾端之变体,均可依设计成型,压缩弹簧为所有弹簧种类中最被广泛运用的一种,产品运用范围广及电子、电机、计算机、信息、汽机车、自行车、五金工具、礼品、玩具、乃至国防工业,因其设计与原理易于掌握,制造控制也最为单纯。

二、拉伸弹簧:各圈绕成相互紧贴的螺旋圈或节距圈,受外力时向外伸长,保持有向中间收缩之力。

拉簧钩分为多种:英式钩,德式钩,边耳钩,鱼尾钩等。

拉伸弹簧乃典型之弹簧即弹簧之代表,由直筒形至各种变体,乃至挂钩之各种形状均能依设计成型。

拉伸弹簧为压缩弹簧之反向运用,运用范围大致较无具体产品类别,但操作控制较压缩弹簧高一级。

三、扭转弹簧:扭转弹簧分为单扭弹簧和双扭弹簧,弹簧常套入销或轴中,当受外力后,即依弹簧轴心为轴而产生一扭转力,使得弹簧捲紧或旋鬆。

双扭弹簧又分为外双扭和内双扭力弹簧。

各圈或是紧密围绕或是分开围绕,俾能适任扭转负荷(与弹簧轴线成直角)。

弹簧之末端可绕成钩状或直扭转臂。

扭转弹簧乃变体弹簧之极至,由单扭至双扭,乃至各种扭杆之变形,得依设计成型。

扭转弹簧为所有弹簧类别中设计原理较为复杂的一种,型式的变化亦相当活泼,故设计时所涉及的理论也最为烦索。

弹簧类综合问题训练

弹簧类综合问题训练

二轮专题复习:弹簧类综合问题训练一、考点分析轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力、胡克定律、物体的平衡、牛顿定律的应用及能的转化与守恒。

从近几年高考题,可以看出弹簧类综合问题是高考的热点和重点。

二、与弹簧有关的综合问题基本知识概述1、弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。

及轻弹簧的弹力不能突变,其弹力与瞬间前相同。

2、弹簧与平衡问题这类题涉及到的知识是胡克定律,一般用F=kx同时结合物体的平衡条件知识求解。

3、弹簧与非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。

需综合分析物体的位置变化与弹簧的长度、形变量有怎样的关系。

4、弹簧与能量的综合问题在弹力做功的过程中弹力是个变力,并与能量的转化与守恒相联系,分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。

三、处理弹簧问题的一般思路与方法1、弹簧的弹力是一种由形变而决定大小和方向的力。

当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原来的长位置,现在的长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2、因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3、在求弹簧的弹力做功时,往往结合动能定理和功能关系以及能量转化和守恒定律求解。

典型示例迁移1、弹簧弹力瞬时问题例1、如图所示,木块A与B用一轻弹簧相连,竖直放在木块C上,三者静置于地面,A、B、C的质量之比是1∶2∶3.设所有接触面都光滑,当沿水平方向迅速抽出木块C的瞬时,木块A和B的加速度分别是a A=____ ,a B=____解析;由题意可设A、B、C的质量分别为m、2m、3m以木块A为研究对象,抽出木块C前,木块A受到重力和弹力一对平衡力,抽出木块C的瞬时,木块A受到重力和弹力的大小和方向均没变,故木块A的瞬时加速度为0以木块AB为研究对象,由平衡条件可知,木块C对木块B的作用力F cB=3mg以木块B 为研究对象,木块B 受到重力、弹力和F cB 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均没变,F cB 瞬时变为0,故木块C 的瞬时合外力为竖直向下的3mg 。

