导航原理讲义

导航原理讲义
导航原理讲义

导航原理(principle of navigation)

i) 使用教材:无(主要是没有合适的教材,正在编写中)。

ii)参考书:

1.惯性导航原理,邓正隆,哈尔滨工业大学出版社,

1994;

2.GPS卫星导航定位原理与方法,刘基余,科学出版

社,2003;

3.Elliott D. Kaplan. Understanding GPS:principles and

applications(second edition).

中译本:1)GPS原理与应用(第一版),邱致和(20

所),电子工业出版社;

2)GPS原理与应用(第二版),寇艳红(北航),电子工业出版社,2007。

4)Pratap Misra,Per Enge. Global Positioning System:

Signals, Measurements and Performance(second Edition).

中译本: GPS 信号,测量与性能(第二版),罗鸣等,

电子工业出版社;

iii)课程考核方式:课堂大作业或课程大报告的形式。

iv)课程的主要内容:

惯性导航部分;

北斗部分;

GPS部分;

天文导航部分;

组合导航部分;

新增部分:

量子导航

Simulation-based(粒子滤波)。瑞典林雪平大学(LinkOping University)的Rickard Karlsson提出一种无需GPS即可定位并导航的新技术。

第一章 导航技术及其发展

§1.1 导航的基本概念

1、导航的定义

在各种复杂的气象条件下,采用最有效的方法并以规定的所需导航性能,引导运载体航行的过程(引导运载体按一定航线从一个地点(出发点)到另一个地点(目的地)的过程)。

2、导航参数

导航过程中用来完成导航任务的参数。

载体的位置、速度、姿态(角度)等,其中最重要的参数是确定载体的位置,即定位。所以,导航的核心就是定位。

3、导航的任务

1)引导运载体进入并沿预定航线航行;

2)导引运载体在夜间和各种气象条件下安全着陆或进港。

3) 为运载体准确、安全地完成航行任务提供所需要的其他导引及情报咨询服务;

4)确定运载体当前所处的位置及其航行参数(最重要)。

4、导航与定位的区别与联系

区别:

导航是对运动点而言的,观测时间很短,观测数据要进行实时处理,提供相对参考位置的相对坐标,定位精度不及固

定点高。

定位是对固定点而言的,允许较长时间的观测,观测数据事后处理,提供绝对坐标,定位精度较高。

联系:能够导航的系统必须能够定位,能够定位的系统未必能够导航。这取决于观测器材能否在运载体上获得足够精度的观测量。

5、导航系统(设备)

能够完成引导功能的设备。

如指南针、罗盘(最简单),卫星导航系统、无线电导航系统、惯性导航系统。

早在春秋战国时,我们祖先就了解并利用磁石的指极性制成最早的指南针——司南。战国时的《韩非子》中提到用磁石制成的司南。司南就是指南的意思,东汉思想家王充在其所著《论衡》中也有关于司南的记载。司南由一把“勺子”和一个“地盘”两部分组成。司南勺由整块磁石制成。它的磁南极那一头琢成长柄,圆圆的底部是它的重心,琢得非常光滑。地盘是个铜质的方盘,中央有个光滑的圆槽,四周刻着格线和表示24个方位的文字。

图司南

由于司南的底部和地盘的圆槽都很光滑,司南放进了地盘就能灵

活地转动,在它静止下来的时候,磁石的指极性使长柄总是指向南方。这种仪器就是指南针的前身,由于当初使用司南必须配上地盘,所以后来指南针也叫罗盘针。

在制作中,天然磁石因打击受热容易失磁,磁性较弱,司南不能广泛流传。到宋朝时,有人发现了人造磁铁。钢铁在磁石上磨过,就带有磁性,这种磁性比较稳固不容易丢失。后来在长期实践中出现了指南鱼。

从指南鱼再加以改进,把带磁的薄片改成带磁的钢针,就创造了比指南鱼更进一步的新的指南仪器。把一支缝纫用的小钢针,在天然磁石上磨过,使它带有磁性,人造磁体的指南针就这样产生了。

11世纪初,中国人发明的用地球磁场使铁片磁化的方法图解

图元代陈元靓设计的指南鱼

图指南针

图航海罗盘

指南针发明后很快就应用于航海。世界上最早记载指南针应用于航海导航的文献是北宋宣和年间(公元1119-1125年)朱所著《萍洲可谈》(成书略晚于《梦溪笔谈》),书中记载了中国海船上航海很有经验的水手。他们善于辨别海上方向:“舟师识地理,夜则观星,昼则观日,阴晦则观指南针”。“识地理”,是表明当时舟师已能掌握在海上确定海船位置的方法。说明我国人民在航海中已经知道使用指南针了。这是全世界航海史上使用指南针的最早记载,我国人民首创的这种仪器导航方法,是航海技术的重大革新。指南针应用于航海并不排斥天文导航,二者可配合使用,这更能促进航海天文知识的进步。

中国使用指南针导航不久,就被阿拉伯海船采取,并经阿拉伯人把这一伟大发明传到欧洲。恩格斯在《自然辩证法》中指出,"磁针从阿拉伯人传至欧洲人手中在1180年左右"。1180年是我国南宋孝宗淳熙七年。中国人首先将指南针应用于航海比欧洲人至少早80年。

北宋著名科学家沈括(《梦溪笔谈》著者),在制作和应用指南针的科学实践中发现了磁偏角的存在。他精辟地指出,这是因为

地球上的磁极不正好在南北两极的缘故。指南针及磁偏角理论在远洋航行中发挥了巨大的作用,使人们获得了全天候航行的能力,人类第一次得到了在茫茫大海中航行的自由。从此开辟了许多新的航线,缩短了航程,加速了航运的发展,促进了各国人民之间的文化交流与贸易往来。指南针对航海事业的重要意义怎么说也不为过。李约瑟说:“你们的祖先在航海方面远比我们的祖先来得先进。中国远在欧洲之前懂得用前后帆的系统御风而行,或许就是这个原因,在中国航海史上从未用过多桨奴隶船”。这类似于秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法(Horner algorithm或Horner scheme),是以英国数学家威廉·乔治·霍纳命名的。达尔文的进化论,kalman filter等等。

6、导航系统的分类

(1)依据是否依靠外界信息完成导航任务可分为自主式导航系统与非自主式导航系统。

自主式导航系统:在不依靠外界信息或不与外界发生联系的情况下,独立完成导航任务,如惯性导航系统,天文导航。

惯性导航基于牛顿力学定律,组成惯性导航系统的设备都安装在运载体内,工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰,是一种自主式导航系统。

天文导航系统是自主式导航系统,不需要地面设备,不受人工或自然形成的电磁场的干扰,不向外辐射电磁波,隐蔽性好。

另外,它可以同时提供位置、速度和姿态信息。因而,天文导航成为深空探测、载人航天和远洋航海必不可少的关键技术和卫星、远程导弹、运载火箭、高空远程侦察机等的重要辅助导航手段。

