小学奥数数论讲义 第十九讲 数论在方程、计数、最值、行程等问题中的应用强化篇

合集下载

小学奥数数论之整数分拆之最值应用(学生版)

小学奥数数论之整数分拆之最值应用(学生版)

5-2-2.整数分拆之最值应用教学目标1.熟练掌握整除的性质;2.运用整除的性质解最值问题;3.整除性质的综合运用求最值.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲模块一、2、3、5系列【例 1】要使156a b c分别是多少?abc能被36整除,而且所得的商最小,那么,,【例 2】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?【巩固】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末53位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?【例 3】各位数码是0、1或2,且能被225 整除的最小自然数是多少?【例 4】在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。

小学数学奥赛数论概率与统计数学建模

小学数学奥赛数论概率与统计数学建模

小学数学奥赛数论概率与统计数学建模数学是一门系统化的学科,被广泛应用于各个领域。

在小学阶段,培养学生对数学的兴趣和解决问题的能力是非常重要的。

数论、概率与统计以及数学建模是数学中的几个重要分支,通过学习这些内容,可以提高学生的思维能力和问题解决能力。

一、数论数论是研究整数性质及其相互关系的数学分支。

在小学数学奥赛中,数论是一个重点内容。

通过数论的学习,可以培养学生的逻辑思维和推理能力。

数论常见的内容包括质数与合数、整除关系、公约数与公倍数等。

学生可以通过解决一些有趣的数论问题,提高他们的数学思维能力。

例如,以下是一个经典的数论问题:证明素数无穷多。

素数指只能被1和自己整除的数,如2、3、5、7等。

通过使用反证法,可以证明素数是无穷多的。

假设只有有限个素数,把它们记作p1、p2、p3……pn。

然后构造一个新的数q = p1 × p2 × p3 × …… × p n + 1。

这个数q不是质数,因为它可以被n个素数之一整除。

同时,q也不能被这n个素数中的任何一个整除,因此q比p1、p2、p3……pn都要大,说明有无限个素数。

二、概率与统计概率与统计是数学中与随机事件相关的分支,它们经常在生活中被应用到。

小学数学奥赛中的概率与统计是基于学生的直观经验,培养学生对概率和统计的基本理解和应用能力。

概率主要研究随机事件的发生可能性大小,常用的概率表达方式是分数、百分数和小数。

学生可以通过投掷骰子、抽取扑克牌等实际操作,来理解概率的概念。

统计则是将数据进行收集、整理、分析和解释,以便从中得出结论。

学生可以通过收集某些具体数据,制作统计图表,并对数据进行分析和解读。

例如,学生可以进行一项实际概率实验,比如抛掷硬币。

通过多次抛掷硬币,记录正面和反面出现的次数,然后计算正反面出现的概率分别为多少。

通过这样的实验,学生可以直观地认识到概率和随机事件之间的关系。

三、数学建模数学建模是将数学方法应用于实际问题解决的过程。

小学奥数数论专题知识总结

小学奥数数论专题知识总结

数论基础知识小学数论问题,起因于除法算式:被除数÷除数=商……余数1.能整除:整除,因数与倍数,奇数与偶数,质数与合数,公因数与公倍数,分解质因数等;2.不能整除:余数,余数的性质与计算(余数),同余问题(除数),物不知数问题(被除数)。

一、因数与倍数1、因数与倍数(1)定义:定义1:若整数a能够被b整除,a叫做b的倍数,b就叫做a的因数。

定义2:如果非零自然数a、b、c之间存在a×b=c,或者c÷a=b,那么称a、b是c的因数,c是a、b 的倍数。

注意:倍数与因数是相互依存关系,缺一不可。

(a、b是因数,c是倍数)一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。

一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。

(2)一个数的因数的特点:①最小的因数是1,第二小的因数一定是质数;②最大的因数是它本身,第二大的因数是:原数÷第二小的因数(3)完全平方数的因数特征:①完全平方数的因数个数是奇数个,有奇数个因数的数是完全平方数。

②完全平方数的质因数出现次数都是偶数次;③1000以内的完全平方数的个数是31个,2000以内的完全平方数的个数是44个,3000以内的完全平方数的个数是54个。

(312=961,442=1936,542=2916)2、数的整除(数的倍数)(1)定义:定义1:一般地,三个整数a、b、c,且b≠0,如有a÷b=c,则我们就说,a能被b整除,或b能整除a,或a能整除以b。

