凝结水系统调整方式优化方案

合集下载

优化凝结水泵运行方式降低凝结水泵电耗分析

优化凝结水泵运行方式降低凝结水泵电耗分析

工业技术科技创新导报 Science and Technology Innovation Herald551 林州热电机组类型介绍全厂(2×350 MW)两台机组,总装机容量为700 MW。

配备有3台50%额定容量的立式筒形凝结水泵,一套凝结水精处理、1台轴加、4台低加、1台凝补水箱和1台凝补水泵。

系统设置两套变频器,A/B变频器采用一拖二形式,分别控制A、B凝结水泵,C变频器单独控制C 凝结水泵。

凝泵设计的额定流量是423.6 m 3/h,在实际运行中降低凝泵出口压力,单台凝泵最大出力能达到600 t/h左右。

2 试验调整目的响应集团公司“大干5个月、优化运行方式、安全运行、降本增效”口号,优化运行方式降低能耗,通过对该厂1、2号机凝结水系统运行方式进行调整,降低凝结水泵电耗,使其达到集团公司同类型机组先进值。

3 影响凝结水泵电耗因素分析由于调度负荷低,1、2号机持续低负荷运行,两台凝结水泵变频运行,除氧器上水调门在40%~50%开度,节流损失大。

为了降低凝结水泵电耗可以从优化凝结水泵运行方式、降低凝结水母管压力、减少凝结水用户着手。

在降低凝结水泵出口压力时必须考虑凝结水母管压力降低对以下用户的影响。

3.1 凝结水压力降低后对轴封减温水的影响低压轴封减温水由凝结水供给,负荷在175 M W 时,凝结水泵出力低,出口母管压力0.85 M P a,低压轴封减温水调节门开度最大只有32%。

因此凝结水母管压力降低至0.85 M Pa,对轴封无影响。

3.2 当低旁投入时,凝结水压力降低对低旁减温水影响考虑低旁减温水主要是害怕机组在启动时低旁减温水压力低至0.6 M Pa,低旁联关引起再热器保护动作。

经过实际观察当凝结水母管压力与低旁前减温水压力有0.1 M Pa的压差,即使凝结水母管压力下降至0.8 M Pa,低旁减温水压力也有0.7 M Pa,因此无影响。

3.3 凝结水压力降低,对低压缸排汽温度的影响正常运行期间去凝汽器的疏水门处于关闭状态,只有少量内漏疏水去凝汽器,低压缸排汽温度一般稳定在30 ℃以下。

国产600MW机组除氧器上水调门优化方案

国产600MW机组除氧器上水调门优化方案

国产600MW机组除氧器上水调门优化方案凝结水泵变频技术的应用,将凝结水泵定速运行改为变速运行,使凝结水泵运行时的出口压力、流量与电机能耗达到最佳匹配,从而大幅度降低凝结水泵功耗,尤其是在机组低负荷工况下,节能效果十分显著。

但就目前的运行情况来看,变频凝结水泵运行中除氧器上水调门开度没有全开,还有一定的节能潜力可挖,因此提出除氧器上水调门的优化方案。

变频凝结水泵现在运行现状凝结水泵在变频方式运行,且无工频运行泵时,凝结水母管压力会随着负荷的降低而降低。

在协调方式下,机组的运行方式为定——滑——定,故凝结水母管压力设定值在机组正常运行过程中为在负荷变动过程中除氧器压力的基础上叠加一个值,同时为保证低压旁路减温、汽机低压缸喷水减温等用水,通过试验确定凝结水泵最低工作压力,以保证除氧器的上水和其它辅助系统能够正常工作。

除氧器水位由凝结水泵变频控制时,用除氧器上水调阀来控制凝结水母管压力。

这个回路的控制思想是pid 接受凝结水母管压力偏差及除氧器水位偏差的微分前馈信号,维持凝结水母管压力相对稳定,满足除氧器上水能力,并保证凝结水泵在安全区内工作的最小给水压力(下限特性)。