需要特别指出的是,天文导航因不需要设置专门的导航信息源,人们一般称之为自主式导航,但因为其导航信息源(恒星)在载体之外,有时候又将其称为半自主式导航。

非自主式导航系统:必须有地面设备或依靠其他外部信息才能完成导航任务(无线电导航系统、卫星导航系统等等)。除了要装在运载体上的导航设备外,还需设在其他地方的一套或多套设备与其配合工作,才能产生导航信息。在运载体上的设备分别被称为弹载、机载、船(舰)载、车载或单兵导航设备,而设在其他地方的那套设备被称为导航台。导航台与运载器上的导航设备用无线电相联系,总体形成一个导航系统。

§1.2 导航的发展史

自从人类出现最初的政治、经济和军事活动以来,便有对导航的要求。

远古时期的人类在狩猎或寻找猎物时,在夜晚行进中需要依靠星空辨识方向,因此天文学成了人类研究最早的科学,天文导航也就成为人类最早导航系统之一。天文导航也是古丝绸之路的导航系统。

当人类的经济与军事活动还较简单时,因为只要在前进方向上不出现错误,便可以到达目的地,因此人们主要依赖的,同时也主要需要的导航信息就是航向。随着人类运输和交通工具的不断改进,为了提高安全性和经济性,天空被划分为具有一定高度与宽度的航路,近海和港口被划分为不同的航道,人们对导航的要求也从航向转变为对未知的准确判断与预测,使导航的功能从主要提供运载体的航向转变为主要提供运载体的位置信息以及速度信息。尤其是军事领域的需要,出于自身安全和有效打击敌方的目的,对运载体的位置和速度信息的精度要求越来越高,现代科技的发展为这些需要提供了必须的基础,无线电导航与惯性导航在背景下出现并不断发展。

无线电导航的发明,是导航系统成为航行中真正可以依赖的工具,因此具有划时代的意义。

一、国内情况

人类历史上研制最早的导航设备要数四千年以前黄帝部落使用的指南车(指南针是利用磁铁的指极性,而指南车是利用机械装置实现定向性的(制作一套可自动离合的齿轮传动机构,指南车的发明,标志着我国古代对齿轮系统的应用在当时世界上居于遥遥领先的地位。实际上它是现代车辆上离合器的先驱),两者的原理和构造完全不同,指南车比指南针要早)。传说中黄帝部落和蚩尤部落在公元前2600年发生的涿鹿大战中,黄帝部落在战争中发明了指南车。指南车使得黄帝的军队在大风雨中仍能辨别方向,从而取得了战争的胜利。这是人类研制的导航设备在战争中显示出巨大的作用。随之人类经济活动范围的扩大,对导航需求也越来越重要。

图过洋牵星术

15世纪,明代永乐年间,郑和七下“西洋”,“舟师”使用罗盘、测深器、牵星板(类似于现在的六分仪)等世界的先进技术,创造了世界航行史的壮举。

图牵星术所用设备及其原理

20世纪60年代,我国在沿海地区布设了罗兰A台链,取名为中导-Ⅰ型系统。

20世纪90年代,又分别在南海、东海和北海布设了罗兰C (脉冲双曲线系统)台链,取名远导-Ⅰ型系统。罗兰C使用脉冲信号,脉冲载频大约100kHz,作用距离达1000nmile。罗兰A 在海岸布设有一系列岸台,以一定重复周期相互同步地发射脉冲信号,当船载机收到来自两个台的信号时,便可测出这些信号到达时间的差值,再乘以电波传播速度,换算为及两个台的距离的差值,利用这个差值,便知道船只处于以两个发射台为焦点的地球表面上的一条双曲线上。再利用来自另外两个台的信号的时间差值,又知道船只处于地球表面上的另一个双曲线上。这两个双曲线的交点便是船只所在的位置。罗兰C与罗兰A最大的不同在于不仅利用脉冲包络,而且还利用了脉冲载波相位,完成了各台站间的同步和为用户接收机测量时间差,因此定位精度大大提高。

2000年10月31日和12月21日,在西昌相继发射了北斗系统第一颗和第二颗导航定位试验卫星。2000年5月25日,将第三颗导航卫星送入太空,2004年北斗导航定位系统正式运营。现在北斗二代正在加紧组网(美国斯坦福大学研究人员成功破解我国“北斗”导航卫星信号编码程序,研究人员中有一名中国留学生)。

中国自主研制的“北斗一号”系统在通信中断的情况下发挥重要作用,救灾部队携带的北斗系统正在陆续发回各种灾情和救援信息。

“北斗一号”卫星导航定位系统监测到,一支携带了“北斗一

号”终端机的部队,从中午12时开始,沿着马尔康、黑水、理县到汶川的317国道,以每小时6公里左右的速度一路急进,6个小时前进了近40公里,已经进入汶川县境内,离县城还有40公里左右的路程。

图手持式北斗用户机用于抗震救灾

由于通信受阻碍,位于北京的卫星导航定位指控中心初步判断该部队隶属四川武警总队。指控中心正在进一步了解情况。

“北斗一号”卫星定位系统是利用地球同步卫星为用户提供快速定位、简短数字报文通信和授时服务的一种全天候、区域性的卫星定位系统。系统的主要功能是:

1、定位:快速确定用户所在地的地理位置,向用户及主管部门提供导航信息。

2、通讯:用户与用户、用户与中心控制系统间均可实现双向简短数字报文通信。

3、授时:中心控制系统定时播发授时信息,为定时用户提供时延修正值。

汶川大地震用到的就是北斗一号系统具备非常有用的“卫星短信”功能。当然,你也可以用卫星电话。

R190卫星/GSM900双频手提电话是爱立信为亚洲卫星特别制造的,目前世界上体积最小的卫星电话,配合亚卫卫星。其覆盖面几及整个亚洲地区,任何时候只要在这个范围内可以用R190卫星电话透过卫星联接到世界各地的其它通讯网络,直接接通各种制式的移动电话、巿内电话或其它卫星电话。但是卫星电话也有不少缺点:花费昂贵、带宽不足,在一个区域内只能同时容纳少量用户。在地震灾区大量使用卫星电话进行联系是不可想象的。

二、国外情况

17世纪初,欧洲各国开始进入资本主义社会,开拓市场客观上促进了导航特别是天文导航的发展。在无边无际的大海中航行,没有导航定位手段是不可能的,为了确定船舶的位置,人们就利用星体在一定时间与地球的地理位置具有固定规律的原理,发展了通过观测星体确定船舶位置的方法——天文导航。

二战时,德国在V-2火箭上第一次安装了初级的惯性导航系统,以提供火箭的姿态和入轨的初速度。惯性导航是依据牛顿力学原理来测量载体的运动状态的。飞到英国伦敦上空,发出怪叫声,英国人称为“讨厌的乌鸦”。惯性导航的缺点:定位误差的积累。