定义2:如果一个整数a,除以一个整数b(b≠0),得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

(a≥b)(2)整除的性质:如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

如果a能被b整除,c是整数,那么a×c也能被b整除。

如果a能被b整除,b又能被c整除,那么a也能被c整除。

如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

小学六年级奥数_数论教师版word

小学六年级奥数_数论教师版word

除法等【例 1】5【分析】7或9,9,9,8,8.这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989.【例 2】 已知ABCA 是一个四位数,若两位数AB 是一个质数,BC 是一个完全平方数,CA是一个质数与一个不为1的完全平方数之积,则满足条件的所有四位数是_____________.【分析】 本题综合利用数论知识,因为AB 是一个质数,所以B 不能为偶数,且同时BC 是一个完全平方数,则符合条件的数仅为16、36,当1B =时,满足AB 是一个质数的数有11,31,41,61,71,时,此时同时保证CA 是一个质数与一个不为1的完全平方数之积,只有3163符合;当3B =,满足AB 是一个质数的数有13,23,43,53,73,83,此时同时保证第 5讲数论(一)CA 是一个质数与一个不为1的完全平方数之积,只有8368符合.【例 1】 2001个连续的自然数之和为a b c d ⨯⨯⨯,若a 、b 、c 、d 都是质数,则a b c d +++的【分析】A 的[拓展][分析][铺垫][分析]即得=37,2171327132【例 2】 N 为自然数,且1N +,2N +、……、9N +与690都有大于l 的公约数.N 的最小值为_______.【分析】 69023523=⨯⨯⨯,连续9个数中,最多有5个是2的倍数,也有可能有4个是2的倍数,如果有5个连续奇数,这5个连续奇数中最多有2个3的倍数,1个5的倍数,1个23的倍数,所以必然有一个数不是2、3、5、23的倍数,即与690没有大于l 的公约数.所以9个数中只有4个奇数,这个数中,有2个3的倍数,1个5的倍数,1个23的倍数,则1N +、3N +、5N +、7N +、9N +是偶数,剩下的4个数中2N +、8N +是3的倍数(5个偶数当中只有5N +是3的倍数),还有4N +、6N +的最小【例 3288和4x ,2或【例 4……,请求出这个数.【分析】 ⑴首先可以断定编号是2,3,4,5,6,7号的同学说的一定都对.不然,其中说的不对的编号乘以2后所得编号也将说得不对,这样就与“只有编号相邻的两位同学说的不对”不符合.因此,这个数能被2,3,4,5,6,7都整除. 其次利用整除性质可知,这个数也能被2×5,3×4,2×7都整除,即编号为10,12,14的同学说的也对.从而可以断定说的不对的编号只能是8和9. ⑵这个数是2,3,4,5,6,7,10,11,12,13,14,15的公倍数,由于上述十二个数的最小公倍数是60060,因为60060是一个五位数,而十二个数的其他公倍数均不是五位数,所以1号同学写的数就是60060.[拓展] 一个两位数有6个约数,且这个数最小的3个约数和为10,那么此数为几? [分析] 最小的三个约数中必然包括约数1,除去1以外另外两个约数和是9,由于9是1个奇数,所以这两个约数的奇偶性质一定是相反的,其中一定有一个是偶数,如果一个数包含偶约数,那么它一定是2的倍数,即2是它的约数.于是显然的,2是这个数第二小的约数,而第三小的约数是7,所以这个两位数是14的倍数,由于这个两位数的约数中不含3、4、5、6,所以这个数只能是14或98,其中有6个约数的是98. 【例 5】【分析】[铺垫][分析]225、【例 6】【分析】176A B 但是这四个数中任何两个数的最大公约数都不是11,由此得出C 不能是11.现在考虑17C =,那么18717170D =-=,A 和B 是170的约数,又要是17的倍数,有34,85,170三个数,其中只有34和85的最大公约数是17,因此,A 和B 分别是34和85,3485119A B +=+=.【例 7】 已知A 是一个有12个约数的合数,8A 、10A 有24个约数,12A 有40个约数,求15A 有多少个约数?【分析】 设235a b c A d =⨯⨯⨯,d 中不含有2、3、5因子,那么A 的约数个数有()()()11112a b c N +++=①(其中N 为d 的约数个数) 8A 的约数个数为()()()41124a b c N +++=,与①比较得到421a a +=+,于是2a =, )(31n a a +)()221212*********a a P P P P P P -+++++++++10A 的约数个数为()()()()()21241224a b c N b c N +++=++=,与①比较2312c c +=+,于是1c =, 12A 的约数个数为()()()()32110240a b c N b N +++=+=,与①比较得到221b b +=+,于是0b =,将a 、b 、c 代入①得到2N =,15A 的约数个数为()()()12236a b c N +++=.[铺垫]已知偶数A 不是4的整数倍,它的约数的个数为12,求4A 的约数的个数. [分析] 将A 分解,2A B =,其中B 是奇数,它的约数的个数为()1112N +=,(其中N 为B 的约数个数),则4A 的约数个数为()1324N +=.【例 8【例 9[ 3x .5x 3【例10】 志诚小学三四年级的学生人数比一二年级的学生人数多100人,但比五六年级的学生人数少53人,已知五六年级的学生人数和一二年级的学生人数都是完全平方数,那么志诚中学总的学生人数有多少人?(请写出最现实的答案)【分析】 五六年级的人数和一二年级的学生人数都是完全平方数,所以可以设五六年级的学生人数为2A ,一二年级的学生人数为2B ,则()()153A B A B =+-,而1533317=⨯⨯,所以,()A B +与()A B -可能为153和1;17和9;51和3,由这三个答案得到的A 和B 的值分别为:77和76,13和4,27和24,显然由前两组答案得到的学校人数不符合现实,所以27A =,24B =为最佳结果.此时五六年级的学生人数为729人,一二年级的学生人数为576人,三四年级的学生人数为676,学校的总人数为7295766761981++=人.[铺垫]能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?[分析]假设能找到,设这两个完全平方数分别为2A、2B,那么这两个完全平方数的差为()()-的奇偶性质相同,所以()()+-不A BA B A B+和()=+-,由于()54A B A BA B是4的倍数,就是奇数,所以54不可能等于两个平方数的差,所以这样的数找不到.【例11】一个正整数若能表示为两个正整数的平方差,则称这个数为“智慧数”,比如16=2253-,16就是一个“智慧数”,那么从1开始的自然数列中,第2003个“智慧数”是_______.【分析】22“智慧1~【例12】【分析】3或8.先设103+=+,当4k=,9时满足条件,但9k=时较大a k=+,则28196280280a k的两位数大于100不合题意.再设108k=,6时满足条件.=+,可求得1a k所以一共有(43,57)、(18,32)、(68,82)三组答案.(法二)()()()()22+-=+++-=+,()a a a a a a a141414287a+是100的倍数,所以287()7a+是25的倍数,符合条件的a只有18、43、68.1.两个连续自然数的平方和等于365,又有三个连续自然数的平方和等于365,则这两个连续自然数为_______,这三个连续自然数为_______.【分析】22101112365++=,所以这三个+=,所以这两个连续自然数为13、14,2221314365连续自然数为10、11、12.2.有n个自然数相加:123n aaaL (和恰好是三个相同数字组成的三位数),++++=那么n=__________.Array【分析】n为36.3.【分析】9A有b=,4.12个【分析】34=⨯,13=⨯,23 5.【分析】,即互311=⨯,143均这里推出一种分法:将26、35分为一组,91、34、33分为一组,而143、63、85分为一组.【分析】。

