方程、计数、最值、行程等问题中的数论综合(上)

合集下载

小学奥数七大模块详解(超详细结构图)

小学奥数七大模块详解(超详细结构图)

小学奥数七大模块详解(超详细结构图)本文介绍了小学奥数的七大模块,包括计算、数论、几何、行程、应用题、计数和杂题。

模块一:计算模块这个模块包括速算与巧算、分数小数四则混合运算及繁分数运算、循环小数化分数与混合运算、等差及等比数列、计算公式综合、分数计算技巧之裂项、换元、通项归纳、比较与估算、定义新运算和解方程。

模块二:数论模块这个模块包括质数与合数、因数与倍数、数的整除特征及整除性质、位值原理、余数的性质、同余问题、中国剩余定理(逐级满足法)、完全平方数、奇偶分析、不定方程、进制问题和最值问题。

模块三:几何模块这个模块包括直线型和曲线型两部分。

直线型包括长度与角度、格点与割补、三角形等积变换与一半模型、勾股定理与弦图和五大模型。

曲线型包括圆与扇形的周长与面积和图形旋转扫过的面积问题。

此外,还包括立体几何,包括立体图形的面积与体积、平面图形旋转成的立体图形问题、平面展开图和液体浸物问题。

模块四:行程模块这个模块包括简单相遇与追及问题、环形跑道问题、流水行船问题、火车过桥问题、电梯问题、发车间隔问题、接送问题、时钟问题、多人相遇与追及问题、多次相遇追及问题和方程与比例法解行程问题。

模块五:应用题模块这个模块包括列方程解应用题、分数、百分数应用题、比例应用题、工程问题、浓度问题、经济问题和牛吃草问题。

模块六:计数模块这个模块包括枚举法之分类枚举、标数法、树形图法、分类枚举之整体法、对应法、排除法、加乘原理、排列组合和容斥原理。

小学奥数七大模块详解模块一:从简单情况入手在解决问题时,我们可以从简单情况入手,逐步深入,找到规律,从而解决更复杂的问题。

模块二:对应与转化思想对应与转化思想是一种常用的解决问题的方法,通过将问题转化为另一种形式,或者与另一个问题进行对应,从而得出答案。

模块三:从反面与从特殊情况入手思想有时候,我们可以通过考虑问题的反面或特殊情况来解决问题。

这种思想可以帮助我们发现问题的本质,从而找到解决问题的方法。

10_数论综合(一)

10_数论综合(一)

涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.1.如果把任意n个连续自然数相乘,其积的个位数字只有两种可能,那么n是多少?【分析与解】我们知道如果有5个连续的自然数,因为其内必有2的倍数,也有5的倍数,则它们乘积的个位数字只能是0。