19世纪电磁波的发现,直接推动了近代无线电导航系统的发展。典型的有罗兰A,罗兰C、奥米伽、测向仪、无线电定位与天文导航相比,无论在定位的速度还是自动化程度方向都有了长足的进步,但是无线电导航定位系统的作用距离(覆盖)和定位精度之间产生矛盾(作用距离长,定位精度低;作用距离短,定位精度高)。

随着1957年前苏联第一颗人造地球卫星的发射和20世纪60年代空间技术的发展,各种人造卫星相继升空,人们很自然地想到如果从卫星上发射无线电信号,组成一个卫星导航系统,就能较好地解决了覆盖面与定位精度之间的矛盾,于是出现了卫星导航系统(星基无线电导航系统)。

约翰?霍普金斯大学应用物理实验室研究人员通过观测卫星

发现,接收到的频率与发射的频率存在多普勒漂移现象。这样,知道了用户机的位置,测得多普勒漂移,便可得卫星的位置;反过来,知道了卫星位置,测得多普勒漂移,便可得用户机的位置。

目前比较成熟的有美国的GPS系统。俄罗斯的格洛纳斯(GLONASS),1995年完成24颗卫星的组网。但由于财力不足,目前在轨卫星不足,不能独立组网,只能与GPS联合使用。

当然,还有欧洲伽利略导航卫星系统计划,目前,实施进度慢,已邀请中国加入合作研究。

§1.3 常用的导航方法

目前广泛使用的导航方法有以下几种:

1) 航标方法。过去人们习惯称之为目视方法,这是一种借助于信标或参照物把运动物体从一个地点引导到另外的一个地点的方法。目前,在飞机进场着陆时,这种方法仍在使用,经验性很强。

2) 航位推算法。它是通过推算一系列测量的速度增量来确定位置的。航位推算导航技术克服了前一种方法的缺点,不受天气、地理条件的限制.是一种自主式导航方法,保密性强。其缺点是:随着时间的推移,其位置累积误差会越来越大。惯性导航系统在原理上就是采用这种方法,但人们常说的航位推算大都采用方位仪(如磁罗盘)和速度表,利用方位仪将速度表所测的载体速度分解成东向和北向分量,然后分别积分,计算出各个方向上所经过的距离。目前、航位推算法仍广泛使用在航海、航空和车辆自动定位系统中。

3) 天文导航。通过对天体精确地定时观测来定位的一种方法。它用(光学)六分仪、反跟踪器等光学传感器测量出视野中天体的方位,再根据当时的时间,便能确定载体处于地球表面上的某一个圆环上,观测两颗或更多天体并进行处理,便可以确定出载体在地球表面的位置。目前,天文导航仍广泛用在航海和航天,特别是星际航行中。它的缺点是受时间和气象条件的限制,定位时间长,操作计算比较复杂。

4) 惯性导航它是通过积分安装在稳定平台(物理的或数学的)上的加速度计输出来确定载体的位置和速度。它完全依靠载体上的导航

设备自主地完成导航任务,和外界不发生任何光、电联系,因此,它是一种自主式导航方法,隐蔽性好,工作不受气象条件的限制。这一独特的优点,使其成为航空、航海和航天领域中一种广泛使用的主要导航方法。其主要缺点是导航误差随时间累积。目前,惯性导航系统常常和其他导航系统综合使用。

5) 无线电导航。它是通过测量无线电波从发射台(导航台)到接收机的传输时间来定位的一种方法,也可以通过测量无线电信号的相位或相角来定位。按照发射机或转发器所在的位置,无线电导航可分为地面(陆)基无线电导航和空间(星)基无线电导航。

6) 卫星定位导航。卫星导航是以人造卫星作为导航台的星基无线电导航,是一种利用人造地球卫星进行用户点位测量的技术,是以用导航卫星发送的导航定位信号确定载体位置和运动状态、引导运动载体安全有效地到达目的地的一门新兴科学。卫星导航在军事和民用领域具有重要而广泛的应用。它可为全球陆、海、空、天的各类军民载体,全天候、24小时提供高精度的三维位置、速度、姿态和精密时间信息。

卫星导航仪导航定位方法与原理

先说一下GPS卫星导航定位的原理,如果用学术上的语言来说,是一个相当复杂的过程。但通俗的来说,也相当简单。 一个是地面发射器,一个是卫星接收器。比方说发射器叫"A",GPS卫星接收器叫"B",这样不间断的发射与接收(A-B,B-A),就形成了一个环路,类似主动雷达(也叫一次雷达),这样就可以将发射信号琐定。 至于导航方法,其实就更简单了,在发射与接收的环路过程中增加了软件系统,比方说发射与接收信号的地面与卫星的高度,路线,距离等等,这样通过软件系统来达到计算后就产生了数据,这些数据就是GPS使用者所需要的!例如地图导航,通过计算后的数据再转换成地图比例就可以准确的定位了! 另外不得不提的是GPS卫星定位车载终端设备。 车载终端设备是GPS车辆监控管理系统的前端设备,安装在被监控的车辆上。车载终端还可以隐秘地安装在各种车辆内,同时与车辆本身的油路、电路、门磁及车上的防盗器相连,可对车辆进行全方位的掌控。 车载终端设备主要由GPS接收机,GSM/GPRS收发模块,主控制模块及汽车防盗器、外接探头等各种外接设备组成。 GPS模块接收卫星的定位信号运算出自身的位置(经度、纬度、高度)、时间和运动状态(速度、航向),每秒1次送给单片机并存储,以便随时提供定位信息。MCU单片机控制整个车载台的协调工作。GSM/GPRS模块负责无线的收发传输。FSK部分负责对数据的调制解调,接收中心的指令数据和发射车载台的报警等信息。 话音控制部分用于控制免提话筒耳机,监听MIC,FSK调制解调信号的缓冲,放大,匹配,转换等功能。数字逻辑控制部分用于各种输入,输出的电平,脉冲信号的缓冲与驱动。电源及省电控制部分用于对汽车电平与后备电平的自动切换,稳压滤波并通过车匙及报警器的触发控制睡眠与苏醒。汽车防盗器部分负责对各探头的采集分析完成盗车报警的所有功能。双控熄火/断油路控制器受控于监控中心及汽车报警器。

北航惯性导航综合实验五实验报告

惯性导航技术综合实验 实验五惯性基组合导航及应用技术实验

惯性/卫星组合导航系统车载实验 一、实验目的 ①掌握捷联惯导/GPS组合导航系统的构成和基本工作原理; ②掌握采用卡尔曼滤波方法进行捷联惯导/GPS组合的基本原理; ③掌握捷联惯导 /GPS组合导航系统静态性能; ④掌握动态情况下捷联惯导 /GPS组合导航系统的性能。 二、实验内容 ①复习卡尔曼滤波的基本原理(参考《卡尔曼滤波与组合导航原理》第二、五章); ②复习捷联惯导/GPS组合导航系统的基本工作原理(参考以光衢编著的《惯性导航原理》第七章); 三、实验系统组成 ①捷联惯导/GPS组合导航实验系统一套; ②监控计算机一台。 ③差分 GPS接收机一套; ④实验车一辆; ⑤车载大理石平台; ⑥车载电源系统。 四、实验内容 1)实验准备 ①将IMU紧固在车载大理石减振平台上,确认IMU的安装基准面紧靠实验平台; ②将IMU与导航计算机、导航计算机与车载电源、导航计算机与监控计算