六年级奥数数论综合讲座

六年级奥数数论综合讲座

六年级奥数数论综合讲座关于六年级奥数数论综合讲座【分析与解】555555=5×111×1001数论综合进位制的概念、四则运算法则及整数在不同进位制之间的转化,利用恰当的进位制解数论问题.取整符号[]与取小数部分符号{}的定义与基本性质,包含这两种符号的算式与方程的求解.两次与分式不定方程,不便直接转化为不定方程的数论问题.各种数论证明题.典型问题【分析与解】注意到尾数,在足够大的进位制中有乘积的个位数字为4×5=20,但是现在为4,说明进走20-4=16,所以进位制为16的约数:16、8、4、2.2.求方程19[x]-96{x}=0的'解的个数.【分析与解】有{x}为一个数的小数部分,显然小于1,则96{x}小于96,而19[x]=96{x},所以19[x]小于96,即[x]小于,又[x]为整数,所以[x]可以取0,1,2,3,4,5,对应有6组解.4.将表示成两个自然数的倒数之和,请给出所有的答案.【分析与解】记标有1为第1号,序号顺时针的依次增大.当超过一圈时,编号仍然依次增加,如1号也是2001号,4001号,……4.对于两个不同的整数,如果它们的积能被和整除,就称为一对“好数”,例如70与30.那么在1,2,…,16这16个整数中,有“好数”多少对?6.甲、乙两人进行下面的游戏:两人先约定一个自然数N,然后由甲开始,轮流把0,1,2,3,4,5,6,7,8,9这10个数字中的一个填入图28-1的某个方格中,每一方格只能填一个数字,但各方格所填的数字可以重复.当6个方格都填有数字后,就形成一个六位数.如果这个六位数能被N整除,那么乙获胜;如果这个六位数不能被N整除,那么甲获胜.设N小于15,问当N取哪几个数时.乙能取胜?8.已知与的最大公约数是12,与的最小公倍数是300,与的最小公倍数也是300.那么满足上述条件的自然数,,共有多少组?10.圆周上放有N枚棋子,如图28-2所示,B点的那枚棋子紧邻A点的棋子.小洪首先拿走B点处的1枚棋子,然后沿顺时针方向每隔1枚拿走2枚棋子,这样连续转了10周,9次越过A.当将要第10次越过A处棋子取走棋子时,小洪发现圆周上余下20多枚棋子.若N是14的倍数,请精确算出圆周上现在还有多少枚棋子?【分析与解】设圆周上余枚棋子,从第9次越过A处拿走2枚棋子到第10次将要越过A处棋子时,小洪拿了2 枚棋子,所以在第9次将要越过A处棋子时,圆周上有3 枚棋子..12.是否存在一个六位数A,使得A,2A,3A,…,500000A中任意一个数的末尾6个数码不全相同?a9876542.老师在黑板上依次写了三个数21、7、8,现在进行如下的操作,每次将这三个数中的某些数加上2,其他数减去1,试问能否经过若干次这样的操作后,使得:3.对于n个奇质数,如果其中任意奇数个数的和仍是质数,那么称这些数构成“奇妙数组”,而n就是这个数组的“阶数”.例如11,13,17就是“奇妙数组”,因为11,13,17和11+13+17=41都是质数.有7,13,11,23满足(和依次为47,4l,43,31).它们的乘积为7×13×11×23=23023.所以4阶“奇妙数组”的4个数最小乘积为23023.评注:四阶的“奇妙数组”还有很多,如97,13,41,53.它们的三个数和依次为107,191,163,151均是质数.。