所以n小于5.:当n为4时,如果其内含有5的倍数(个位数字为O或5),显然其内含有2的倍数,那么它们乘积的个位数字为0;如果不含有5的倍数,则这4个连续的个位数字只能是1,2,3,4或6,7,8,9;它们的积的个位数字都是4;所以,当n为4时,任意4个连续自然数相乘,其积的个位数字只有两科可能.:当n为3时,有1×2×3的个位数字为6,2×3×4的个位数字为4,3×4×5的个位数字为0,……,不满足.:当n为2时,有1×2,2×3,3×4,4×5的个位数字分别为2,6,4,0,显然不满足.至于n取1显然不满足了.所以满足条件的n是4.2.如果四个两位质数a,b,c,d两两不同,并且满足,等式a+b=c+d.那么,(1)a+b的最小可能值是多少?(2)a+b的最大可能值是多少?【分析与解】两位的质数有11,13,17,19,23,29,3l,37,41,43,47,53,59,6l,67,71,73,79,83,89,97.可得出,最小为11+19=13+17=30,最大为97+71=89+79=168.所以满足条件的a+b最小可能值为30,最大可能值为168.3.如果某整数同时具备如下3条性质:①这个数与1的差是质数;②这个数除以2所得的商也是质数;③这个数除以9所得的余数是5.那么我们称这个整数为幸运数.求出所有的两位幸运数.【分析与解】条件①也就是这个数与1的差是2或奇数,这个数只能是3或者偶数,再根据条件③,除以9余5,在两位的偶数中只有14,32,50,68,86这5个数满足条件.其中86与50不符合①,32与68不符合②,三个条件都符合的只有14.所以两位幸运数只有14.4.在555555的约数中,最大的三位数是多少?【分析与解】555555=5×111×1001=3×5×7×11×13×37显然其最大的三位数约数为777.5.从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形.按照上面的过程不断地重复,最后剪得正方形的边长是多少毫米?【分析与解】从长2002毫米、宽847毫米的长方形纸板上首先可剪下边长为847毫米的正方形,这样的正方形的个数恰好是2002除以847所得的商.而余数恰好是剩下的长方形的宽,于是有:2002÷847=2……308,847÷308=2……231,308÷231=1……77.231÷77=3.不难得知,最后剪去的正方形边长为77毫米.6.已知存在三个小于20的自然数,它们的最大公约数是1,且两两均不互质.请写出所有可能的答案.【分析与解】设这三个数为a、b、c,且a<b<c,因为两两不互质,所以它们均是合数.小于20的合数有4,6,8,9,10,12,14,15,16,18.其中只含1种因数的合数不满足,所以只剩下6,10,12,14,15,18这6个数,但是14=2×7,其中质因数7只有14含有,无法找到两个不与14互质的数.所以只剩下6,10,12,15,18这5个数存在可能的排列.所以,所有可能的答案为(6,10,15);(10,12,15);(10,15,18).7.把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公约数是1.那么最少要分成多少组?【分析与解】26=2×13,33=3×11,34=2×17,35=5×7,63=23×7,85=5×17,91=7×13,143=11×13.由于质因数13出现在26、91、143三个数中,故至少要分成三组,可以分成如下3组:将26、33、35分为一组,91、34、33分为一组,而143、63、85分为一组.所以,至少要分成3组.8.图10-1中两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米.两只甲虫同时从A出发,按箭头所指的方向以相同的速度分别爬了几圈时,两只甲虫首次相距最远?【分析与解】圆内的任意两点,以直径两端点得距离最远.如果沿小圆爬行的甲虫爬到A点,沿大圆爬行的甲虫恰好爬到B点,两甲虫的距离便最远.小圆周长为π×30=307r,大圆周长为48π,一半便是24π,30与24的最小公倍数时120.120÷30=4.120÷24=5.所以小圆上甲虫爬了4圈时,大圆上甲虫爬了5个12圆周长,即爬到了过A的直径另一点B.这时两只甲虫相距最远.9.设a与b是两个不相等的非零自然数.(1)如果它们的最小公倍数是72,那么这两个自然数的和有多少种可能的数值?(2)如果它们的最小公倍数是60,那么这两个自然数的差有多少种可能的数值?【分析与解】 (1)a与b的最小公倍数72=2×2×2×3×3,有12个约数:1,2,3,4,6,8,9,12,18,24,36,72.不妨设a>b.:当a=72时,b可取小于72的11种约数,a+b≥72+1=73;:当a=36时,b必须取8或24,a+b的值为44或60,均不同第一种情况中的值;:当a=24时,b必须取9或18,a+b的值为33或42,均不同第一、二种情况中的值;当a=18时,b必须取8,a+b=26,不同于第一、二、三种情况的值;:当a=12时,b无解;:当a=9时,b必须取8,a+b=17,不同于第一、二、三、四情况中的值.