机、GPS 接收机与导航计算机、GPS 天线与GPS 接收机、GPS 接收机与GPS 电池之间的连接线正确连接; ③ 打开GPS 接收机电源,确认可以接收到4颗以上卫星; ④ 打开电源,启动实验系统。 2) 捷联惯导/GPS 组合导航实验 ① 进入捷联惯导初始对准状态,记录IMU 的原始输出,注意5分钟内严禁移动实验车和IMU ; ② 实验系统经过5分钟初始对准之后,进入导航状态; ③ 移动实验车,按设计实验路线行驶; ④ 利用监控计算机中的导航软件进行导航解算,并显示导航结果。 五、 实验结果及分析 (一) 理论推导捷联惯导短时段(1分钟)位置误差,并用1分钟惯导实验数据验证。 1、一分钟惯导位置误差理论推导: 短时段内(t<5min ),忽略地球自转0ie ω=,运动轨迹近似为平面1/0R =,此时的位置误差分析可简化为: (1) 加速度计零偏?引起的位置误差:2 10.88022t x δ?==m (2) 失准角0φ引起的误差:2 02 0.92182g t x φδ==m (3) 陀螺漂移ε引起的误差:3 30.01376 g t x εδ==m 可得1min 后的位置误差值123 1.8157m x x x x δδδδ=++= 2、一分钟惯导实验数据验证结果: (1)纯惯导解算1min 的位置及位置误差图:

车载导航DVD常见故障及检测维修方法

维修导航种类:通用机、专车专用机、一体机、安卓机。???不分品牌和型号,各种大小问题我们统统都能修,价格合理。欢迎致电8 团队介绍:我们的团队共有几名研发级维修工程师,十年以上车载导航开发设计经验,具有芯片级精修技术手段。测试设备、维修工具、常用配件应有尽有。我本人精通车载导航硬件,支持无任何图纸资料的主板模式维修,且能反推电路 本店维修各种品牌DVD导航及杂牌无牌机(天派、索菱、凯振、金像王、索雳、卡仕达、索行、科骏达、路畅、图音、路特仕、华阳、飞韵、恒晨、索金凡达、爱博仕等) 具体维修内容:不开机、花屏、白屏、黑屏、进水、蓝牙连不上、导航进不去、进入导航黑屏、不读USB、不识别SD卡、不读碟、碟不进/出仓、无声音、功放7388升级到7850、导航不能定位、不接收GPS卫星信号、无倒车后视、无收音功能,显示屏损坏、触摸屏破、无触摸、触摸不灵敏、按键失灵、开关坏、USB接口坏、SD卡槽损坏…… 具体方法如下: 1直观法 1.1 原理 直观法是通过人之眼睛或其它感觉器官去发现故障、排除故障之一种检修方法。 1.2 应用 直观法是最基本之检查故障之方法之一,实施过程应坚持先简单后复杂、先外面后里面之原则。实际操作时,首先面临之是如何打开机壳之问题,其次是对拆开之电器内之各式各样之电子元器件之形状、名称、代表字母、电路符号和功能都能一一对上号。即能准确地识别电子元器件。作为直观法主要有两个方面之检查内容:其一是对实物之观察;其二是对图像之观察。前者适合于各种检修场合,后者主要用于有图像之视频设备,如电视机等。 直观法检修时,主要分成以下三个步骤: (1)打开机壳之前之检查:观察电器之外表,看有没有碰伤痕迹,机器上之按键、插口、电器设备之连线有元损坏等。 (2)打开机壳后之检查:观察线路板及机内各种装置,看保险丝是否熔断;元器件有没有相碰、断线;电阻有没有烧焦、变色;电解电容器有没有漏液、裂胀及变形;印刷电路板上之铜箔和焊点是否良好,有没有已被他人修整、焊接之痕迹等,在机内观察时,可用手拨动一些元器件、零部件,以便直观法充分检查。 (3)通电后之检查:这时眼要看电器内部有没有打火、冒烟现象;耳要听电器内部有没有异常声音;鼻要闻电器内部有没有炼焦味;手要摸一些管子、集成电路等是否烫手,如有异常发热现象,应立即关机。 1.3 几点说明 (1)直观法之特点是十分简便,不需要其它仪器,对检修电器之一般性故障及损坏型故障

哈工大导航原理大作业

《导航原理》作业 (惯性导航部分)

一、题目要求 A fighter equipped with SINS is initially at the position of ?35 NL ?122X G Y G Z G ,and three accelerometers, X A ,Y A ,Z A are installed along the axes b X ,b Y ,b Z of the body frame respectively. Case 1:stationary onboard test The body frame of the fighter initially coincides with the geographical frame, as shown in the figure, with its pitching axis b X pointing to the east,rolling axis b Y to the north, and azimuth axis b Z upward. Then the body of the fighter is made to rotate step by step relative to the geographical frame. (1) ?10around b X (2) ?30around b Y (3) ?50-around b Z After that, the body of the fighter stops rotating. You are required to compute the final output of the three accelerometers on the fighter, using both DCM and quaternion respectively,and ignoring the device errors. It is known that the magnitude of gravity acceleration is 2/8.9g s m =. Case 2:flight navigation Initially, the fighter is stationary on the motionless carrier with its board 25m above the sea level. Its pitching and rolling axes are both in the local horizon, and its rolling axis is ?45on the north by east, parallel with the runway onboard. Then the fighter accelerate along the runway and take off from the carrier. The output of the gyros and accelerometers are both pulse numbers,Each gyro pulse is an angular increment of sec arc 1.0-,and each accelerometer pulse is g 6e 1-,with 2/8.9g s m =.The gyro output frequency is 10 Hz,and