小学奥数数论讲义 8-质数、合数与两大约数定理强化篇

小学奥数数论讲义 8-质数、合数与两大约数定理强化篇

质数、合数与两大约数定理1.质数、合数⑴除了2其余的质数都是奇数;⑵除了2和5,其余的质数个位数字只能是1,3,7或9;⑶如何判断一个数是否是质数?⑷常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个。

2.数字拆分—分解质因式相关名词:质因数、互质数、分解质因数例如:三个连续自然数的乘积是210,求这三个数。

210=2⨯3⨯5⨯7可知这三个数是5、6和7。

分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征。

3.约数个数定理唯一分解定理:任何一个大于1的自然数n都可以写成质数的连乘积例如:12=2⨯2⨯3=22⨯3约数个数定理:约数个数:(2+1)⨯(1+1)=6所有约数的和:(20+21+22)⨯(30+31)【例 1】两个质数之和为39,求这两个质数的乘积是多少?【巩固1】(2004年希望杯第二届五年级一试第8题,5分)a,b,c,d都是质数,并且a+b=33,b+c=44,c+d=66,那么cd=。

【巩固2】7个连续质数从大到小排列是a、b、c、d、e、f、g。

已知它们的和是偶数,那么d是多少?【例 2】(2008年101中学考题)将200分拆成10个质数之和,要求其中最大的质数尽可能的小,那么此时这个最大的质数是,如要求最大的质数尽可能的大,那么此时这个最大的质数为。

【巩固】(2010年迎春杯六年级初试试题)用0~9这10个数字组成若干个合数,每个数字都恰好用一次,那么这些合数之和的最小值是。

【例 3】下图为一个长方体,它的正面和上面的面积之和为209,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?例3图【巩固】一个长方体的长、宽、高是连续的3个自然数,它的体积是39270立方厘米,那么这个长方体的表面积是多少平方厘米?【例 4】数160的约数个数是多少?它们的积呢?【巩固】筐里有300个桃子,如果不是一次全部拿出,也不一个一个地拿,要求每次的个数同样多,拿到最后正好不多不少,问共有多少种不同的拿法?【例 5】求在1到100中,恰好有10个约数的所有自然数。

小学奥数知识点梳理1——数论

小学奥数知识点梳理1——数论

小学奥数知识点梳理1——数论数论是研究整数及其性质的学科。

其中包括奇偶、整除、余数、质数合数、约数倍数、平方、进制和位值等方面的内容。

首先,奇偶性是整数的基本属性之一,一个整数要么是奇数,要么是偶数。

对于奇偶数的运算性质,有以下规律:(1)奇数加减奇数得偶数,偶数加减偶数得偶数,奇数加减偶数得奇数,偶数加减奇数得奇数;(2)奇数个奇数的和或差为奇数,偶数个奇数的和或差为偶数,任意多个偶数的和或差总是偶数;(3)奇数乘奇数得奇数,偶数乘偶数得偶数,奇数乘偶数得偶数;(4)若干个整数相乘,其中有一个因数是偶数,则积是偶数;如果所有的因数都是奇数,则积是奇数;(5)偶数的平方能被4整除,奇数的平方被4除余1.总之,几个整数相加减,运算结果的奇偶性由算式中奇数的个数所确定。

