人教A版高三数学选修2-3第二章2.2.3 独立重复试验与二项分布说课稿

人教A版高三数学选修2-3第二章2.2.3 独立重复试验与二项分布说课稿
人教A版高三数学选修2-3第二章2.2.3 独立重复试验与二项分布说课稿

人教A版选修2-3第二章2.2.3

独立重复试验与二项分布说课稿

深圳市南头中学胡翠莲

一、教材分析:

1.教材的地位和作用

本节内容是新教材选修2-3第二章《随机变量及其分布》的第二节《二项分布及其应用》的第三小节。通过前面的学习,学生已经学习掌握了有关概率和统计的基础知识:等可能事件概率、互斥事件概率、条件概率、相互独立事件概率的求法以及分布列有关内容。二项分布是继超几何分布后的又一应用广泛的概率模型,而超几何分布在产品数量n相当大时可以近似的看成二项分布。在自然现象和社会现象中,大量的随机变量都服从或近似的的服从二项分布,实际应用广泛,理论上也非常重要。可以说本节内容是对前面所学知识的综合应用,是一种模型的构建。是从实际入手,通过抽象思维,建立数学模型,进而认知数学理论,应用于实际的过程。会对今后数学及相关学科的学习产生深远的影响。

2.教学目标:

知识目标:

高中数学新教学大纲明确指出本节课需达到的知识目标:在了解条件概率和相互独立事件概念的前提下,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。

同时,渗透由特殊到一般,由具体到抽象,观察、分析、类比、归纳的数学思想方法。

能力目标:

培养学生的自主学习能力、数学建模能力和应用数学知识解决实际问题的能力。

德育目标:

培养学生对新知识的科学态度,勇于探索和敢于创新的精神。让学生了解数学来源于实际,应用于实际的唯物主义思想。

情感目标:

通过主动探究、合作学习、相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事求是的科学态度和契而不舍的钻研精神。

3.教学重点、难点:

数学建模是运用数学思想、方法和知识解决实际问题的过程,是数学学习的一种新的方式,它为学生提供自主学习的空间,有助于学生体验数学在解决实际问题中的价值和作用。高二学生虽然具有一定的抽象思维能力,但是从实际中抽象出数学模型对于学生来说还是比较困难的,需要老师的正确引导。由此制定出本节课的重难点如下:

教学重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。

教学难点:二项分布模型的构建。

重难点的突破将在教学程序分析中详述。

二、教法探讨:

自主性、能动性是人的各种潜能中最主要也是最高层次的潜能,教育只有在尊重学生主体的基础上,才能激发学生的主体意识,培养学生的主体精神和主体人格,“主体”参与是现代教学论关注的要素。我在课堂教学中做到以学生的自主学习为中心,给学生提供尽可能多的思考、探索、发现、想象、创新的时间和空间。另一方面,从学生的认知结构,预备知识的掌握情况,我班学生有自主学习、主动构建新知识的能力。

由此,本节课主要采取“自主探究式”的教学方法:即学生在老师引导下,观察发现、自主探究、合作交流、由特殊到一般、由感性到理性主动建构新知识。启发引导学生积极的思维,对学生的思维进行调控,帮助学生优化思维过程。

教学手段:多媒体辅助教学,激发学生的学习兴趣,增大课堂容量,提高课堂教学效果。

三. 学法指导:

学是中心,学会是目的.本节课主要让学生体会观察、分析、归纳、抽象、应用的自主探究式学习方法.交给学生思考问题的方法,使学生真正成为教学的主体.

四、教学程序:

本节课我设计为五个环节:

1.创设情景激发求知

2.自主探究合作学习

3.信息交流揭示规律

4.运用规律解决问题

5.提炼方法反思小结

可以循环使用.多媒体辅助贯穿整个教学过程.

(一).创设情景激发求知

1、投掷一枚相同的硬币5次,每次正面向上的概率为0.5。

2、某同学玩射击气球游戏,每次射击击破气球的概率为0.7,现有气球10个。

3、某篮球队员罚球命中率为0.8,罚球6次。

4、口袋内装有5个白球、3个黑球,不放回地抽取5个球。

问题1、上面这些试验有什么共同的特点?

设计意图:

利用学生求知好奇心理,以一个个人人皆知的试验为切入点,便于激发学生学习本节课的兴趣,调动学生思维的积极性。紧扣本节课教学内容的主题与重点, 有利于知识的迁移,使学生明确知识的实际应用性。了解数学来源于实际。

①包含了n个相同的试验。②每次试验相互独立。③每次试验只有两种可能的结果:“成功”或“失败”。④每次出现“成功”的概率p相同,“失败“的概率也相同,为1-p。⑤试验”成功”或“失败”可以计数,即试验结果对应于一个离散型随机变量。

我们把这样的试验叫做独立重复试验。

1、独立重复试验:

一般的,在相同条件下重复做的n次试验称为n次独立重复试验.

强调:

⑴独立重复试验,是在相同条件下各次之间相互独立地进行的一种试验;

⑵每次试验只有“成功”或“失败”两种可能结果。每次试验“成功”的概率都p ,“失败”的概率为1-p.

设计意图:水到渠成!学生由实例抽象出独立重复试验的概念.尝试到成功的喜悦。达到第一个目标;学生理解了独立重复试验,又培养了学生观察、分析、总结、归纳的能力。(到此约用6-7分钟)

此时学生具有强烈的求知欲,注意力高度集中,等着解决下一个问题。

我顺势提出第二个问题:

问题2. 某同学玩射击气球游戏,若每次射击击破气球的概率为0.7,每次射击结果互不影响,现有气球3个, 恰好击破2个的概率是多少?设击破气球的个数为X,X的分布列怎样?