二维码导航工作原理

总体设计: 该系统由以陀螺仪导航系统、视觉系统、AGV子系统、电源管理系统、传感器系统和装置机械结构五部分组成。导航采用陀螺仪导航为主,视觉导航为辅,最大化融合和利用各导航的优势,提高系统的可靠性和导航精度。 其运行原理如下:AGV在接收到工作中心的指令后,由导航系统将其指引至货物装载处,装载完毕后,按照预设指令,其分析起点-终点路径后,规划出最佳行走路径,行走至指定位置。该过程中不断利用导航系统识别周围特征标志信息,以实时利用AGV子系统计算分析其所处位置,之后利用无线通信方式发送至工作中心电脑,以管理和规划工业现场的总体物流运行进度,避免相互干涉,提高运输效率。 项目技术归纳为以下几点: (1)陀螺仪导航与视觉联合导航:本系统采用陀螺仪导航系统专用模块,主要实现技术为差分定位,并结合工业现场的地图,利用车载控制系统实时分析系统地图坐标数据,之后与地图信息对比以获取定位信息。项目采用图QR码扫描自适应阈值算法的视觉技术识别运动过程中的关键标志物,辅以航位推算系统以达到路径自动辨识和规划,从而最终达到对AGV导航的目的。通过视觉定位QR码技术导航的图像获取、摄像机标定、特征提取和深度恢复等过程,以达到对物体的位置精确定位。 QR码(二维码) (2)路径规划:AGV运行路径规划分为全局规划和局部规划。全局规划中采用切线图法,即将路径中关键点作为特征点,将该特征点的切线表示弧,这样可以获取AGV起始点和目标点的最短路径,提高AGV路径进行规划的速度;局部规划中采用人工势场法,其设计思想是将AGV在工业现场作业视为一种抽象人造受力场中的运动,通过建立人工势场的负梯度方向指向系统的运动控制方向,目标点对AGV产生引力,障碍物对AGV产生斥力,其驱动结果使其在势场合力作用下控制AGV运动方向并计算AGV位置,为防止工业现场AGV在到达目标位置前陷入局部小点而无法达到预设位置,系统利用模拟退火算法使势函数跳出局部极小点,以使AGV顺利到达目标位置。 (3)多任务分解及协调:为解决多个AGV间任务分配、路径规划和相互协调,系统采用模糊动态数学模型的方法,该方法基于专家辨识系统的设计思路,将任务分配分解为“最重要、重要、一般、次要”四个等级,并将路径规划为“最近、较近、合理、备选”四个等级,之后利用模糊动态数学模型进行建模和分析,输出最佳的任务分解和路径规划。具体应用中,利用工业现场工作中心对多个AGV提前预置任务和目标路径,提供给系统的初始输入和输出,由系统自动完成对任务和路径的分析,并将指令传送至各AGV车载控制系统,以达到AGV间的任务协调和路径选取。需要指出的是,为了解决实际应用过程中由于任务的不断更

导航原理实验报告

导航原理实验报告 院系: 班级: 学号: 姓名: 成绩: 指导教师签字: 批改日期:年月日 哈尔滨工业大学航天学院 控制科学实验室

实验1 二自由度陀螺仪基本特性验证实验 一、实验目的 1.了解机械陀螺仪的结构特点; 2.对比验证没有通电和通电后的二自由度陀螺仪基本特性表观; 3.深化课堂讲授的有关二自由度陀螺仪基本特性的内容。 二、思考与分析 1. 定轴性 (1) 设陀螺仪的动量矩为H ,作用在陀螺仪上的干扰力矩为M d ,陀螺仪漂移角 速度为ωd ,写出关系式说明动量矩H 越大,陀螺漂移越小,陀螺仪的定轴性(即稳定性)越高. 答案: d d H M ω=? /sin d d H M θω = 干扰力矩M d 一定时,动量矩H 越大,陀螺仪漂移角速度为ωd 越小,陀螺漂移越小, 陀螺仪的定轴性(即稳定性)越高. (2) 在陀螺仪原理及其机电结构方而简要蜕明如何提高H 的量值? 答案:H J =Ω 由公式2A J dm r = ???可知 提高H 的量值有四种途径: 1. 陀螺转子采用密度大的材料,其质量提高了,转动惯量也就提高了。 2. 改变质量分布特性。在质量相同的情况下,若质量分布的半径距质 心越远,H 越大。因此将陀螺转子的有效质量外移,如动力谐陀螺将转子设计成环状。即在陀螺电机定子环中,可做成质量集中分布在环外边缘的环形结构,切边缘部分材质密度大,可提高转动惯量。 3. 增大r,可有效提高转动惯量。 4. 另外可通过采用外转子电机来改变电机质量分布,增大r 。改变电机定转子结构:采用外转子,内定子结构的转子电机。

4. 增加陀螺转子的旋转速度。 2/602(1)/n s f p ωππ==- ,60(1)/n f s p =- 提高电压周波频率 f ↑——〉n ↑——H ↑ f=400Hz 适当减少极对数 ,如取p=1 适当减少转差率s ,可通过减少转子支承轴承摩擦来实现 2.进动性 (1) 在外框架施加一沿x 轴正方向作用力矩时,画出动量矩H 的进动方 向及矢量M ,ω,H 的关系坐标图。(设定H 沿Z 轴正方向)并在坐标中标出陀螺仪自转轴的旋转方向n 。 b) 在内框架施加一沿Y 轴正方向作用力矩时,画出动量矩H 的进动方向及 矢量M ,ω,H 的关系坐标图。(设定H 沿Z 轴正方向)并在坐标中标出陀螺仪自转轴的旋转方向n 。

北斗卫星导航系统定位原理及应用

xxxx导航系统定位原理及其应用 北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。。 北斗一号导航定位卫星由中国空间技术研究院研究制造。四颗导航定位卫星的发射时间分别为: 2000年10月31日; 2000年12月21日; 2003年5月25日, 2007年4月14日,第三、四颗是备用卫星。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥?双保险?作用。北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。北斗一号系统的基本功能包括: 定位、通信(短消息)和授时。北斗二代系统的功能与GPS相同,即定位与授时。 其工作原理如下: ?北斗一号?卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

计算机视觉测量与导航_张正友法相机标定 _结课实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 计算机视觉测量与导航 实验报告 院系:航天学院 学科:控制科学与工程 姓名:TSX 学号: 任课教师:张永安卢鸿谦 日期:2014.05.13

摘要 人类视觉过程可看成是一个复杂的从感觉到知觉的过程,也就是指三维世界投影得到二维图像,再由二维图像认知三维世界的内容和含义的过程。信号处理理论与计算机出现以后,人们用摄像机等获取环境图像并转换成数字信号,完成对视觉信息的获取和传输过程,用计算机实现对视觉信息的处理、存储和理解等过程,形成了计算机视觉这门新兴学科。其中从二维图像恢复三维物体可见表面的几何结构的工作就叫做三维重建。随着计算机硬件、软件、图像采集、处理技术的迅速发展,三维重建的理论和技术已被广泛应用于航空航天、机器人技术、文字识别、工业检测、军事侦察、地理勘察、现场测量和虚拟植物可视化等领域。相机标定是三维重建必不可少的步骤,它包括对诸如主点坐标、焦距等与相机内部结构有关的内部参数的确定和对相机的旋转、平移这些外部参数的确定。价格低廉的实验器材、简单的实验环境、快捷的标定速度和较高的标定精度是现在相机标定研究追求的几大方向。数码相机的标定就是研究的热点之一。本次报告介绍了基于棋盘格模板标定的基本原理和算法,利用MATLAB的相机标定工具箱,使用张征友算法对相机进行了标定,记录了标定的过程,并给出结果,最后对影响标定精度的因素进行了分析。 关键词:相机标定张正友角点提取内外参