其次,整除是数论中的重要概念。

要掌握能被30以下质数整除的数的特征。

例如,被2整除的数的特征为它的个位数字之和可以被2整除,被3或9整除的数的特征为它的各位数字之和可以被3或9整除,被5整除的数的特征为它的个位数字之和可以被5整除。

而对于被7、11、13整除的数的特征,可以使用关键性式子7×11×13=1001.判定一个数能否被7或11或13整除,只需把这个数的末三位与前面隔开,分成两个独立的数,取它们的差(大减小),看它是否被7或11或13整除。

此法则可以连续使用。

最后,还有进制和位值等方面的内容。

其中,进制是指计数的基数,如十进制、二进制、八进制和十六进制等。

而位值则是指数位所代表的数值大小,如十进制数中的个位、十位、百位等。

掌握进制和位值的概念,可以更好地理解数的表示和计算方法。

总之,数论是一门重要的数学学科,涉及到整数及其性质的多个方面。

掌握数论的基本概念和规律,可以更好地理解和应用数学知识。

N=xxxxxxxx,判断N能否被17整除。

由于429=25×17+4,所以N不能被17整除。

N=xxxxxxx,判断N能否被17整除。

六年级奥数最详细全面-数论教师版

六年级奥数最详细全面-数论教师版

六年级奥数最详细全面-数论教师版数论数论问题本身范围很广,我们考察小学奥数的内容,完全平方数等知识点跟基础课内容结合很紧密,但又是小奥的重难点,我们有必要加以重视.本讲需要学生掌握的知识点有:平方数性质、平方差公式、约数个数定理、约数和定理、辗转相除法等.本讲内容中,平方数部分是数论中最基本的部分,学生应当学会熟练运用平方差公式,对于约数和倍数部分,老师应当更注重其中的逻辑过程,可以适当用一些代数的方法将题目讲的更明白和透彻.专题回顾【例 1】一个5位数,它的各位数字和为43,且能被11整除,求所有满足条件的5位数.【分析】现在我们有两个入手的选择,可以选择数字和,也可以选择被11整除,但我们发现被11整除性质的运用要有具体的数字,而现在没有,所以我们选择先从数字和入手.5位数数字和最大的为9×5=45,这样43的可能性只有9,9,9,9,7或9,9,9,8,8.这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989.【例 2】已知ABCA 是一个四位数,若两位数AB 是一个质数,BC 是一个完全平方数,CA 是一个质数与一个不为1的完全平方数之积,则满足条件的所有四位数是_____________.【分析】 本题综合利用数论知识,因为AB 是一个质数,所以B 不能为偶数,且同时BC 是一个完全平方数,则符合条件的数仅为16、36,当1B =时,满足AB 是一个质数的数有11,31,41,61,71,时,此时同时保证CA 是一个质数与一个不为1的完全平方数之积,只有3163符合;当3B =,满足AB 是一个质数的数有13,23,43,53,73,83,此时同时保证CA 是一个质数与一个不为1的完全平方数之积,只有8368符合.【例 1】 2001个连续的自然数之和为a b c d ⨯⨯⨯,若a 、b 、c 、d 都分解质因数专题精讲是质数,则a b c d +++的最小值是多少?【分析】 遇到等量关系的表述时,先将其转化为数学语言.设这2001个连续自然数中最小的一个是A ,则最大的一个是2000A +(遇到多个连续自然数问题,转化时一般均采用假设法,自己需要的量,题目中没有时,可以设未知数),则它们的和是:()()()20002001100020011000323292A A A A ++=+⨯=+⨯⨯⨯,则()1000A +是质数,所以A 的最小值是9.a b c d +++的最小值是:1009323291064+++=.[拓展] 101个连续的非零自然数的和恰好是四个不同的质数的积,那么这个最小的和应该是_______. [分析] 设这101个自然数中最小的数为a ,则101个连续自然数的和为:a +(a +1)+(a +2)+……+(a +100)=(a +a +100)×101÷2=(a +50)×101因为101是质数,所以a +50必须是3个质数的乘积,要使和最小.经检验a +50=66=2×3×11最小,所以和最小为66×101=6666.[铺垫] 已知□△×△□×□〇×☆△=□△□△□△,其中□、△、〇、☆分别表示不同的数字,那么四位数〇△□☆是多少?[分析] 因为□△□△□△=□△10101⨯,所以在题述等式的两边同时约去□△即得△□×□〇×☆△=10101.作质因数分解得10101371337=⨯⨯⨯,由此可知该数分解为3个两位数乘积的方法仅有211337⨯⨯.注意到两位数△□的十位数字和个位数字分别在另外的两位数□〇和☆△中出现,所以△□=13,□〇=37,☆△=21.即〇=7,△=1,□=3,☆=2,所求的四位数是7132.【例 2】N为自然数,且1N+与690都有大N+、……、9N+,2于l的公约数.N的最小值为_______.