进入第二个环节.

(二).自主探究 合作学习

设计意图: 前节课已经解决了相互独立事件概率的求法,这个问题大部分学生能够独立解决。解决问题过程中,允许讨论。老师巡视,参与其中,适当指导,解答学生提问.5-6分钟学生跃跃欲试,纷纷举手示意.选一过程写得较详细清楚的同学代表展示自己的解答过程.

(三).信息交流 揭示规律

问题2的解决:(学生拿自己的草稿在投影下讲)

分别记在第1,2,3次射击中,该同学击破气球为事件A 1,A 2,A 3,那么射击3次,击破2个共有下面三种情况:, 种,每一种情况的概率为2320.7(10.7)

-?-,因为三种情况彼此互斥,故3次射击击破2个的概率223230.7(10.7)C -- X 的分布列:

而3(10.7)-+113130.7(10.7)C --+223230.7(10.7)C --+333330.7(10.7)C --

=()3

10.70.71-+=???? 设计意图: 上述解答是一个前面所学知识的应用过程 . 学生看到最后的结果,有一种``拨开云雾看清天”的感觉,这不就是二项式定理吗?学生热情高涨,课堂达到高潮,把对知识的学习掌握变成了对知识的探索 、发现、总结、创新的过程.

通过解决问题2,学生在老师引导下,由特殊到一般,由具体到抽象,由n 次独立重复试验发生k 次的概率,主动建构二项分布这一重要的离散型随机变量的分布列.攻破本节课的难点。

2.二项分布模型的构建(这一过程师生共同完成):

若一次试验中事件A 发生的概率为p,那么在n 次独立重复试验中,事件A 恰好发生K 次

的概率为. (),1,0,1,2,,k k n k n P X k C p q

q p k n -===-=???其中 以事件A 发生的次数X 为随机变量,则X 的分布列为:

其中的 是二项式 展开式中的通项,故称X 服从二项分布。记为 ,其中 n,p 为参数, n 表示重复的次数,p 指一次试验中事件A 发生的概率。

n

… … k … … 1 0 p x 111n n C p q -0n n n C p q

00n n C p q k k n k n C p q -k k n k n C p q -)p +(q n (,)X B n p ______21231231233,,,C 3A A A A A A A A A ??????=共

深化认识:

二项分布是一种概率模型,有着十分广泛的应用。用以解决独立重复试验中的概率问题.比如下列问题中的随机变量ξ都可以看作是服从二项分布的:

?n次独立射击,每次命中率相同,ξ为命中次数。

?一枚硬币掷n次,ξ为正面出现的次数。

?掷n个相同的骰子,ξ为一点出现的次数。

? n个新生婴儿,ξ为男婴的个数。

?女性患色盲的概率为0.25%,ξ为任取n个女人中患色盲的人数。(这一过程约8分钟)

设计意图:从实际中来,到实际中去,抽象出的二项分布有何用途?什么时候用?这是

学生想知道的。也是我们学习数学的目的所在。

怎么用呢?导入下一个环节。

(四).运用规律解决问题

重难点的突破:

(1)强调二项分布模型的应用范围:独立重复试验。(前深化认识)

(2)运用类比法对学生容易混淆的地方,加以比较。(例题增加的③④)

(3)创设条件、保证充分的练习。设置基础训练、能力训练、实践创新三个层次的训练

题,即模型的直接应用、变形应用和实际应用来突破难点,揭示重点。对实际应用题师生要共同分析讨论,从问题中如何抽象出二项分布模型,要反复引导,循序渐进,加以巩固.

例题:某一射手平均每射击10次击中8次,求这名射手在10次射击中

①恰好8次击中的概率;②至少8次击中的概率;

③第8次击中的概率;④前8次击中的概率;

设计意图:一道紧扣目标的例题,帮助学生回顾概念,告诉学生如何将二项分布模型应用于实际.使学生将本节所学知识具体化.让学生了解数学来源于实际应用于实际.

①②问可以直接用二项分布模型解决, ③④问是以新带旧,做好新旧知识的衔接与比较,以免混淆.

例题的处理:老师适当引导,学生积极参与,演板解答过程.

基础训练:

1.(5,1/3),(3).

已知随机变量求

X B p X

2.种植某种树苗,成活率为0.9,现在种植这种树苗5棵,试求:

(1)全部成活的概率为( ) ;

(2)全部死亡的概率为( );

(3)至少成活4棵的概率().

3.若某射手每次射击击中目标的概率是0.9,每次射击的结果相互独立,那么在他连续4次的射击中,第一次未击中目标,后三次都击中目标的概率是多少?

4.某产品的次品率P=0.5,进行重复抽样检查,选取4个样品,求其中的次品数X的分布列.

.设计意图:基础训练是所学知识的直接应用,意在使学生理解二项分布其中每个参数所表示的实际意义,掌握其特征,加深认识。能抽象出比较明显的二项分布模型.由学生口答完成.

能力训练:

1. 抛掷两个骰子,当至少有一个5点或一个6点出现时,就说试验成功,则在54次试验中成功

次数X服从什么分布?

2.如果每门炮的命中率都是0.6,

(1)有10门炮同时向目标各发射一发炮弹,求目标被击中的概率.

(2)要保证击中目标的概率大于0.99,至少需多少门炮同时发射?