1基于棋盘格标定的基本原理和算法 1.1基础知识 1.1.1射影几何 当描述一张相机拍摄的图像时,由于其长度、角度、平行关系都可能发生变化,因此无法完全用欧氏几何来处理图像,而射影几何却可以,因为在射影几何中,允许存在包括透视投影的更大一类变换,而不仅仅是欧氏几何的平移和旋转。实际上,欧氏几何是射影几何的一个子集。 1.1.2齐次坐标 设欧氏直线上点p的笛卡尔坐标为(x,y)T,如果x1,x2,x3满足x=x1/x2,y =x2/x3,x3≠0,则称三维向量(x1,x2,x3)T为点P的齐次坐标。当x3= 0时,(x1,x2,0)T规定直线上的无穷远点的齐次坐标。 实际上,齐次坐标是用一个n+ 1维向量来表示原本n维的向量。应用齐次坐标的目的是用矩阵运算把二维、三维甚至高维空间中的一个点集从一个坐标系变换到另一个坐标系。形的几何变换主要包括平移、旋转、缩放等。以矩阵表达式来计算这些变换时,平移是矩阵相加,旋转和缩放则是矩阵相乘,综合起来可以表示为P’=R*P+T(R为旋转缩放矩阵,T为平移矩阵,P为原向量,P′为变换后的向量)。当n+1维的齐次坐标中第n+1维为0,则表示n维空间的一个无穷远点。

浅谈车载导航的原理

毕业论文(设计)题目:浅谈车载导航的原理 系别: 建筑工程系 专业: 建筑工程技术 学生姓名: 成绩: 指导教师: 2012年4月

商丘工学院毕业论文 摘要 本文介绍了车载导航的来源,及其在当今社会中给人们带来的便利,另外主要介绍了车载导航的基本原理和功能,下面我就为大家根据自己的见解来简单地阐述一下车载导航的历史古今和它的的一些基本原理分析,并根据自己的观点来提出现如今车载导航的应用弊端及未来发展方向。希望大家能共同交流和学习。 关键词:车载导航的原理应用用途发展方向

浅谈车载导航的原理 目录 摘要··························································································· II 绪论 (1) 1 车载导航的概念及构成 (1) 1.1 车载导航的概念 (1) 1.2 车载导航的来源 (2) 1.3 车载导航的主要构成部分 (2) 2车载导航的基本原理及应用 (3) 2.1 卫星如何采像及原理 (3) 2.2 地面信息接收及计算机处理系统的功能及重要性 (4) 2.3 各系统之间关联及密切作用 (4) 2.4 车载导航在现实生活中的应用 (5) 3 车载导航的弊端及误差来源 (5) 3.1 车载导航的弊端 (6) 3.2 精确程度及误差来源 (6) 3.3 发展前景和改进趋向 (7) 4 车载导航技术的运用及和人类的关系 (7) 4.1 车载导航的功能 (8) 4.2 市场如何挑选车载导航产品 (8) 结论 (9) 参考文献 (10)

商丘工学院毕业论文 绪论 “车载导航”现在对人们来说已经不是一个新鲜的名词,它的运用解决了很多人因在陌生地区找不到路的苦恼,减少了因看不清路标而造成的不必要的后果。他可以让您在驾驶汽车时随时随地知晓自己的确切位置。车载导航其具有的自动语音导航、最佳路径搜索等功能让您一路捷径、畅行无阻,集成的办公、娱乐功能让您轻松行驶、高效出行!车载导航的使用是人类科学发展史上智慧的结晶。它的出现一方面给人们带来了巨大的交通便利,另一方面也存在着很多的弊端问题。还有更为深层的一方面问题,美国无偿为世界提供24颗卫星用来发展车载导航,这也不得不给人以深思。我国在利用此项高端技术的同时也不得不加紧军事机密的防范。未来的车载导航必然会迈向一个更智能更人性化的而一面发展,这就需要21世纪的新力军了,你准备好了吗!

哈工大导航原理大作业

哈工大导航原理大作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《导航原理》作业 (惯性导航部分)

一、题目要求 A fighter equipped with SINS is initially at the position of ?35 NL and ?122 EL,stationary on a motionless carrier. Three gyros X G ,Y G ,Z G ,and three accelerometers, X A ,Y A ,Z A are installed along the axes b X ,b Y ,b Z of the body frame respectively. Case 1:stationary onboard test The body frame of the fighter initially coincides with the geographical frame, as shown in the figure, with its pitching axis b X pointing to the east,rolling axis b Y to the north, and azimuth axis b Z upward. Then the body of the fighter is made to rotate step by step relative to the geographical frame. (1) ?10around b X (2) ?30around b Y (3) ?50-around b Z After that, the body of the fighter stops rotating. You are required to compute the final output of the three accelerometers on the fighter, using both DCM and quaternion respectively,and ignoring the device errors. It is known that the magnitude of gravity acceleration is 2/8.9g s m =. Case 2:flight navigation Initially, the fighter is stationary on the motionless carrier with its board 25m above the sea level. Its pitching and rolling axes are both in the local horizon, and its rolling axis is ?45on the north by east, parallel with the runway onboard. Then the fighter accelerate along the runway and take off from the carrier. The output of the gyros and accelerometers are both pulse numbers,Each gyro pulse is an angular increment of sec arc 1.0-,and each accelerometer pulse is g 6e 1-,with 2/8.9g s m =.The gyro output frequency is 10 Hz,and the accelerometer ’s is 1Hz. The output of gyros and accelerometers within 5400s are stored in MATLAB data files named gout.mat and aout.mat, containing matrices gm of 35400? and am of 35400? respectively. The format of data as shown in the tables, with 10 rows of each matrix selected. Each row represents the out of the type of sensors at each sample time.

【CN109711506A】一种导航二维码的生成方法及系统、导航方法及系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910121400.0 (22)申请日 2019.02.19 (71)申请人 安徽星光标识系统有限公司 地址 241000 安徽省芜湖市弋江区高新开 发区南区杨河路7号办公楼 (72)发明人 谷灵康 张建新 谷宣锋 谷宣萱  张楷越  (51)Int.Cl. G06K 17/00(2006.01) G06Q 50/14(2012.01) (54)发明名称一种导航二维码的生成方法及系统、导航方法及系统(57)摘要本发明公开了一种导航二维码的生成方法及系统、导航方法及系统。导航二维码的生成方法包括:采集景区中各景点的坐标以及各服务设施的坐标;采集景区中各景点的宣传信息;根据各所述景点的坐标以及各所述服务设施的坐标,生成多条游览路线;将各所述游览路线上的景点与各景点的宣传信息进行匹配;将匹配好景点宣传信息的各游览路线进行存储,并生成导航二维码。该述导航方法包括:根据导航二维码获取景区信息;荻取用户的当前位置以及目的地;根据所述当前位置以及所述目的地,调用景区信息中的浏览路线;根据所述浏览路线进行语音导航。本发明能够方便游客了解到自己在景区中的位置, 并能够规划导航路线实现导航功能。权利要求书1页 说明书3页 附图2页CN 109711506 A 2019.05.03 C N 109711506 A