【分析】69023523=⨯⨯⨯,连续9个数中,最多有5个是2的倍数,也有可能有4个是2的倍数,如果有5个连续奇数,这5个连续奇数中最多有2个3的倍数,1个5的倍数,1个23的倍数,所以必然有一个数不是2、3、5、23的倍数,即与690没有大于l的公约数.所以9个数中只有4个奇数,这个数中,有2个3的倍数,1个5的倍数,1个23的倍数,则1N+、9N+是偶数,剩下的4N+、5N+、7N+、3个数中2N+是3的倍数(5个偶数当中只有N+、8N+一个是5的倍N+、6N+是3的倍数),还有45数,一个是23的倍数.剩下的可以用中国剩余定理求解,5N+是2和3的倍数,且相邻两个数中一个是23的倍数,另一个是5的倍数,显然524N+=是最小解,所以N的最小值为19.【例 3】 已知,甲乙两数的最小公倍数是288,最大公约数是4,甲乙两数不是288和4中的数,那么甲乙两数的乘积为多少?和为多少?【分析】 设甲乙两个数为4x ,4y ,(x 和y 都不等于1或72),则x ,y 两数互质,于是4x ,4y 的最小公倍数为4xy ,所以288724xy ==,327223=⨯,由于x ,y 互质,所以2或3不可能在x ,y 的因子中都出现,所以x ,y 一个是8一个是9,所以两数的乘积等于44441152y x xy ⨯=⨯=,和为()4448968x y +=⨯+=.【例 4】 有15位同学,每位同学都有编号,它们是1号到15号.1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说“这个数能被3整除”,……,依次下去,每位同学都说,这个数能被他的编号数整除,1号作了一一验证,只有编号相邻的两位同学说得不对,其余同学都对,问:⑴说得不对的两位同学,他们的编号是哪两个连续自然数?⑵如果约数、倍数告诉你,1号写的数是五位数,请求出这个数.【分析】⑴首先可以断定编号是2,3,4,5,6,7号的同学说的一定都对.不然,其中说的不对的编号乘以2后所得编号也将说得不对,这样就与“只有编号相邻的两位同学说的不对”不符合.因此,这个数能被2,3,4,5,6,7都整除.其次利用整除性质可知,这个数也能被2×5,3×4,2×7都整除,即编号为10,12,14的同学说的也对.从而可以断定说的不对的编号只能是8和9.⑵这个数是2,3,4,5,6,7,10,11,12,13,14,15的公倍数,由于上述十二个数的最小公倍数是60060,因为60060是一个五位数,而十二个数的其他公倍数均不是五位数,所以1号同学写的数就是60060.[拓展]一个两位数有6个约数,且这个数最小的3个约数和为10,那么此数为几?[分析]最小的三个约数中必然包括约数1,除去1以外另外两个约数和是9,由于9是1个奇数,所以这两个约数的奇偶性质一定是相反的,其中一定有一个是偶数,如果一个数包含偶约数,那么它一定是2的倍数,即2是它的约数.于是显然的,2是这个数第二小的约数,而第三小的约数是7,所以这个两位数是14的倍数,由于这个两位数的约数中不含3、4、5、6,所以这个数只能是14或98,其中有6个约数的是98.【例 5】 两数乘积为2800,而且己知其中一数的约数个数比另一数的约数个数多1,那么这两个数分别是___________、___________.【分析】 422800257=⨯⨯,由于其中一数的约数个数比另一数的约数个数多1,所以这两个数中有一个数的约数为奇数个,这个数为完全平方数.故这个数只能为22、42、25、2225⨯或4225⨯.经检验,只有两数分别为42和257⨯时符合条件,所以这两个数分别是16和175.[铺垫] 在三位数中,恰好有9个约数的数有多少个? [分析] 91933=⨯=⨯,所以9个约数的数可以表示为一个质数的8次方,或者两个不同质数的平方的乘积,前者在三位数中只有256符合条件,后者中符合条件有100、196、484、676、225、441,所以符合条件的有7个. 约数个数定理:设自然数n 的质因子分解式如312123n a a a a n p p p p .那么n 的约数个数为()()()()()1231111nd n a a a a =++++自然数的约数和为【例 6】 两个整数A 、B 的最大公约数是C ,最小公倍数是D ,并且已知C 不等于1,也不等于A 或B ,187C D +=,那么A B +等于多少?【分析】 最大公约数C ,当然是最小公倍数D 的约数,因此C 是187的约数,1871117=⨯,C 不等于1,只能是11C =或者17C =.如果11C =,那么18711176D =-=.A 和B 都是176的约数,A 和B 不能是11,只能是22,44,88,176这四个数中的两个,但是这四个数中任何两个数的最大公约数都不是11,由此得出C 不能是11.