初中物理弹簧类问题解题技巧

初中物理弹簧类问题解题技巧

初中物理弹簧类问题解题技巧弹簧是物理学中常见的一个重要元件,其具有弹性系数和弹簧常数等特性。

在初中物理中,经常会遇到涉及弹簧的问题,如弹簧的伸长、压缩、弹簧振动等。

解决这类问题需要掌握一定的技巧,下面将介绍初中物理弹簧类问题的解题技巧。

1. 弹簧弹性势能公式弹簧的弹性势能是解决弹簧类问题的关键。

根据胡克定律,弹簧的弹性势能与其伸长或压缩的长度成正比。

弹簧的弹性势能公式为:[ E = k x^2 ]其中,( E ) 为弹性势能,( k ) 为弹簧的弹簧系数,( x ) 为弹簧伸长或压缩的长度。

2. 弹簧的力学平衡问题在解决弹簧类问题时,常会涉及到弹簧受力平衡的情况。

根据牛顿第二定律和弹簧的特性,可以建立弹簧受力平衡的方程。

例如,在弹簧振动问题中,考虑质点在弹簧上来回振动的情况,可以通过建立弹簧的力学平衡方程解决问题。

3. 弹簧系列联组合问题弹簧的串联和并联组合是物理中常见的问题类型。

在解决这类问题时,需要根据弹簧的特性和串联、并联电阻的特点进行分析。

例如,串联弹簧的总弹簧系数为各个弹簧弹簧系数的倒数之和,而并联弹簧的总弹簧系数等于各个弹簧系数之和。

4. 弹簧振动问题弹簧的振动是物理学中一个重要的研究领域。

在初中物理中,通常涉及到弹簧的简谐振动问题,需要掌握振动频率、角频率、振幅等概念。

解决弹簧振动问题时,可以利用简谐振动公式和能量守恒原理进行分析和计算。

通过掌握以上弹簧类问题的解题技巧,可以更好地解决初中物理中与弹簧相关的问题,提高问题解决的效率和准确性。

希望同学们在学习物理的过程中,能够深入理解弹簧的特性,灵活运用解题方法,从而取得更好的学习成绩。

专题受力分析之弹簧问题

弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂.其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。

还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。

根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析。

一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。

当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态.2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。

3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值.弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。

现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。

在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。

例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况.只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单。

高中物理弹簧类问题试题及答案

1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。

若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有 ( D ) A .l 2>l 1 B .l 4>l 3 C .l 1>l 3 D .l 2=l 42、如图所示,a 、b 、c 为三个物块,M ,N 为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图所示并处于静止状态( AD )A.有可能N 处于拉伸状态而M 处于压缩状态B.有可能N 处于压缩状态而M 处于拉伸状态C.有可能N 处于不伸不缩状态而M 处于拉伸状态D.有可能N 处于拉伸状态而M 处于不伸不缩状态3、如图所示,在一直立的光滑管内放置一轻质弹簧,上端O 点与管口A 的距离为2x 0,一质量为m 的小球从管口由静止下落,将弹簧压缩至最低点B ,压缩量为x 0,不计空气阻力,则( AD ) A.小球运动的最大速度大于20gxB.小球运动中最大动能等于2mgx 0C.弹簧的劲度系数为mg/x 0D.弹簧的最大弹性势能为3mgx 04、如图所示,A 、B 质量均为m ,叠放在轻质弹簧上,当对A 施加一竖直向下的力,大小为F ,将弹簧压缩一段,而且突然撤去力F 的瞬间,关于A 的加速度及A 、B 间的相互作用力的下述说法正确的是( B )A 、加速度为0,作用力为mg 。

B 、加速度为m F 2,作用力为2Fmg +C 、速度为F/m ,作用力为mg+FD 、加速度为mF2,作用力为2mgF +5、如图所示,一根轻弹簧上端固定,下端挂一质量为m 1的箱子,箱中有一质量为m 2的物体.当箱静止时,弹簧伸长L 1,向下拉箱使弹簧再伸长L 2时放手,设弹簧处在弹性限度内,则放手瞬间箱对物体的支持力为:( A ) A..g m L L 212)1(+B..g m m L L))(1(2112++ C.g m L L 212 D.g m m L L)(2112+m 2k 1m 1k 26、如图所示,在一粗糙水平面上有两个质量分别为m 1和m 2的木块1和2,中间用一原长为L 、劲度系数为K 的轻弹簧连接起来,木块与地面间的滑动摩擦因数为μ。