设计意图: 能力训练是知识的变形应用和逆向思维训练,深化概念,发展思维,使学生比较深刻的把握二项分布的本质。

实践创新:

甲乙两选手比赛,假设每局比赛甲胜的概率为0.6,乙胜的概率为0.4,那么采取3局两胜制还是5局3 胜制对甲更有利?你对局制长短的设置有何认识?

设计意图:此题设计新颖,贴近生活,贴近高考,一下子把学生带到了全新的知识生长场景中,强大的诱惑力促使每个学生积极思考。此题是开放性试题,不是直接要你求什么、证什么,培养学生的发散性思维和创造性思维。

(五) 提炼方法 反思小结

本节课我们从实际出发,构建了二项分布这一重要的概率模型,又应用这一模型,解决了一些简单的实际问题------独立重复试验概率问题.应用程序如下:

1.若一次试验中事件A 发生的概率为p

2.在n 次独立重复试验中,事件A 发生的次数为X ,则

3.事件A 恰好发生K 次的概率为: 设计意图:编筐编篓,重在收口. 有反思才有进步,有提炼才能深化.本环节由学生完成,老师予以补充.

作业:课本P68 A1 A3 B1 B3(选做)

设计意图:作业布置突出本节课知识点、适量,达到复习巩固的目的,又兼顾学有余力的同学有自由发展的空间,培养其探索精神和创新能力.

五 、板书设计:

(,)X B n p ()(1),0,1,2,,k k n k n P X k C p p k n -==-=???

高考数学(理)总复习讲义: n次独立重复试验及二项分布

第七节n 次独立重复试验及二项分布 1.条件概率及其性质 (1)条件概率的定义:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P (AB ) P (A ) (P (A )>0). (2)条件概率的性质 ①非负性:0≤P (B |A )≤1; ②可加性:如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件 (1)对于事件A ,B ,若事件A 的发生与事件B 的发生互不影响,则称事件A ,B 是相互独立事件. (2)若P (AB )=P (A )P (B ),则A 与B 相互独立. (3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )P (A )=P (A )P (B ). (5)一般地,如果事件A 1,A 2,…,A n (n >2,n ∈N *)相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)·…·P (A n ). 互斥事件与相互独立事件的相同点与不同点 (1)相同点:二者都是描述两个事件间的关系; (2)不同点:互斥事件强调两事件不可能同时发生,即P (AB )=0,相互独立事件则强调一个事件的发生与否对另一个事件发生的概率没有影响. 3.独立重复试验与二项分布 (1)独立重复试验:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. 独立重复试验的条件:①每次试验在相同条件下可重复进行;②各次试验是相互独立的;③每次试验都只有两种结果,即事件要么发生,要么不发生. (2)二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验 中事件A 发生的概率为p ,则事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p ) n - k ,k =0,1,2,…,n ,则称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 判断一个随机变量是否服从二项分布,要看两点:,(1)是否为n 次独立重复试验;,(2)随机变量是否为某事件在这n 次独立重复试验中发生的次数.

独立重复试验教案

独立重复试验教案 教学目的 使学生了解独立重复试验的实际背景和能利用其法则进行实际计算. 教学重点和难点 独立重复试验的概念及其公式推导. (教学方法:讲练结合) 教学过程 1.独立重复试验的意义 独立重复试验,又叫做贝努里试验,是在同样的条件下重复地、各次之间相互独立地进行的一种试验,这种试验在概率论中占有相当重要的地位,因为随机现象的统计规律只有在大量独立重复试验中才能显示出来. 在这种试验中,每一次试验只有两种结果,即某事件要么发生;要么不发生.在一定条件下,种子要么发芽;要么不发芽.在产品抽样检查中,要么抽到合格品;要么抽不到合格品.所以在n次独立重复试验中某事件恰好发生k(k=0,1,2,…,n)次,另外(n-k)次就是某事件不发生. 2.n次独立重复试验中事件恰好发生k次的概率公式. 的展开式中x m的系数.因此,我们可将概率P n(m)的分布叫做二项式分布. 3.举例 (1)某批产品中有20%的次品,进行重复抽样检查,共取5个样品,求其中次品数等于0、1、2、3、4、5的概率. 解:已知n=5 P=0.2,

(2)一批产品中有30%的一等品,进行重复抽样检查,共取5个样品,求: (i)取出的5个样品中恰有2个一等品的概率是多少? (ii)取出的5个样品中至少有2个一等品概率是多少? =1-[P5(0)+P5(1)] =1-0.52822 =0.47178≈0.472 (3)某厂大量生产的某种小零件,经抽查检验知道其次品率 为0.3%,现把这种零件每100件装成一盒.试分别计算每盒中不含次品、恰好含1件次品、含2件次品、含3件次品、含4件次品的概率.并求一盒中至少含有3件次品的概率是多少? 解:将100个零件装进盒内,可以看成是进行了100次检验零件的随机试验. 在一盒中不含次品的概率 同理,可算得 P100(1)≈0.2228≈22% P100(2)≈0.0332≈3.3% P100(3)≈0.0033≈0.3%

人教版高三数学一轮复习练习题全套—(含答案)及参考答案

高考数学复习练习题全套 (附参考答案) 1. 已知:函数()()2411f x x a x =+-+在[)1,+∞上是增函数,则a 的取值范围是 . 2. 设,x y 为正实数,且33log log 2x y +=,则 11 x y +的最小值是 . 3. 已知:()()()()50050A ,,B ,,C cos ,sin ,,αααπ∈. (1)若AC BC ⊥,求2sin α. (2)若31OA OC +=OB 与OC 的夹角. 4. 已知:数列{}n a 满足()2 1 123222 2 n n n a a a a n N -+++++= ∈……. (1)求数列{}n a 的通项. (2)若n n n b a =,求数列{}n b 的前n 项的和n S .