现在考虑17C =,那么18717170D =-=,A 和B 是170的约数,又要是17的倍数,有34,85,170三个数,其中只有34和85的最大公约数是17,因此,A 和B 分别是34和85,3485119A B +=+=.【例 7】 已知A 是一个有12个约数的合数,8A 、10A 有24个约数,12A 有40个约数,求15A 有多少个约数?【分析】 设235a b cA d =⨯⨯⨯,d 中不含有2、3、5因子,那么A 的约数个数有()()()11112a b c N +++=①(其中N 为d 的约数个数)8A 的约数个数为()()()41124a b c N +++=,与①比较得到421a a +=+,于是2a =, 10A的约数个数为()()()()()21241224a b c N b c N +++=++=,与①比较2312cc +=+,于是1c =, 12A的约数个数为()()()()32110240a b c N b N +++=+=,与①比较得到221b b +=+,于是0b =,将a 、b 、c 代入①得到2N =,15A 的约数个数为()()()12236a b c N +++=.[铺垫]已知偶数A 不是4的整数倍,它的约数的个数为12,求4A 的约数的个数.[分析] 将A 分解,2A B =,其中B 是奇数,它的约数的个数为()1112N +=,(其中N 为B 的约数个数),则4A 的约数个数为()1324N +=.【例 8】 要使129m n ⨯这个积是56的倍数,并要使m n +最小,则___,___m n ==.【分析】 分析题意,为同一个数可以由两种乘积的形式表示.关于因数乘积表示形式,类比联系我们所学的知识点:质因数的唯一分解式:()3121231,212......,...,n b b b b n n n a p p p p p p p b b b =⨯⨯⨯⨯为质因数,为自然数则2212923m n m m n +⨯=⨯是555623=⨯的倍数,则得到()25,25m m n m n ≥⎧⎨+≥⎩为整数,使m n +最小,则31m n =⎧⎨=⎩.【例 9】 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【分析】 完全平方数,所有质因数必成对出现.327223266=⨯=⨯⨯,所以满足条件的数必为某个完全平方数的2倍,2313119222008232322048⨯⨯=<<⨯⨯=,共31个. 完全平方数[铺垫]有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为_____.[分析]考查平方数和立方数的知识点,同时涉及到数量较少的连续自然数问题,设未知数的时候有技巧.设中间数是x,则它们的和为5x, 中间三数的和为3x.5x是平方数,设2231535==⨯⨯是立方数,x a a=⨯,则25x a=.22x a55所以2a至少含有3和5的质因数各2个, 2a至少是225,中间的数至少是1125.最小数的最小值为1123.【例10】志诚小学三四年级的学生人数比一二年级的学生人数多100人,但比五六年级的学生人数少53人,已知五六年级的学生人数和一二年级的学生人数都是完全平方数,那么志诚中学总的学生人数有多少人?(请写出最现实的答案)【分析】五六年级的人数和一二年级的学生人数都是完全平方数,所以可以设五六年级的学生人数为2A,一二年级的学生人数为2B,则()()=+-,而1533317153A B A B=⨯⨯,所以,()-可能为153和1;17和9;51和3,由这A BA B+与()三个答案得到的A和B的值分别为:77和76,13和4,27和24,显然由前两组答案得到的学校人数不符合现实,所以27A=,24B=为最佳结果.此时五六年级的学生人数为729人,一二年级的学生人数为576人,三四年级的学生人数为676,学校的总人数为++=人.7295766761981[铺垫]能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?[分析] 假设能找到,设这两个完全平方数分别为2A 、2B ,那么这两个完全平方数的差为()()54A B A B =+-,由于()A B +和()A B -的奇偶性质相同,所以()()A B A B +-不是4的倍数,就是奇数,所以54不可能等于两个平方数的差,所以这样的数找不到.【例11】 一个正整数若能表示为两个正整数的平方差,则称这个数为“智慧数”,比如16=2253-,16就是一个“智慧数”,那么从1开始的自然数列中,第2003个“智慧数”是_______.【分析】 22a b -=()()a b a b +-.因为()a b +与()a b -同奇同偶,所以“智慧数”是奇数或是4的倍数.对于任何大于1的奇数21n +(1n ≥),当1a n =+,b n =时,都有22a b -=22(1)n n +-=21n +.即任何大于1的奇数都是“智慧数”.