总之,a+b可以有ll+2+2+1+1=17种不同的值.(2)60=2×2×3×5,有12个约数:1,2,3,4,5,6,10,12,15,20,30,60.a、b为60的约数,不妨设a>b.:当a=60时,b可取60外的任何一个数,即可取11个值,于是a-b可取11种不同的值:59,58,57,56,55,54,50,48,45,40,30;.当a=30时,b可取4,12,20,于是a-b可取26,18,10;:当a=20时,b可取3,6,12,15,所以a-b可取17,14,8,5;当a=15时,b可取4,12,所以a-b可取11,3;: 当a=12时,b可取5,10,所以a-b可取7,2.总之,a-b可以有11+3+4+2+2=22种不同的值.10.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳142米,黄鼠狼每次跳324米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔3128米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?【分析与解】由于3128÷142=114,3128÷324=92.所以狐狸跳4个3128米的距离时将掉进陷阱,黄鼠狼跳2个3128米的距离时,将掉进陷阱.又由于它们都是一秒钟跳一次,因此当狐狸掉进陷阱时跳了11秒,黄鼠狼掉进陷阱时跳了9秒,因此黄鼠狼先掉进陷阱,此时狐狸跳了9秒.距离为9×142=40.5(米).11.在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)【分析与解】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.1~198之间只有1,2,3,…,17,198(余O)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这样的数.12.甲、乙、丙三数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A 除乙数所得余数是A除丙数所得余数的2倍.求A等于多少?【分析与解】由题意知4倍393除以A的余数,等于2倍939除以A的余数,等于甲603除以A的余数.即603÷A=a……k;(2×939)÷A=b……k;(4×393)÷A=c……k.于是有(1878-603)÷A=b-a;(1878-1572)÷A=b-c;(1572-603)÷A=c-a.所以A为1275,306,969的约数,(1275,306,969)=17×3=51.于是,A可能是51,17(不可能是3,因为不满足余数是另一余数的4倍).当A为51时,有603÷51=11……42;939÷51=18……21;393÷51=7……36.不满足;当A为17时,有603÷17=35……8;939÷17=55……4;393÷17=23……2;满足.所以,除数4为17.13.证明:形如11,111,1111,11111,…的数中没有完全平方数.【分析与解】我们知道奇数的完全平方数是奇数,偶数的完全平方数为偶数,而奇数的完全平方数除以4余1,偶数的完全平方数能被4整除.现在这些数都是奇数,它们除以4的余数都是3,所以不可能为完全平方数.4n+4n+1,显然除以4余1.评注:设奇数为2n+1,则它的平方为214.有8个盒子,各盒内分别装有奶糖9,17,24,28,30,31,33,44块.甲先取走一盒,其余各盒被乙、丙、丁3人所取走.已知乙、丙取到的糖的块数相同且为丁的2倍.问:甲取走的一盒中有多少块奶糖?【分析与解】我们知道乙、丙、丁三人取走的七盒中,糖的块数是丁所取糖块数的5倍.八盒糖总块数为9+17+24+28+30+31+33+44=216.从216减去5的倍数,所得差的个位数字只能是1或6.观察各盒糖的块数发现,没有个位数字是6的,只有一个个位数字是1的数31.因此甲取走的一盒中有3l块奶糖.15.在一根长木棍上,有三种刻度线.第一种刻度线将木棍分成10等份;第二种将木棍分成12等份;第三种将木棍分成15等份.如果沿每条刻度线将木棍锯断,那么木棍总共被锯成多少段?【分析与解】 10,12,15的最小公倍数[10,12,15]=60,把这根木棍的160作为一个长度单位,这样,木棍10等份的每一等份长6个单位;12等份的每等份长5个单位;15等份的每等份长4单位.不计木棍的两个端点,木棍的内部等分点数分别是9,11,14(相应于10,12,15等份),共计34个.由于5,6的最小公倍数为30,所以10与12等份的等分点在30单位处相重,必须从34中减1.又由于4,5的最小公倍数为20,所以12与15等份的等分点在20单位和40单位两处相重,必须再减去2.同样,6,4的最小公倍数为12,所以15与10等份的等分点在12,24,36,48单位处相重,必须再减去4.由于这些相重点各不相同,所以从34个内分点中减去1,再减去2,再减去4,得27个刻度点.沿这些刻度点把木棍锯成28段.。