姓名 作业时间: 2010 年 月 日 星期 作业编号 002 1. 2 2 75157515cos cos cos cos ++的值等于 . 2. 如果实数.x y 满足不等式组22 110,220x x y x y x y ≥??-+≤+??--≤? 则的最小值是 . 3. 北京奥运会纪念章某特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向北京奥组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为x 元(x ∈N *). (1)写出该特许专营店一年内销售这种纪念章所获得的利润y (元)与每枚纪念章的销售价格x 的函数关系式(并写出这个函数的定义域); (2)当每枚纪念销售价格x 为多少元时,该特许专营店一年内利润y (元)最大,并求出这个最大值. 4. 对于定义域为[]0,1的函数()f x ,如果同时满足以下三条:①对任意的[]0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数. (1) 若函数()f x 为理想函数,求(0)f 的值; (2)判断函数()21x g x =-])1,0[(∈x 是否为理想函数,并予以证明; (3)若函数()f x 为理想函数,假定?[]00,1x ∈,使得[]0()0,1f x ∈,且00(())f f x x =,求证 00()f x x =.

高考理科数学练习训练题n次独立重复试验与二项分布含解析理

高考理科数学复习训练题 (建议用时:60分钟) A 组 基础达标 一、选择题 1.甲、乙、丙三人进行象棋比赛,每两人比赛一场,共赛三场.每场比赛没有平局,在每一场比赛中,甲胜乙的概率为23,甲胜丙的概率为14,乙胜丙的概率为1 5.则甲获第一名且丙 获第二名的概率为( ) A.11 12 B.16 C.130 D.215 D [设“甲胜乙”“甲胜丙”“乙胜丙”分别为事件A ,B ,C ,事件“甲获第一名且丙获第二名”为A ∩B ∩–C ,所以P (甲获第一名且丙获第二名)=P (A ∩B ∩–C )=P (A )P (B )P (– C )=23×14×45=215 .] 2.甲、乙两人练习射击,命中目标的概率分别为12和1 3,甲、乙两人各射击一次,有下列 说法:①目标恰好被命中一次的概率为12+13;②目标恰好被命中两次的概率为12×1 3;③目标 被命中的概率为12×23+12×13;④目标被命中的概率为1-12×2 3 ,以上说法正确的是( ) A .②③ B .①②③ C .②④ D .①③ C [对于说法①,目标恰好被命中一次的概率为12×23+12×13=1 2,所以①错误,结合选项 可知,排除B 、D ;对于说法③,目标被命中的概率为12×23+12×13+12×1 3,所以③错误,排除 A.故选C.] 3.两个实习生每人加工一个零件,加工为一等品的概率分别为23和3 4,两个零件是否加工 为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12 B.512

C.14 D.16 B [设事件A :甲实习生加工的零件为一等品; 事件B :乙实习生加工的零件为一等品, 则P (A )=23,P (B )=3 4 , 所以这两个零件中恰有一个一等品的概率为 P (A B -)+P (A -B )=P (A )P (B -)+P (A - )P (B )= 23×? ????1-34+? ????1-23×34=5 12.] 4.某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为1 5,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( ) A.1 10 B.15 C.25 D.12 C [设“开关第一次闭合后出现红灯”为事件A ,“开关第二次闭合后出现红灯”为事件B ,则“开关两次闭合后都出现红灯”为事件AB ,“在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B |A ,由题意得P (B |A )= P AB P A =2 5 ,故选C.] 5.(2018·绵阳诊断)某射手每次射击击中目标的概率是2 3,且各次射击的结果互不影 响.假设这名射手射击5次,则有3次连续击中目标,另外2次未击中目标的概率为( ) A.89 B.7381 C.881 D.19 C [因为该射手每次射击击中目标的概率是23,所以每次射击不中的概率为1 3,设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“该射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3–A 4– A 5)+P (–A 1A 2A 3A 4–A 5)+P (–A 1– A 2A 3A 4A 5) =? ????233 ×? ????132 +13×? ????233 ×13+? ????132 ×? ????233 =881 .] 二、填空题

数学高考复习点拨 二项分布与超几何分布辨析

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ?? ??? ,. 03031464(0)55125P X C ????==?= ? ?????∴;12131448(1)55125P X C ????==?= ? ?????; 212 31412(2)55125P X C ????==?= ? ?????;30 33141(3)55125P X C ????==?= ? ?????. 因此,X 的分布列为 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107(0)15C C P Y C ===;12283107(1)15 C C P Y C ===;21283101(2)15C C P Y C ===. 因此,Y 的分布列为

辨析:通过此例可以看出:有放回抽样时,每Array次抽取时的总体没有改变,因而每次抽到某物 的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样. 超几何分布和二项分布都是离散型分布,超几何分布和二项分布的区别: 超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布........ 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。在实际应用中,理解并区分两个概率模型是至关重要的。下面举例进行对比辨析。1.有放回抽样:每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型。 2.不放回抽样:取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型。因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样。所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的(特别注意:二项分布是在n次独立重复试验的3个条件成立时应用的)。 超几何分布和二项分布的区别:

高三数学教学计划 人教版

高三数学教学计划 一、学生基本情况: 175班共有学生66人,176班共有学生60人。学生基本属于知识型,相当多的同学对基础知识掌握较差,学习习惯不太好,两班学习数学的气氛不太浓,学习不够刻苦,各班都有少数尖子生,但是每个班两极分化非常严重,差生面特别广,很多学生从基础知识到学习能力都有待培养,辅差任务非常重,目前形势非常严峻。 二、高考要求 1、高考对数学的考查以知识为载体,着重考察学生的逻辑思维能力、运算能力、空间想象能力、运用数学思想方法分析问题解决问题的能力。 2、重视数学思想方法的考查,重点考查转化思想、数形结合思想、分类讨论思想、函数与方程思想。高考数学实体的设计是以考查数学思想为主线,在知识的交汇点设计试题。 3、高考试题注重区分度,同一试题,大多没有繁杂的运算,且解法较多,不同层次的学生有不同的解法。 4、注重应用题的考查,2002年文科试题应用有3道题,共28分。 5、注重学生创新意识的考查,注重学生创造能力的考查。 三、教学措施 1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。 2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。教学基本模式为: 基础练习→典型例题→作业→课后检查 (1)基础练习:一般5道题,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完。 (2)典型例题:一般4道题,例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生能想到1—2种方法,让中下生让能想到1种方法。例3题目要新,能转化为前面的典型类型求解。例4 为综合题,培养学生运用数学思想方法分析问题解决问题的能力。 (3)作业:本节课的基础问题,典型问题及下一节课的预习题。 (4)课后检查;重点检查改错本及复习资料上的作业。 3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。 4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。 5、发挥集体的力量,共同培养尖子学生。 6、加强文科数学教学辅导的力度,坚持每周有针对性地集体辅导一次,建议学校文科数学每周多开一节课(即每周7节)。 四、教学进度详细安排: 1、函数(共11课时)(8月9日结束)

2.2.3独立重复试验与二项分布(教学设计)

2.2.3独立重复试验与二项分布(教学设计)

2.2.3独立重复试验与二项分布(教学设计) 教学目标 知识与技能: 理解n 次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相应的实际问题。 过程与方法: 通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象的数学思想方法。 情感态度与价值观: 使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精神。 教学重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。 教学难点:二项分布模型的构建。 教学过程: 一、复习回顾: 1、条件概率:在事件A 发生的条件下,事件B 发生的 条件概率:()(|)() P AB P B A P A

2、事件的相互独立性:事件A 与事件B 相互独立,则: P ( AB ) = P ( A ) P ( B ) , 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立 二、创设情景,新课引入: 三个臭皮匠顶个诸葛亮的故事 已知诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题的概率为0.6,老二为0.6,老三为0.6,且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大? 略解: 三个臭皮匠中至少有一人解出的概率为 三、师生互动,新课讲解: 1、分析下面的试验,它们有什么共同特点? (1)投掷一个骰子投掷5次; (2)某人射击1次,击中目标的概率是0.8,他射击10次; (3)实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛); (4)抛硬币实验。 在研究随机现象时,经常需要在相同的条件下重复 1()10.40.40.40.9360.8 P A B C -??=-??=>

2018届高三数学每天一练半小时(77)独立重复试验与二项分布

训练目标 (1)对独立重复试验及二项分布正确判断,并能求出相关概率;(2)能解决简单的正态分布问题. 训练题型 (1)利用二项分布求概率;(2)利用正态曲线的性质求概率. 解题策略 (1)熟悉独立重复试验及二项分布的特征,理解并熟记二项分布的概率计算公式;(2)掌握正态曲线的性质,利用3σ原则解决正态分布下的概率问题. 1.(2017·天津调研)抛一枚均匀硬币,正反两面出现的概率都是1 2 ,重复这样的投掷,数列{a n }的定义如下: a n =1,第n 次投掷出现正面;a n =-1,第n 次投掷出现反面.若S n =a 1+a 2+…+a n (n ∈N *),则事件“S 8 =2”发生的概率是( ) A.1256 B.13128 C.12 D.732 2.(2016·重庆二诊)已知随机变量ξ~B (n ,p ),且其均值和方差分别为2.4和1.44,则参数n ,p 的值分别为( ) A .n =4,p =0.6 B .n =6,p =0.4 C .n =8,p =0.3 D .n =24,p =0.1 3.(2017·大连月考)甲、乙两人进行象棋比赛,比赛采用五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为2 3,则甲以3∶1的比分获胜的概率为( ) A.827 B.6481 C.49 D.89 4.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a 的值为( ) A.73 B.53 C .5 D .3 5.(2016·广东中山一中等七校联考)已知三个正态分布密度函数φi (x )=12πσi ·22 ()2e i i x μσ--(x ∈R ,i = 1,2,3)的图象如图所示,则( )

n次独立重复试验

n次独立重复试验 独立重复试验: (1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验. (2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次 的概率为,此时称随机变量X 服从二项分布,记作,并称p为成功概率. (3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的. (4)独立重复试验概率公式的特点:是n次独立 重复试验中某事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式. 求独立重复试验的概率: (1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即 2,…,n)是第i 次试验的结果. (2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。 相互独立事件同时发生的概率 相互独立事件的定义: 如果事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件。 若A,B是两个相互独立事件,则A与与,与B都是相互独立事件。 相互独立事件同时发生的概率:

两个相互独立事件同时发生,记做A·B,P(A·B)=P(A)·P(B)。 若A 1,A 2 ,…A n 相互独立,则n个事件同时发生的概率等于每个事件发生的 概率的积,即P(A 1·A 2 ·…·A n )=P(A 1 )·P(A 2 )·…·P(A n )。 求相互独立事件同时发生的概率的方法: (1)利用相互独立事件的概率乘法公式直接求解; (2)正面计算较繁或难以入手时,可从其对立事件入手计算。 条件概率 条件概率的定义: (1)条件概率的定义:对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示. (2)条件概率公式:称为事件A与B的交(或积). (3)条件概率的求法: ①利用条件概率公式,分别求出P(A)和P(A∩B),得P(B|A)=。 ②借助古典概型概率公式,先求出事件A包含的基本事件数n(A),再在事件A发生的条件下求出事件B包含的基本事件数,即n(A∩B),得P(B|A)= 。 P(B|A)的性质: (1)非负性:对任意的A∈Ω,; (2)规范性:P(Ω|B)=1; (3)可列可加性:如果是两个互斥事件,则。

2019-2020学年度最新人教版高考数学总复习(各种专题训练)Word版

2019-2020学年度最新人教版高考数学总复习 (各种专题训练)Word版(附参考答案) 一.课标要求: 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。二.命题走向 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主,分值5分。 预测2013年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体题型估计为: (1)题型是1个选择题或1个填空题; (2)热点是集合的基本概念、运算和工具作用。 三.要点精讲 1.集合:某些指定的对象集在一起成为集合。 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A 的元素,或者不是A的元素,两种情况必有一种且只有一种成立; 互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体 (对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排 列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法:

独立重复试验与二项分布

独立重复试验与二项分布 1.n 次独立重复试验 一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. 2.二项分布 前提 在n 次独立重复试验中 字母的含义 X 事件A 发生的次数 p 每次试验中事件A 发生的概率 分布列 P (X =k )=C k n p k (1-p ) n -k ,k =0,1,2,…,n 结论 随机变量X 服从二项分布 记法 记作X ~B (n ,p ),并称p 为成功概率 明确该公式中各量表示的意义:n 为重复试验的次数;p 为在一次试验中某事件A 发生的概率;k 是在n 次独立重复试验中事件A 发生的次数. 判断正误(正确的打“√”,错误的打“×”) (1)n 次独立重复试验的每次试验结果可以有多种.( ) (2)n 次独立重复试验的每次试验的条件可以略有不同.( ) (3)二项分布与超几何分布是同一种分布.( ) (4)两点分布是二项分布的特殊情形.( ) 答案:(1)× (2)× (3)× (4)√ 已知随机变量X 服从二项分布,X ~B ? ?? ??6,13,则P (X =2)等于( ) A.316 B.4243 C.13243 D. 80243 答案:D 任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为( ) A.34 B.38 C.13 D.14 答案:B

设随机变量X ~B (2,p ),若P (X ≥1)=5 9,则p =________. 答案:13 探究点1 独立重复试验的概率 甲、乙两人各射击一次,击中目标的概率分别是23和3 4,假设每次射击是否击中目标, 相互之间没有影响.(结果须用分数作答) (1)求甲射击3次,至少1次未击中目标的概率; (2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率. 【解】 (1)记“甲射击3次至少有1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1-P (A 1)=1-(23)3=19 27 . (2)记“甲射击2次,恰有2次击中目标”为事件A 2,“乙射击2次,恰有1次击中目标”为事件B 2,则P (A 2)=C 2 2×(23)2=49,P (B 2)=C 12×(34)1×(1-34)=38, 由于甲、乙射击相互独立,故P (A 2B 2)=49×38=1 6. 1.[变问法]在本例(2)的条件下,求甲、乙均击中目标1次的概率? 解:记“甲击中目标1次”为事件A 3,“乙击中目标1次”为事件B 3,则P (A 3)=C 1 2×23×13= 49,P (B 3)=38 , 所以甲、乙均击中目标1次的概率为P (A 3B 3)=49×38=16 . 2.[变问法]在本例(2)的条件下,求甲未击中、乙击中2次的概率? 解:记“甲未击中目标”为事件A 4,“乙击中2次”为事件B 4,则P (A 4)=C 0 2(1-23)2=19,P (B 4) =C 22(34)2 =916,所以甲未击中、乙击中2次的概率为P (A 4B 4)=19×916=116 . 独立重复试验概率求法的三个步骤

新版高二数学课后练习题之独立重复试验与二项分布

高二数学课后练习题之独立重复试验 与二项分布 高二数学课后练习题之独立重复试验与二项分布 一、选择题 1.某一试验中事件A发生的概率为p,则在n次这样的试验中,A发生k次的概率为() A.1-pk B.(1-p)kpn-k C.(1-p)k D.Ckn(1-p)kpn-k [答案] D [解析] 在n次独立重复试验中,事件A恰发生k次,符合二项分布,而P(A)=p,则P(A)=1-p,故P(X=k)=Ckn(1-p)kpn-k,故答案选D. 2.在4次独立重复试验中,事件A发生的概率相同,若事件A至少发生1次的概率为6581,则事件A在1次试验中发生的概率为() A.13 B.25 C.56 D.34 [答案] A

[解析] 事件A在一次试验中发生的概率为p,由题意得1-C04p0(1-p)4=6581,所以1-p=23,p=13,故答案选A. 3.流星穿过大气层落在地面上的概率为0.002,流星数为10的流星群穿过大气层有4个落在地面上的概率为() A.3.3210-5 B.3.3210-9 C.6.6410-5 D.6.6410-9 [答案] B [解析] 相当于1个流星独立重复10次,其中落在地面上的有4次的概率P=C4100.0024(1-0.002)63.3210-9,应选B. 4.已知随机变量X服从二项分布,X~B6,13,则P(X=2)等于() A.316 B.4243 C.13243 D.80243 [答案] D [解析] 已知X~B6,13,P(X=k)=Cknpk(1-p)n-k,当X=2,n=6,p=13时有P(X=2)=C261321-136-2=C26132234=80243. 5.某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是() A.16625 B.96625