从表1中,凝结水泵变频各供况运行情况可以发现除氧器上水调门开度偏小,还存在部分节流。

实际管道阻力预测,凝结水精处理的压差损失为0.25mpa左右,26米平台到0米平台的压差大概为0.3mpa,凝结水管道本身的阻力造成的压差大概为0.2mpa左右,总体管道阻力为0.75mpa。

根据其他电厂的经验,保证变频凝结水泵出口压力不低于1.35mpa的前提下尽量开大除氧器上水调门。

(见表2)另外,凝结水最小压力设定为1.4mpa,即凝结水最小压力不应低于1.4 mpa。

保证凝结水供低旁的压力要求,大于1.2mpa。

变频凝结水泵除氧器上水阀门优化除氧器上水优化思路:凝结水泵变频器投入自动,由变频器调节除氧器水位,通过降低凝结水压力设定,使得除氧器上水调门不断开大,直至全开;减少管道节流损失;除氧器上水调门投自动,用于维持凝结水最低压力,即当机组负荷低到一定程度,由除氧器上水调门维持凝结水最低压力1.4mpa,保证凝结水压力大于1.4mpa。

关于#1、#2机组凝结水再循环系统管道振动原因及减振措施

关于#1、#2机组凝结水再循环系统管道振动原因及减振措施

关于#1、#2机组凝结水再循环系统管道振动原因及减振措施汽水管道振动是影响火力发电厂安全生产的常见原因;强烈的管道振动会使控制阀工况变差、控制仪表失灵,管道附件,尤其是管道的连接部位和管道与附件的连接部位等处发生松动和破裂,轻则发生泄漏,重则会由于破裂而引发污染或爆炸,造成严重的事故.而在众多汽水管道振动中,凝结水最小流量间再循环管道因为接收容器工作背压低,汽蚀和闪蒸工况严重,出现管道振动的概率最大.在越南海阳电厂试运行期间,在现场调试时发现,凝结水再循环管道出现了较大的振动,一直未得到解决;从其它电厂的凝结水再循环管道却正常、平稳的运行。

对比了其它电厂的凝结水再循环管道的设计与我方现场设计,针对凝结水最小流虽再循环管道振动的问题进行分析,提出了相应的设计整改和优化方案。

凝结水系统的设置都是按汽轮机在VWO工况时可能出现的凝汽量,加上进入凝汽器的正常疏水量和正常补水量设计的.系统采用100%凝结水精处理装置,系统中仅设凝结水泵,不设凝结水升压泵,系统比较简单(凝结水泵进水压力为6.9 kPa 、流量为1782m³/h 、扬程为273 m 、—备一用,热井中的凝结水由凝结水泵升压后,经过中压凝结水精处理装置、轴封加热器、五级低压加热器后进入除氧器。

其中系统设有最小流量再循环管路,由轴封冷却器出口凝结水管道引出,经最小流量再循环阀回到凝汽器,保证在启动和低负荷期间凝结水泵通过最小流量阀运行,防止凝结水泵汽蚀,并且有足够的凝结水流过轴封冷却器,维持轴封冷却器的微真空。

最小流量再循环管道按凝结水泵、轴封冷却器允许的最小流量中的较大值设计,最小流量再循环管道上还设有调节阀,以便控制不同工况下的再循环流量。

该工程的最小流量为450 m/h。

1、凝结水最小流量再循环管道是由轴封加热器出口的凝结水管道引岀一分支管道,经过最小流量调节阀接入凝汽器(凝结水母管设计压力为3.75 MPa ,汽封冷却器至8、9 号低加)的设计温度为40 °C )其阀后凝汽器工作背压(取平均背压为6.9 kPa,当夏季工况水温为33℃,背压为9.5 kPa ),调节阀前后的压差大,如果调节阀(允许压差和调节阀形式)选型不档,当介质到达阀体,在阀花和阀座的节流作用下,缩流断面处的流速是最大的。