数论常见题型与解题方法归纳(1)中级版

数论常见题型与解题方法归纳(1)中级版

数论常见题型与解题方法归纳(1)中级版数论是数学的一个重要分支,研究整数的性质和关系。

在竞赛和考试中,数论题型占有很重要的比例。

本文将介绍数论中一些常见的题型和解题方法。

1.质数和因数分解质数是指除了1和自身外没有其他因数的整数。

因数分解是将一个整数分解为若干个质数的乘积。

在解数论问题中,经常需要找出一个数的质因数以及对其进行因数分解。

解题方法:使用试除法来判断一个数是否是质数,即判断其能否被2到√n 之间的整数整除。

使用素数筛法来求得一定范围内的所有质数,便于后续计算。

使用因数分解来对一个数进行分解,不断将其除以质数,直到无法再继续分解为止。

2.同余同余是指两个整数对同一个模数取余的结果相等。

同余在数论中有广泛应用,可以用于求解线性同余方程、模运算等问题。

解题方法:使用同余定理,例如费马小定理和中国剩余定理,来化简同余方程,求解未知数的取值范围。

利用同余关系进行模运算,加速计算过程。

3.数字性质数字性质包括周期性、循环小数、尾数规律等。

了解数字的性质可以帮助我们解决一些数论问题。

解题方法:观察数字的周期性,寻找规律,找出循环节的长度和循环节的具体数值。

分析数字的尾数规律,例如只有0、1、5、6结尾的平方数,可以根据这个规律简化计算。

4.等式和方程解数论问题中常常涉及到等式和方程。

有时我们需要证明等式成立,有时我们需要求解未知数的具体取值。

解题方法:利用数论定理和性质,使用等价关系进行等式的转化和展开。

利用同余运算和数的性质来求解方程,推导出未知数的取值。

以上是数论常见题型与解题方法的简要归纳。

数论作为一个深奥且重要的数学分支,需要多进行练习和实践,不断熟悉和掌握相关的概念和技巧。

希望本文对您有所帮助。

数论在方程、计数、最值、行程等问题中的应用-1

数论在方程、计数、最值、行程等问题中的应用-1

六年级
1
【例 1】一个正整数A ,若满足:A ,2⨯A ,3⨯A ,…,99⨯A 这99个数除以100的余数各不相同,则称
A 为“末尾好数”。

1,2,3,…,2010中有 个“末尾好数”。

【例 2】(2008年实验中学考题)在1,2,3,…,7,8的任意排列中,使得相邻两数互质的排列方式共
有 种。

【例 3】甲、乙、丙同时从山脚开始爬山,到达山顶后立即下山,不断往返运动。

已知山坡长360米,甲、
乙、丙的速度比为6∶5∶4,并且甲、乙、丙的下山速度都是各自上山速度的1.5倍。

经过一段
时间后,甲到达山顶时,看见乙正在下山,此时乙距离山脚不到180米(乙不在山脚)。

求此时丙
离山顶的距离。

〖答案〗
【例 1】804
【例 2】1728
【例 3】320
数论在方程、计数、最值、
行程等问题中的应用。

小学奥数七大模块知识体系梳理

小学奥数七大模块知识体系梳理

小学奥数七大模块知识体系梳理起1 计算1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程2 数论1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题3 几何(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题4 行程1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题5 应用题1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题6 计数1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数7 杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独。

奥数讲义-数论--综合-第1讲

奥数讲义-数论--综合-第1讲

第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。

因此,不等式x <y与x≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有:1.十进制表示形式:n=a n10n+a n-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2mt,其中t为奇数。

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。

数论综合(小升初)

数论综合(小升初)

小升初数论综合知识概要一、奇数与偶数:1、判断一个多位数奇数还是偶数,只要看这个数的个位,个位是奇数,这个数就是奇数,个位是偶数,这个数就是偶数。

2、加减法结果的奇偶性判断方法:只看算式中奇数的个数,个数是奇数,结果就是奇数;个数是偶数,结果就是偶数。

(奇数个奇数的和或差还是奇数)3、乘法结果的奇偶性判断方法:只看有没有偶数,有偶数,结果就是偶数;无偶数,结果就是奇数。

(有偶则偶,无偶为奇)4、数列与奇偶数个数结合时,利用周期问题的知识解决。

二、因数与倍数:(一)最大公约数与最小公倍数如果一个自然数a 能被自然数b (不为零)整除,则称a 是b 的倍数,b 是a 的约数。

1、 几个自然数公有的约数,叫做这几个自然数的公约数。

公约数中最大的一个公约数,称为这几个自然数的最大公约数。

一般用符号()a b ,表示a 、b 的最大公约数。

公约数只有1的两个数,这两个数互质。

2、 几个自然数公有的倍数,叫做这几个自然数的公倍数。

公倍数中最小的一个大于零的公倍数,叫做这几个数的最小公倍数。

一般用符号[]a b ,表示a 、b 的最小公倍数。

3、最大公约数和最小公倍数之间的关系设a 、b 为两个正整数,则()a b ,和[]a b ,有如下关系(,)[,][,]=(,)ab ab a b a b a b a b =⨯或 4、求最大公约数和最小公倍数常用的方法:(1)分解质因数法;(2)短除法;(3)辗转相除法。

(二)最大公约数与最小公倍数的常用性质两个自然数分别除以它们的最大公约数,所得的商互质。

如果m 为A 、B 的最大公约数,且A ma =,B mb =,那么a b 、互质,所以A 、B 的最小公倍数为mab ,所以最大公约数与最小公倍数有如下一些基本关系:①A B ma mb m mab ⨯=⨯=⨯,这两个数的积等于两个数的最大公约数与最小公倍数之积;②两个数的和等于最大公约数乘这两个数独有因数的和③两个数的差等于最大公约数乘这两个数独有因数的差;④两个数的最小公倍数除以最大公约数等于两个数独有因数的乘积;⑤两个数的最小公倍数等于两个数的最大公约数乘两个数的独有因数。

小学奥数七大模块详解(超详细结构图)

小学奥数七大模块详解(超详细结构图)

重点小学内部奥数复习材料七大模块详解(七大模块:计算、数论、几何、行程、应用题、计数和杂题)模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.不定方程(组) 2.数论计数3.数论最值4.数论行程
解方程
96480
15
a b c
a b c
++=


++=

(其中a、b、c均为自然数)
两个四位数ACCC和CCCB满足,
2
5
ACCC
CCCB
=请问A×B×C之值是什么?
如图,三条圆形跑道,每条跑道的长都是1千米,A、B、C三位运动员同时从交点O出发,
分别沿三条跑道跑步,他们的速度分别是每小时4
3
千米,每小时
6
5
千米,每小时
8
9
千米。

问:从出发到三人第一次相遇,他们共跑了多少千米?
方程、计数、最值、行程等
问题中的数论综合(上)(★★)
(★★★)
(★★★)
2001个连续的自然数之和为a×b×c×d,若a、b、c、d都是质数,则a+b+c+d的最小值是多少?
有些数既能表示成3个连续自然数的和,又能表示成4个自然数的和,还能表示成5个连续自然数的和。

例如:30就能满足上面的要求,因为30=9+10+11;30=6+7+8+9;30=4+5+6+7+8。

请你在700至1000之间找出所有满足上述要求的数。

(★★★★) (★★★★★)。

相关文档
最新文档