人教版高中数学目录(理科)

必修1 第一章集合与函数概念 1.1 集合 1.2 函数及其表示 1.3 函数的基本性质 第二章基本初等函数(Ⅰ) 2.1 指数函数 2.2 对数函数 2.3 幂函数 第三章函数的应用 3.1 函数与方程 3.2 函数模型及其应用 必修2 第一章空间几何体 1.1 空间几何体的结构 1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积 第二章点、直线、平面之间的位置关系 2.1 空间点、直线、平面之间的位置关系 2.2 直线、平面平行的判定及其性质 2.3 直线、平面垂直的判定及其性质 第三章直线与方程 3.1 直线的倾斜角与斜率 3.2 直线的方程 3.3 直线的交点坐标与距离公式 必修3 第一章算法初步 1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例 阅读与思考割圆术 第二章统计 2.1 随机抽样 阅读与思考一个著名的案例 阅读与思考广告中数据的可靠性 阅读与思考如何得到敏感性问题的诚实反应 2.2 用样本估计总体 阅读与思考生产过程中的质量控制图 2.3 变量间的相关关系 阅读与思考相关关系的强与弱 第三章概率 3.1 随机事件的概率 阅读与思考天气变化的认识过程 3.2 古典概型 3.3 几何概型 必修4 第一章三角函数 1.1 任意角和弧度制 1.2 任意角的三角函数 1.3 三角函数的诱导公式 1.4 三角函数的图象与性质 1.5 函数y=Asin(ωx+ψ) 1.6 三角函数模型的简单应用 第二章平面向量 2.1 平面向量的实际背景及基本概念 2.2 平面向量的线性运算 2.3 平面向量的基本定理及坐标表示 2.4 平面向量的数量积 2.5 平面向量应用举例 第三章三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.2 简单的三角恒等变换 必修5 第一章解三角形 1.1正弦定理和余弦定理 1.2应用举例

人教版高三数学教案模板

人教版高三数学教案模板 与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,一起看看人教版高三数学教案!欢迎查阅! #人教版高三数学教案1# 教学目标 掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题. 教学重难点 掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题. 教学过程 【示范举例】 例1:数列是首项为23,公差为整数, 且前6项为正,从第7项开始为负的等差数列 (1)求此数列的公差d; (2)设前n项和为Sn,求Sn的值; (3)当Sn为正数时,求n的值. #人教版高三数学教案2# 一、教学内容分析 本小节是普通高中课程标准实验教科书数学5(必修)第三章第3小节,主要内容是利用平面区域体现二元一次不等式(组)的解集;借助图解法解决在线性约束条件下的二元线性目标函数的最值与解问题;运用线性规划知识解决一些简单的实际问题(如资源利用,人力调配,生产安排等)。突出体现了优化思想,与数形结合的思想。本小节是利用数学知识解决实际问题的典例,它体现了数学源于生活而用于生活的特性。 二、学生学习情况分析 本小节内容建立在学生学习了一元不等式(组)及其应用、直线与方程的基础之上,学生对于将实际问题转化为数学问题,数形结合思想有所了解.但从数学知

识上看学生对于涉及多个已知数据、多个字母变量,多个不等关系的知识接触尚少,从数学方法上看,学生对于图解法还缺少认识,对数形结合的思想方法的掌握还需时日,而这些都将成为学生学习中的难点。 三、设计思想 以问题为载体,以学生为主体,以探究归纳为主要手段,以问题解决为目的,以多媒体为重要工具,激发学生的动手、观察、思考、猜想探究的兴趣。注重引导学生充分体验“从实际问题到数学问题”的数学建模过程,体会“从具体到一般”的抽象思维过程,从“特殊到一般”的探究新知的过程;提高学生应用“数形结合”的思想方法解题的能力;培养学生的分析问题、解决问题的能力。 四、教学目标 1、知识与技能:了解二元一次不等式(组)的概念,掌握用平面区域刻画二元一次 不等式(组)的方法;了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和解等概念;理解线性规划问题的图解法;会利用图解法 求线性目标函数的最值与相应解; 2、过程与方法:从实际问题中抽象出简单的线性规划问题,提高学生的数学建模能力; 在探究的过程中让学生体验到数学活动中充满着探索与创造,培养学生的数据分析能力、 化归能力、探索能力、合情推理能力; 3、情态与价值:在应用图解法解题的过程中,培养学生的化归能力与运用数形结合思想的能力;体会线性规划的基本思想,培养学生的数学应用意识;体验数学来源于生活而服务于生活的特性. 五、教学重点和难点 重点:从实际问题中抽象出二元一次不等式(组),用平面区域刻画二元一次不等式组 的解集及用图解法解简单的二元线性规划问题; 难点:二元一次不等式所表示的平面区域的探究,从实际情境中抽象出数学问题的过