权 利 要 求 书1/1页CN 109711506 A 1.一种导航二维码的生成方法,其特征在于,所述种导航二维码的生成方法包括: 采集景区中各景点的坐标以及各服务设施的坐标; 采集景区中各景点的宣传信息; 根据各所述景点的坐标以及各所述服务设施的坐标,生成多条游览路线; 将各所述游览路线上的景点与各景点的宣传信息进行匹配; 将匹配好景点宣传信息的各游览路线进行存储,并生成导航二维码。 2.根据权利要求1所述的导航二维码的生成方法,其特征在于,所述宣传信息包括文字、图片、音频以及视频。 3.一种导航二维码的生成系统,其特征在于,所述导航二维码的生成系统包括: 坐标采集模块,用于采集景区中各景点的坐标以及各服务设施的坐标; 信息采集模块,用于采集景区中各景点的宣传信息;所述宣传信息包括文字、图片、音频以及视频; 路线生成模块,用于根据各所述景点的坐标以及各所述服务设施的坐标,生成多条游览路线; 匹配模块,用于将各所述游览路线上的景点与各景点的宣传信息进行匹配; 二维码生成模块,用于将匹配好景点宣传信息的各游览路线进行存储,并生成导航二维码。 4.一种导航方法,其特征在于,所述导航方法应用上述权利要求1或2生成的导航二维码;所述导航方法包括: 根据导航二维码获取景区信息; 获取用户的当前位置以及目的地; 根据所述当前位置以及所述目的地,调用景区信息中的浏览路线; 根据所述浏览路线进行语音导航。 5.根据权利要求4所述的导航方法,其特征在于,所述导航方法还包括: 根据所述浏览路线推送服务设施。 6.根据权利要求4所述的导航方法,其特征在于,所述导航方法还包括: 获取用户浏览过程中的实时位置; 判断所述实时位置是否偏离所述浏览路线; 若是,进行语音提醒; 若否,继续导航。 7.一种导航系统,其特征在于,所述导航方法包括:移动终端、导航二维码以及景区标识牌;所述导航二维码设置在所述景区标识牌上,所述移动终端用于扫描所述二维码,获取景区信息,并根据用户的当前位置以及目的地为用户规划浏览路线,进行语音导航。 2

导航原理(pdf版)

导航原理(V0.1) 导航贯穿于飞行全过程。正确实施导航,是完成任务的先决条件。对于每一个想要在虚拟战线任务中顺利找到目标,完成任务并安全返航的飞友,熟练的掌握导航技术是必须的。 第一节导航仪表 与导航有关的仪表主要有罗盘和无线电导航仪,罗盘又分为磁罗盘和综合远读罗盘(也叫做转发罗盘),综合远读罗盘实际上是把远读罗盘和无线电导航仪合二为一,比如德机的罗盘中的小飞机就是无线电导航仪的指针,它指向无线电导航台或电台的方位,德机的罗盘外圈的刻度是活动的,跟随航向的变化而旋转,正12点的位置就是当前航向。美国海军飞机的罗盘中的双针就是无线电导航仪的指针,它指向电台方向,单针指示的是当前航向,而美国陆航的指针定义刚好相反,单针是无线电导航仪的指针,双针指示当前航向。苏机的无线电导航仪是单独的,它的使用我们以后再说。磁罗盘实际上跟指南针是一样的,只是它的刻度盘是做在磁体上的,跟磁体一起旋转,因此它只能在水平状态下使用。导航仪表中还包括航空时钟,它跟我们平时用的钟一样,这里就不讲了。 综合远读罗盘(德)综合远读罗盘(美)磁罗盘(美) 磁罗盘(苏)无线电导航仪(苏)

第二节判读航图和导航计算 航图的判读是导航的基础,游戏中的航图,跟我们常见的地图大体相同,所用的图标也很相似,但由于游戏本身的特点,以及我们在飞行中的实际需要,因此也有一些不同的地方。 图1 图例图2放大后的图1局部游戏中的航图图标大多与真实地图相同,如浅蓝色不规则线条表示河流,较大面积浅蓝色区域表示湖泊,黑色线条表示铁路,但公路却分为两种,红线表示泥土公路,黄色带棕色边的线表示沥青或水泥公路,大块的绿色区域表示森林,森林间的浅色区域表示草地,不规则的小块黄色区域表示城镇,城镇上面标有城镇名称。图中的蓝色菱形图标表示空军基地。 游戏中的航图跟真实地图一样是上北下南,左西右东,并且也采用 经度和纬度,图2是放大后的地图,可以看到地图边缘标有经度和纬度, 但游戏中的航图主要采用英文字母和数字来表示位置。图1是我们看航 图时最常用的一种比例,图中经线和纬线交叉将地图划分为一个个区 域,用英文字母代表纵列(经度),用数字代表横列(纬度),两条经线 和两条纬线之间的距离是10千米,因此地图上每一个区域的边长是10 千米。每一个区域可以用字母和数字来表示,如D5、E3等等。图3 区域分划但用这样的方法来表示位置不够精确,因此我们在此基础上将每一个区域分为9个小区,每个小区用一个数字来表示,以增加精度。如图3,将一个区域(图中为D3)均分为9个小区,用小键盘上的数字键位置进行编号,这样每一个小区就可以这样表示,如D3-1,D3-6。图1中的空军基地,如果用D3来表示,因为D3地区有10×10千米,因此精度很低,而如果用D3-5来表示,由于D3-5小区只有3.3×3.3千米,精度大为提高。 一般的航图显示比例分为两个档次,既每格10千米和每格1千米,而在太平洋地区的一些地

GPS定位器的原理

位置服务已经成为越来越热的一门技术,也将成为以后所有移动设备(智能手机、掌上电脑等)的标配。而定位导航技术中,目前精度最高、应用最广泛的,自然非GPS莫属了。网络上介绍GPS原理的专业资料很多,而本文试图从编程人员的角度出发,以一种程序员易于理解的方式来简单介绍一下GPS定位的基本原理,希望对做GPS开发的朋友有所启发。当然,本文并没有涉及具体的开发方面的技术。 之所以先介绍数学模型,是因为我认为这个数学模型可能是程序员比较关心的问题。当然事先声明,这个模型只是我根据一些GPS资料总专为程序员总结出来的一个简化模型,细节方面可能并不符合实际,想了解具体细节请参考专业的GPS讲解资料。 GPS定位,实际上就是通过四颗已知位置的卫星来确定GPS接收器的位置。 如上图所示,图中的GPS接收器为当前要确定位置的设备,卫星1、2、3、4为本次定位要用到的四颗卫星: 那么定位的过程,简单来讲就是通过一个函数GetLocation(),从已知的[Position1,d1]、[Position2,d2]、[Position3,d3]、[Position4,d4]四对数据中求出Location的值。用程序员熟悉的函数调用来表示就是: 一看到这个函数调用,程序员们就该来劲了:这些参数从哪里来?这个函数又是如何执行?由谁来执行的呢?立体几何还没有忘干净的可能还要问:为什么必须要4对参数呢?那下面我们就来一起探究一下。