弹簧类问题的求解

弹簧类问题的求解由于涉及到的弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的分析,不能建立与之相关的物理模型,导致解题思路不清、效率低下,错误率较高。

下面我们归纳六类问题探求解法。

一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型。

由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。

故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。

弹簧一端受力为F ,另一端受力一定也为F 。

若是弹簧秤,则弹簧秤示数为F 。

例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力F 1、F 2,且F 1>F 2则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .分析与解 以整个弹簧秤为研究对象:利用牛顿运动定律12F F ma -= ∴12F F a m-= 仅以轻质弹簧为研究对象:则弹簧两端的受力都是F 1,所以弹簧秤的读数为F 1 说明 F 2作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的。

二、弹簧弹力瞬时问题因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。

因此,在分析瞬时变化时,可以认为弹力大小和方向不变,即弹簧的弹力瞬间不突变。

例2、如图所示,木块A 与B 用一轻弹簧相连,竖直放在木块C上,三者静置于地面,A 、B 、C 的质量之比是1∶2∶3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是a A =____ ,a B =____分析与解 由题意可设A 、B 、C 的质量分别为m 、2m 、3m以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均没变,故木块A 的瞬时加速度为0以木块AB 为研究对象,由平衡条件可知,木块C 对木块B 的作用力F cB =3mg 以木块B 为研究对象,木块B 受到重力、弹力和F cB 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均没变,F cB 瞬时变为0,故木块C 的瞬时合外力为竖直向下的3mg 。

机械能守恒定律专题10 能量守恒定律(4) 弹簧模型18.5.23

机械能守恒定律专题10 能量守恒定律应用(4)弹簧类问题弹簧类动力学观点和功能观点解题综合问题:弹簧初末态形变量相同,弹性势能相等,或者两个过程弹簧的形变量变化量相等,弹性势能变化两相同或者弹性势能与形变量的平方成正比例题1、如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h。