凝结水精处理存在问题及对策分析

凝结水精处理存在问题及对策分析

凝结水精处理存在问题及对策分析摘要:凝结水精处理在电厂以及锅炉中使用极为普遍,其主要功能在于去掉凝结水中存在的各种可能的金属腐蚀物以及各类微量溶解性物质。

近年来,随着我国各种大型火力发电厂的建设及投入使用,各类先进的凝结水精处理装置得到了普遍使用,因此,如何保证该装置在使用过程中的安全、高效,稳定,事关电厂安全生产的全局。

关键词:凝结水精;处理;问题;对策;分析1导言凝结水精处理系统是百万压水堆核电站二回路重要的系统之一。

其位于凝结水泵与低压加热器之间,对二回路水中杂质离子进行树脂交换处理,保证蒸汽发生器供水水质。

主要功能是:一是连续去除热力系统在机组正常运行或机组启停期间形成的腐蚀产物和离子杂质,为蒸汽发生器提供悬浮物质含量极低的给水;二是机组启动时可以大大减少系统冲洗时间,使机组尽快投入运行并节约除盐水用量。

2热电厂凝结水精处理系统概述从理论上来看,凝结水是指锅炉产生的蒸汽在汽轮机做功后,经循环冷却水冷却凝结的水。

但从生产实际来看,凝汽器热井的凝结水还包括高压加热器、低压加热器等疏水———即进入加热器将给水加热后冷凝下来的水。

因此凝结水主要包括:汽轮机内蒸汽做功后的凝结水、各种疏水和锅炉补给水。

凝结水作为锅炉给水主要组成部分,其水质将直接影响给水质量,尤其是随着机组参数的增大,为了机组的安全运行,对凝结水质量提出了更高的要求。

3凝结水精处理的目标凝结水在一些状况下会受到污染,如凝汽器渗漏或泄漏、金属腐蚀产物的污染、锅炉补给水带入少量杂质等,部分超临界参数的机组,对给水水质的要求很高,需要进行凝结水的高纯度净化,也就是凝结水精处理。

这就要求建立凝结水精处理系统。

凝结水精处理系统高速混床是在机组空负荷试运结束后,进入带负荷整套调试阶段时初次投运的,投入运行均采用点动控制。

控制混床入口含铁量≤1 000μg/L,结合机组负荷情况,为避免树脂污染严重,尽量等凝结水水质达到最佳而除盐设备补水已满足不了机组负荷要求时才投入精处理高速混床,对凝结水进行回收,从而实现凝结水的精处理。