人教版高三数学教案

人教版高三数学教案 【篇一:人教版高中数学必修3全册教案】 教育精品资料 按住ctrl键单击鼠标打开名师教学视频全册播放 按住ctrl键单击鼠标打开名师教学视频全册播放 第一章算法初步??????????????11.1算法与程序框图???????????????2 1.1 算法与程序框图(共3课时) 1.1.1 算法的概念(第1课时) 【课程标准】通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义. 【教学目标】1.理解算法的概念与特点; 2.学会用自然语言描述算法,体会算法思想; 3.培养学生逻辑思维能力与表达能力. 【教学重点】算法概念以及用自然语言描述算法 【教学难点】用自然语言描述算法 【教学过程】 一、序言 算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力. 在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想. 二、实例分析 例1:写出你在家里烧开水过程的一个算法. 解:第一步:把水注入电锅; 第二步:打开电源把水烧开; 第三步:把烧开的水注入热水瓶. (以上算法是解决某一问题的程序或步骤)

高三数学:n次独立重复试验与二项分布经典教案

n 次独立重复试验与二项分布 [最新考纲] 1.了解条件概率的概念,了解两个事件相互独立的概念.2.理解n 次独立重复试验的模型及二项分布,并能解决一些简单问题. 1.条件概率的定义 条件概率的性质 设A ,B 为两个事件,且P (A )>0,称P (B |A ) =P (AB )P (A ) 为在事件A 发生的条件下,事件B 发生的条件概率 (1)0≤P (B |A )≤1; (2)如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ) 2.(1)定义:设A ,B 为两个事件,如果P (AB )=P (A )·P (B ),则称事件A 与事件B 相互独立. (2)性质:①若事件A 与B 相互独立,则P (B |A )=P (B ),P (A |B )=P (A ). ②如果事件A 与B 相互独立,那么A 与–B ,–A 与B ,–A 与– B 也相互独立. 3.独立重复试验与二项分布 (1)独立重复试验 在相同条件下重复做的n 次试验称为n 次独立重复试验,其中A i (i =1,2,…,n )是第i 次试验结果,则 P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ). (2)二项分布 在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k (k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)相互独立事件就是互斥事件. ( ) (2)若事件A ,B 相互独立,则P (B |A )=P (B ). ( ) (3)公式P (AB )=P (A )P (B )对任意两个事件都成立. ( ) (4)二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布. ( ) [答案] (1)× (2)√ (3)× (4)√ 2.设随机变量X ~B ??? ?6,1 2,则P (X =3)等于( ) A.516 B.316 C.58 D.38 A [∵X ~ B ????6,12,∴P (X =3)= C 36 ????126=516.故选A.] 3.已知P (B |A )=12,P (AB )=3 8 ,则P (A )等于( ) A.316 B.1316 C.34 D.14 C [由P (AB )=P (A )P (B |A ),得38=1 2 P (A ), ∴P (A )=3 4.] 4.某人射击,一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为________. 81125 [P =C 230.620.4+C 330.63 =81125.] 5.天气预报,在元旦假期甲地降雨概率是0.2,乙地降雨概率是0.3.假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为________.

高三数学 课堂训练7-5人教版

第7章 第5节 时间:45分钟 满分:100分 一、选择题(每小题7分,共42分) 1.在正方体的八个顶点中,有四个恰好是正四面体的顶点,则此正方体的表面积与正四面体的表面积的比值为( ) A. 2 B. 3 C. 62 D. 33 答案:B 解析:如图所示的正方体AC 1中,连接面对角线A 1C 1、A 1B 、BC 1、A 1D 、BD 、DC 1,由于四面体C 1-A 1BD 中的各条棱长都相等,可知该四面体为正四面体.设正方体的边长为a , 则正四面体的棱长为2a ,且S △A 1BD = 34(2a )2=32 a 2. ∴S 正方体表S 四面体表=6a 24×S △A 1BD =6a 2 23a 2 = 3. 2.如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是( ) A. 1 B. 1 3 C. 23 D. 32 答案:B 解析:折叠起来后,B 、C 、D 三点重合为S 点,则围成的三棱锥为S —AEF .这时,SA ⊥SE ,SA ⊥SF ,SE ⊥SF ,且SA =2,SE =SF =1,所以此三棱锥的体积为V =13×12×1×1×2=1 3 . 3. [2011·广东]如图1~3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( )

A. 6 3 B. 9 3 C. 12 3 D. 18 3 答案:B 解析:由几何体的三视图知直观图如右图所示. 原几何体为底面ABCD 为矩形的四棱柱,且AB =3,侧面A 1ABB 1⊥底面ABCD ,A 1A =2.过A 1作A 1G ⊥AB 于G ,由三视图知AG =1,A 1D 1=3,A 1G =A 1A 2-AG 2= 3. 底面ABCD 的面积S =3×3=9, VABCD -A 1B 1C 1D 1=S ·h =9×3=9 3. 4. [2012·石家庄一模]两球O 1和O 2在棱长为1的正方体ABCD —A 1B 1C 1D 1的内部,且互相外切,若球O 1与过点A 的正方体的三个面相切,球O 2与过点C 1的正方体的三个面相切,则球O 1和O 2的表面积之和的最小值为( ) A. (6-33)π B. (8-43)π C. (6+33)π D. (8+43)π 答案:A 解析:设球O 1、球O 2的半径分别为r 1、r 2,则3r 1+r 1+3r 2+r 2=3,r 1+r 2=3-32, 从而 4π(r 21+r 2 2)≥4π·(r 1+r 2)22 =(6-3 3)π.故选A. 5.正六棱锥P -ABCDEF 中,G 为PB 的中点,则三棱锥D -GAC 与三棱锥P -GAC 体积之比为( ) A .1∶1 B .1∶2 C .2∶1 D .3∶2 答案:C 解析:由题意可知V B -GAC =V P -GAC ,

相关文档
最新文档