若将小球A换为质量为3m的小球B,仍从弹簧原长位置由静止释放,则小球B下降h时的速度为(重力加速度为g,不计空气阻力。

)(B)A.B.C.D.试题分析:小球A下降h过程,根据动能定理,有mgh-W1=0;小球B下降h过程,根据动能定理,有,联立解得v=.选项B正确。

例题2、如图所示,轻质弹簧的劲度系数为k,下面悬挂一个质量为m的砝码A,手持木板B托住A缓慢向上压弹簧,至某一位置静止.此时如果撤去B,则A的瞬时加速度为1.6g现用手控制B使之以a=0.4g的加速度向下做匀加速直线运动.求:(1):砝码A能够做匀加速运动的时间?(2):砝码A做匀加速运动的过程中,弹簧弹力对它做了多少功?木板B对它的支持力做了多少功?小题1:小题2:(1)设初始状态弹簧压缩量为x1则kx1+mg=m×可得x1=……………(1分)当B以匀加速向下运动时,由于a<g,所以弹簧在压缩状态时A、B不会分离,分离时弹簧处于伸长状态. ……(2分)设此时弹簧伸长量为x2,则mg-kx2= m×可得x2=(1分)A匀加速运动的位移s=x1+x2=(1分)s=解得: …(2分)(2)∵x 1=x 2∴这一过程中弹簧对物体A 的弹力做功为0…………(3分)A 、B 分离时(2分)由动能定理得:…(2分)代入得: (2分)例题3、如图甲,质量为m 的小木块左端与轻弹簧相连,弹簧的另一端与固定在足够大的光滑水平桌面上的挡板相连,木块的右端与一轻细线连接,细线绕过光滑的质量不计的轻滑轮,木块处于静止状态.在下列情况中弹簧均处于弹性限度内,不计空气阻力及线的形变,重力加速度为g .(1)图甲中,在线的另一端施加一竖直向下的大小为F 的恒力,木块离开初始位置O 由静止开始向右运动,弹簧开始发生伸长形变,已知木块过P 点时,速度大小为v ,O 、P 两点间距离为s .求木块拉至P 点时弹簧的弹性势能;(2)如果在线的另一端不是施加恒力,而是悬挂一个质量为M 的物块,如图乙所示,木块也从初始位置O 由静止开始向右运动,求当木块通过P 点时的速度大小.(1)用力F 拉木块至P 点时,设此时弹簧的弹性势能为E P ,根据功能关系有Fs=E P +1/2mv 2…①代入数据可解得:E P =Fs-1/2mv 2…(2)悬挂钩码M 时,当木块运动到P 点时,弹簧的弹性势能仍为E p ,设木块的速度为v′,由机械能守恒定律得:Mgs=E P +1/2(m+M)v′2…③联立②③解得v′= √(mv 2+2(Mg-F)s)/(M+m)例题4、如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k , A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上挂一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升.若将C 换成另一个质量为(m 1+ m 3)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g解析: 开始时,A 、B 静止,设弹簧压缩量为1x ,有11g kx m =挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为2x ,有22kx m g =B 不再上升,表示此时A 和C 的速度为零,C 已降到其最低点.由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为 312112=m ()()E g x x m g x x ∆+-+C 换成D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得311311211211()()()()2222m m υm υm m g x x m g x x E ++=++-+-∆联立解得υ=例题5、如图,一个倾角θ=30°的光滑直角三角形斜劈固定在水平地面上,顶端连有一轻质光滑定滑轮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹簧类专题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型。

在《考试说明》中涉及它的知识点有:①形变和弹力,胡克定律(该知识点为B级要求);②弹性势能(A级要求)、弹簧振子等借助于弹簧问题,能将整个力学知识和方法有机地结合起来、系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、振动问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。

一、轻质弹簧的一些特性性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。

其伸长量等于弹簧任意位置受到的力和劲度系数的比值。

1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上;②中弹簧的左端受大小也为 F 的拉力作用;③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动 .若认为弹簧的质量都为零,以依次表示四个弹簧的伸长量,则有()A. B. C. D.性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间变化——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。

2、如右图1、2、3、4中撤出任何一个力的瞬间,弹簧的长度不会变化,弹力的大小也不会变化;但是在图5中撤出力F的瞬时,弹簧恢复原长,弹力变为零。

性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。

分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。

3、如图所示,a、b、c为三个物块,M、N为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们均处于平衡状态.则:()A.有可能N处于拉伸状态而M处于压缩状态B.有可能N处于压缩状态而M处于拉伸状态C.有可能N处于不伸不缩状态而M处于拉伸状态D.有可能N处于拉伸状态而M处于不伸不缩状态性质4、弹力的大小与形变量成正比,方向与形变的方向相反,即F=-kx,是一个线性回复力,物体在弹簧弹力的作用下,通常会做简谐运动。

以简谐运动为模型分析动力学问题会减少错误带来方便。

例如一个质量为M 的物体从高处自由下落在一个弹簧上,试分析物体的运动情况。

由简谐运动的知识知道,物体一旦接触弹簧其运动就进入了简谐振动过程,必定存在一个平衡位置(如图中O 的位置,重力等于弹力),物体靠近平衡位置的阶段必定是速度增大、加速度减小,远离平衡位置的阶段,必定是速度减小、加速度增大。

如果结合简谐运动的对称性还可以方便地分析力的变化、能量的变化等问题,应当注意体会和运用。

性质5、弹性势能和弹力的功(1) 弹性势能①弹性势能的大小:弹簧能够储存弹性势能,它储存的弹性势能的大小与弹性形变量的大小和劲度系数有关,212P E kx =(运用此式的定量计算在高中阶段不作要求,只做理解弹性势能的依据)。