对于任何大于4的4的倍数4n (2n ≥),当1a n =+,1b n =-时,都有22a b -=22(1)(1)n n +--=4n .即任何大于4的4的倍数都是“智慧数”.除了1和4以外,非“智慧数”都是不能被4整除的偶数,“智慧数”约占全部正整数的34.3200326714÷≈,为26724668÷=,加上1和4这两个非“智慧数”,在1~2672中共有非“智慧数”668+2=670(个),有“智慧数”2672-670=2002(个).所以第2003个“智慧数”是2673.【例12】 (2008年清华附中入学考试题)有两个两位数,它们的差是14,将它们分别平方,得到的两个平方数的末两位数(个位数和十位数)相同,那么这两个两位数是 (请写出所有可能的答案). 【分析】(法一)设这两个数分别是a 和14a +,则2a 与()214a +两个数的末两位相同,即2a 与()228196a a ++的末两位相同,所以()28196a +是100的倍数,a 个位只能是3或8.先设103a k =+,则28196280280a k +=+,当4k =,9时满足条件,但9k =时较大的两位数大于100不合题意.再设108a k =+,可求得1k =,6时满足条件.所以一共有(43,57)、(18,32)、(68,82)三组答案. (法二)()()()()22141414287a a a a a a a +-=+++-=+,()287a +是100的倍数,所以()7a +是25的倍数,符合条件的a 只有18、43、68. 1. 两个连续自然数的平方和等于365,又有三个连续自然数的平方和等于365,则这两个连续自然数为_______,这三个连续自然数为_______.【分析】 221314365+=, 所以这两个连续自然数为13、14,222101112365++=101112巩固精练2.有n 个自然数相加:123n aaa ++++= (和恰好是三个相同数字组成的三位数),那么n =__________.【分析】 (1)1232n n n aaa +++++==,(1)221112337n n aaa a a +==⨯⨯=⨯⨯⨯,由于a 是个一位数,n 与1n +是两个相邻的整数,只有当6a =,36n =时满足题意,所以所求的n 为36.3. 已知A 有12个约数,9A 有24个约数,15A 有36个约数,5A有多少个约数?【分析】 设35a b A B =,有()()1112a b N ++=个约数,(N 为B 的约数个数),于是9A 有()()3124a b N ++=个约数,所以1a =,15A 有()3236b N +=个约数,由此求得0b =,6N =,所以5A 有()()12424a b N N ++==个约数.4. A 、B 两数都只含有质因数3和2,它们的最大公约数是18.已知A 有12个约数,B 有8个约数,那么A B +=______.【分析】 121823=⨯,A 、B 至少含有两个3和一个2.因为A 有12个约数,121122634=⨯=⨯=⨯,所以A 可能是1523⨯、3223⨯或2323⨯,B 有8个约数,81824=⨯=⨯,所以1323B =⨯,于是A 只能是3223⨯,故32132323126A B +=⨯+⨯=.5. 把26、33、34、35、63、85、91、143分成若干组,要求每一组中任意两个数的最大公约数为1.那么最少要分几组?【分析】 本题是一道关于最大公约数的问题.我们知道两个数的最大公约数为1,即互质,相当于它们的质因数分解式中没有相同的质因数.这就提示我们将题目所给的数字质因数分解.将题目中的数字质因数分解如下:26213=⨯,33311=⨯,34217=⨯,3557=⨯,26337=⨯,85517=⨯,91713=⨯,1431113=⨯.由于题目要求将这些数字分组,满足每组中任意两个数的最大公约数为1,而26、91、143均含质因数13,因此它们两两不在同一组,于是这些数至少应分为3组.我们这里推出一种分法:将26、35分为一组,91、34、33分为一组,而143、63、85分为一组.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十九讲数论在方程、计数、最值、行程等问题中的应用强化【例1】
一个圆的周长为60厘米,三个点把这个圆圈分成三等分,3只甲虫A、B、C按顺时针方向分别在这三个点上,它们同时按逆时针方向沿着圆圈爬行,A的速度为每秒5厘米,B 的速度为每秒1.5厘米,C的速度为每秒2.5厘米。

问3只甲虫爬出多长时间后第一次到达同一位置。

【例2】证明:形如11,111,1111,11111,…的数中没有完全平方数。

【例3】
在下面的□中填入数字,使等式成立(注:每个□内只允许填0,1,2,…,9中的一个数字,允许重复)□□×□+□=101,那么满足以上要求的等式可以填出______个。

【例4】各位数字均不大于5,且能被99整除的4位数,共有多少个?
1。

相关文档
最新文档