实际上,运行于宇宙空间的GPS卫星,每一个都在时刻不停地通过卫星信号向全世界广播自己的当前位置坐标信息。任何一个GPS接收器都可以通过天线很轻松地接收到这些信息,并且能够读懂这些信息(这其实也是每一个GPS芯片的核心功能之一)。这就是这些位置信息的来源。 我们已经知道每一个GPS卫星都在不辞辛劳地广播自己的位置,那么在发送位置信息的同时,也会附加上该数据包发出时的时间戳。GPS接收器收到数据包后,用当前时间(当前时间当然只能由GPS接收器自己来确定了)减去时间戳上的时间,就是数据包在空中传输所用的时间了。 知道了数据包在空中的传输时间,那么乘上他的传输速度,就是数据包在空中传输的距离,也就是该卫星到GPS接收器的距离了。数据包是通过无线电波传送的,那么理想速度就是光速c,把传播时间记为Ti的话,用公式表示就是: 这就是di(i=1,2,3,4)的来源了。 这个函数是我为了说明问题而虚构的,事实上未必存在,但是一定存在这样类似的运算逻辑。这些运算逻辑可以由软件来实现,但是事实上可能大都是由硬件芯片来完成的(这可能也是每一个GPS芯片的核心功能之一)。 根据立体几何知识,三维空间中,三对[Positioni,di]这样的数据就可以确定一个点了(实际上可能是两个,但我们可以通过逻辑判断舍去一个),为什么这里需要四对呢?理想情况下,的确三对就够了,也就是说理想情况下只需要三颗卫星就可以实现GPS定位。但是事实上,必须要四颗。 因为根据上面的公式,di是通过c*Ti计算出来的,而我们知道c值是很大的(理想速度即光速),那么对于时间Ti而言,一个极小的误差都会被放大很多倍从而导致整个结果无效。也就是说,在GPS定位中,对时间的精度要求是极高的。GPS卫星上是用銫原子钟来计时的,但是我们不可能为每一个GPS接收器也配一个銫原子钟,因为一个銫原子钟的价格可能已经超过了这个GPS设备再加上使用GPS的这辆名贵汽车的价格。 同时,由于速度c也会受到空中电离层的影响,因此也会有误差;再者,GPS卫星广播的自己的位置也可能会有误差。其他等等一些因素也会影响数据的精确度。 总之,数据是存在误差的。这些误差可能导致定位精确度降低,也可能直接导致定位无效。GetLocation(函数)中多用了一组数据,正是为了来校正误差。至于具体的细节,我们就不用关心了,我们只要知道,多用一组数据,就可以通过一些巧妙的算法,消除或减小误差,

卫星导航定位实验报告

China University of Mining and Technology 《卫星导航定位算法与程序设计》 实验报告 学号: 07122825 姓名:王亚亚 班级:测绘12—1 指导老师:王潜心/张秋昭/刘志平 中国矿业大学环境与测绘学院 2015-07-01

实验一编程实现读取下载的星历 一、实验要求: 读取RINEX N 文件,将所有星历放到一个列表(数组)中。并输出和自己学号相关的卫星编号的星历文件信息。读取RINEX O文件,并输出指定时刻的观测信息。 二、实验步骤: 1、下载2014年的广播星历文件和观测值文件,下载地址如下: ftp://https://www.360docs.net/doc/c88366604.html,/gps/data/daily/2014/ 2、要求每一位同学按照与自己学号后三位一致的年积日的数据文件和星历文件,站点的选择必须选择与姓氏首字母相同的站点的数据,以王小康同学为例,学号:07123077,需下载077那天的数据。有些同学的学号365<后三位 <730,则取学号后三位-365,以姜平同学为例:学号10124455,下载455- 365=90 天的数据,有些同学的学号730<后三位<=999,则取学号后三位-730,以万伟同学为例:学号:07122854,则下载854-730 = 124天的数据。可以选择wnhu0124.14n wnhu0124.14o 根据上述要求我下载了2014年第95天的数据,选择其中的wsrt0950.14n和wsrt0950.14o星历文件。指定时刻(学号后五位对应在年积日对应的秒最相近时刻)的观测值信息如张良09123881,后五位23881,取23881-3600*6= 2281秒,6点38分01秒,最近的历元应该是6点38分00秒的数据。根据计算与我最接近的观测时刻为2014年4月5日6点20分30.00秒。 3、编程思路: 利用rinex函数读取星历文件中第14颗卫星的星历数据并输出显示。对数据执行762次循环找到对应的2014年4月5日6点20分30.00秒,并输出观测值。 4、程序运行结果:

北斗导航系统系统构成与工作原理

北斗导航系统系统构成与工作原理 作者:admin 来源:未知日期:2011-4-6 9:52:55 人气:61 标签: 导航系统 导读:北斗导航系统系统构成与工作原理【车载GPS导航网】北斗卫星定位系统由两颗地球静止卫星(800E和1400E)、一颗在轨备份卫星(110.50E)、中心控制系统、标校系统和各类… 北斗导航系统系统构成与工作原理 【车载GPS导航网】北斗卫星定位系统由两颗地球静止卫星(800E和1400E)、一颗在轨备份卫星(110.50E)、中心控制系统、标校系统和各类用户机等部分组成。系统的工作过程是:首先由中心控制系统向卫星Ⅰ和卫星Ⅱ同时发送询问信号,径卫星转发器项服务区内的用户广播。用户响应其中一颗卫星的询问信号,并同时向两颗卫星发送响应信号,径卫星转发回中心控制系统。中心控制系统接收并解调用户发来的信号,然后根据用的申请服务内容进行相应的数据处理。对定位申请,中心控制系统测出两个时间延迟:即从中心控制系统发出询问信号,经某一颗卫星转发到达用户,用户发出定位响应信号,经同一颗卫星转发回中心控制系统的延迟;和从中心控制发出询问信号,经上述同一卫星到达用户,用户发出响应信号,经另一颗卫星转发回中心控制系统的延迟。由于中心控制系统和两颗卫星的位置均是已知的,因此由上面两个延迟量可以算出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星

为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标经加密由出站信号发送给用户。 北斗卫星定位系统覆盖范围是北纬5°~55°,东经70°~140°之间的心脏地区,上大下小,最宽处在北纬35°左右。其定位精度为水平精度100m(1 σ),设立标校站之后为20 m(类似差分状态)。工作频率:2 491.75 MHz。系统能容纳的用户数为每小时540 000户。 由于在定位时需要用户终端向定位卫星发送定位信号,由信号到达定位卫星时间的差值计算用户位置,所以被称为“有源定位”。 北斗系统三大功能 快速定位:北斗系统可为服务区域内用户提供全天候、高精度、快速实时定位服务,定位精度20—100m; 短报文通信:北斗系统用户终端具有双向报文通信功能,用户可以一次传送40-60个汉字的短报文信息; 精密授时:北斗系统具有精密授时功能,可向用户提供 20ns-100ns时间同步精度

相关文档
最新文档