②弹性势能的计算:弹性势能的定量计算依据功能关系或能的转化和守恒定律。

(2)弹力的功弹力的功是变力的功,因为弹力随着位移是线性变化的,所以弹力功的大小可以用平均力12F F =求得即,21122W Fx Fx kx === 说明:①上式是弹簧由原长到伸长或者压缩x 长度的过程弹力做的功,上式中的F 是形变量为x 时的弹力。

②当形变量由x 1变为x 2时弹力功的大小为22122111()()22W F x F F x k x x =⋅∆=+∆=- (3)弹力功的特点弹簧弹力的功与路径无关——同一弹簧在某一过程中弹力的功只是取决于初末状态弹簧形变量的大小,与弹力的作用点经过的路径没有关系。

这一点对于计算弹力的功和弹性势能是非常重要的,必须引起重视。

(4)弹性势能与弹力功的关系①弹力做正功时弹性势能减少;弹力做负功时弹性势能增加。

②弹力的功等于弹性势能增量的负值即:12p p p W E E E =-∆=-二、分析弹簧问题需要特别关注的几点(1)弹力不能突变的特点——形变的发生和恢复都需要一定的时间,(2)物体做简谐运动的特点——运动状态存在对称性(3)弹力做功与路径无关的特点,重力势能只取决于状态的特点(4)有临界状态和转折状态的特点——分离状态、合力为零状态、拉力和压力转折状态等(5)弹簧问题多解的特点——对同一大小的弹力弹簧对应两个状态,要注意不要漏解三、典型例题一、与物体平衡相关的弹簧问题1.如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 22.S 1和S 2表示劲度系数分别为k 1,和k 2两根轻质弹簧,k 1>k 2;A 和B 表示质量分别为m A 和m B 的两个小物块,m A >m B ,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大,则应使( ).A .S 1在上,A 在上B .S 1在上,B 在上C .S 2在上,A 在上D .S 2在上,B 在上二、求与弹簧相连物体的瞬时加速度求解这类问题的方法是:(1)由物体所处的运动状态求出弹簧的弹力;(2)去掉某一个力后(通常是剪断绳子)的瞬间,认为弹簧的弹力不变化,求出物体受到的合力;(3)由牛顿第二定律列方程求解。

3、如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定与杆上,小球处于平衡状态,设拔除销钉M 的瞬间,小球加速度的大小为12m/s 2,若不拔除销钉M 而拔除销钉N 瞬间,小球的加速度可能是(g=10 m/s 2)A 、22 m/s 2,方向竖直向上B 、22 m/s 2,方向竖直向下C 、2 m/s 2,方向竖直向上D 、2 m/s 2,方向竖直向下4、质量分别为m 和2m 的小球P 、Q 用细线相连,P 用轻弹簧悬挂在天花板下,开始系统处于静止。

下列说法中正确的是A .若突然剪断细线,则剪断瞬间P 、Q 的加速度大小均为gB .若突然剪断细线,则剪断瞬间P 、Q 的加速度大小分别为0和gC .若突然剪断弹簧,则剪断瞬间P 、Q 的加速度大小均为gD .若突然剪断弹簧,则剪断瞬间P 、Q 的加速度大小分别为3g 和0三、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M 的木板,木板下面再挂一个质量为m 的物体.当剪掉m 后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m 、M 间的相互作用)则M 与m 之间的关系必定为 ( B )A.M >m B .M =m C.M <m D.不能确定6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是 ( C )A.一直加速运动 B .匀加速运动C.先加速运动后减速运动 D .先减速运动后加速运动四、功和能中的弹簧问题与弹簧相关的综合问题无一不涉及弹力做功和能量转化问题,解决这类问题最关键的环节是:(1)分析物体的受力情况并结合初始条件明确物体做什么运动(2)根据功的计算公式分析在每一个过程或者阶段中有哪些力做功、哪些力不做功、哪些力做正功或者做负功。

(3)着眼系统根据功能关系明确哪些能量在增加或者减少(4)注意到重力的功和弹力的功的重要特点列方程求解。

1、一个物体与弹簧组成的系统机械能守恒的问题12、如图所示,轻质弹簧竖直放置在水平地面上,它的正上方有一金属块从高处自由下落,从金属块自由下落到第一次速度为零的过程中A .重力先做正功,后做负功B .弹力没有做正功C .金属块的动能最大时,弹力与重力相平衡D .金属块的动能为零时,弹簧的弹性势能最大 P Q解析:要确定金属块的动能最大位置和动能为零时的情况,就要分析它的运动全过程弄清楚物体的运动情况。

为了物体弄清运动情况,必须做好受力分析。

可以从图3-19看出运动过程中的情景。

从图上可以看到在弹力N<mg时,a的方向向下,v的方向向下,金属块做加速运动。

当弹力N等于重力mg时,a=0加速停止,此时速度最大。

所以C选项正确。

弹力方向与位移方向始终反向,所以弹力没有做正功,B选项正确。

重力方向始终与位移同方向,重力做正功,没有做负功,A 选项错。

速度为零时,恰是弹簧形变最大时,所以此时弹簧弹性势能最大,故D正确。

所以B,C,D为正确选项。

答案:B C D误区警示:(1)错解思维过程分析:金属块自由下落,接触弹簧后开始减速,当重力等于弹力时,金属块速度为零。

所以从金属块自由下落到第一次速度为零的过程中重力一直做正功,故A错。

而弹力一直做负功所以B正确。

因为金属块速度为零时,重力与弹力相平衡,所以C选项错。

金属块的动能为零时,弹力最大,所以形变最大,弹性势能最大。

故D正确。

(2)错解原因分析:形成以上错解的原因是对运动过程认识不清。

对运动性质的判断不正确。

金属块做加速还是减速运动,要看合外力方向(即加速度方向)与速度方向的关系。

总结升华:(1)对于较为复杂的物理问题,认清物理过程,建立物情景是很重要的。

做到这一点往往需画出受力图,运动草图,这是应该具有的一种解决问题的能力。

(2)分析问题可以采用分析法和综合法:如C选项中动能最大时,速率最大,速率最大就意味着它的变化率为零,即a=0,加速度为零,即合外力为零,由于合外力为mg-N,因此得mg=N,D选项中动能为零,即速率为零,单方向运动时位移最大,即弹簧形变最大,也就是弹性势能最大。

(3)题中金属块和弹簧在一定时间和范围内做往复运动是一种简运振动。

从简谐运动图象可以看出位移变化中速度的变化,以及能量的关系。

举一反三:【变式】如图所示,水平地面上沿竖直方向固定一轻质弹簧,质量为M的小球,由弹簧上高H处自由落下,刚接触到弹簧时的速度为V,在弹性限度内,弹簧被小球作用的最大压缩量为h,那么弹簧在被压缩了h时,弹性势能为()A、mgHB、mghC、mgh+mv2D、mgH+mv2E、mg(h+H)思路点拨:这类问题较简单,从能的转化上看只是弹簧的弹性势能与物体的动、势能之间的转化,明确系统的初末状态由动能定理或能量守恒等知识即可解决。

解析:以系统机械能守恒为依据解题(1)将物体刚接触弹簧时作为系统的初状态,弹簧最大压缩时作为末状态,则这一过程系统减少的重力势能和动能mgh+mv 2全部转化为弹性势能E P ,所以选项C 正确; (2)从着眼系统从全过程看,物体从弹簧上方高H处自由下落至弹簧的最大压缩量h 时,重力势能减少了:=mg(h+H),由于末态系统速度为零,减少的重力势能最终全部转化为弹簧的弹性势能,所以选项E 正确。

相关文档
最新文档