浅析石油化工蒸汽凝结水回收存在的问题及改造

浅析石油化工蒸汽凝结水回收存在的问题及改造

浅析石油化工蒸汽凝结水回收存在的问题及改造摘要:在石油化工生产过程中,大量的蒸汽使用后会形成凝结水,如果不进行回收利用,将会对环境造成污染,同时也浪费了资源。

因此,石油化工企业需要对蒸汽凝结水进行回收利用。

然而,当前蒸汽凝结水回收存在一些问题。

为了解决这些问题,需要进行设备更新、技术改造以及管理优化等方面的措施。

本文将对石油化工蒸汽凝结水回收存在的问题及改造进行浅析。

关键词:石油化工;蒸汽凝结水;回收问题作为一种重要的工业生产方式,石油化工在生产过程中需要大量的水蒸气用于加热、升温、分离、脱水等操作。

这些过程中所产生的凝结水都是一种宝贵的资源,回收利用可以大幅降低企业的用水成本,并有益于环境保护和能源节约。

然而,在实践中,石油化工蒸汽凝结水回收存在着一系列问题,必须进行改造才能更好地发挥其效益。

通过优化设备结构和排布、对凝结水进行处理、升级设备等手段,可以有效地降低企业用水成本,并提高生产效率。

一、蒸汽凝结水系统节能改造的必要性石油化工行业是能源消耗和二氧化碳排放量较大的行业之一,其中蒸汽凝结水系统的能耗占总能耗的比例较高。

因此,节能改造蒸汽凝结水系统具有重要的必要性。

节能改造蒸汽凝结水系统可以实现下列几个方面的好处:1.节约能源:改造后的系统可以有效地利用能量,节约蒸汽和热能的消耗,从而降低能源消耗。

2.降低成本:减少能源消耗可以降低石油化工企业的能源成本,提升其经济效益。

3.减少环境污染:通过节能改造蒸汽凝结水系统,可以减少废气的排放,降低对环境的影响。

4.提高生产效率:改造后的系统可以提高蒸汽凝结水的回用率,增强系统的热力稳定性和控制精度,提高生产效率和柔性。

二、石油化工蒸汽凝结水回收存在的问题(一)回收系统工艺流程不合理如果存在工艺流程不合理的问题,可能会导致蒸汽凝结水的回收效率低、能耗高、设备磨损严重等问题。

以下是可能存在的回收系统工艺流程不合理的问题:1.蒸汽凝结水前置处理不足:在回收系统中,若未对蒸汽凝结水进行适当的前置处理,如除油、蜡、杂质等,容易导致后续处理设备堵塞、腐蚀等问题。

凝结水精处理阳树脂硫酸再生系统优化分析

凝结水精处理阳树脂硫酸再生系统优化分析

157中国设备工程C h i n a P l a n t E n g i n e e r i ng中国设备工程 2021.03 (下)1 前言越南沿海三期扩建为超临界机组,精处理系统包括2´50%管式过滤器、3´50%高速混床系统、旁路系统(包括管式过滤器旁路、高速混床旁路、凝结水精处理系统旁路)和1套体外再生系统(包括酸、碱贮存及计量设备)。

体外再生系统为典型的“三塔”(树脂分离塔,阴树脂再生塔和阳树脂再生/树脂存储塔)配置。

考虑到越南当地政府对废水排放的氯离子的要求及浓盐酸在运输和存储过程中存在的弊端,阳树脂采用硫酸再生。

2 阳树脂体外再生技术当高速混床运行出水:Na +>3μg/L、SiO 2->10μg/L、阳离子电导率(25℃)>0.15ms/cm 或制水流量累积达额定值或进出口母管压差大于0.35MPa,这些条件任意一个达到时,判断混床中的树脂失效,需要将失效树脂送至分离塔内进行阴、阳树脂分离,并分别将阴阳树脂输送到阴、阳再生塔内。

从分离塔分离好的阳树脂通过进阳脂门导入阳树脂再生塔后,通过底部进气阀门及底部进水阀门出水进行空气擦洗和水反洗把树脂清洗干净,然后,从树脂上部进酸阀进酸再生、置换、漂洗,漂洗至电导率合格。

3 阳树脂再生调试过程中发现的问题3.1 稀酸管道颤动及发热问题2019年5月,系统调试过程中,阳树脂第一次再生时,发现混和三通后稀酸出口管道颤动很厉害,而且伴随着发热(大于50℃)。

第一次阳树脂再生浓酸稀释的参数设置为:稀释水进水流量为7.5t/h,浓酸计量泵出口流量为500L/h,稀酸出口酸浓度记录为6%,再生时间控制在2500s 左右。

考虑到浓硫酸(密度比水大)有进入到稀释水管道的风险,原设计混合三通采用浓酸底部进,稀释水上部进,稀酸中部出的布置方式,管道采用衬PTFE 防腐。

分析原因应该是浓硫酸在稀释过程中会放出大量的热,而稀释水水量较少,热量无法被及时带走,造成稀释水在稀酸管道的二次蒸发,稀酸管道中存在的汽水混合物造成了管道的颤动,并且稀酸管道发热。

大唐耒阳发电厂2×300MW机组凝结水精处理系统优化

大唐耒阳发电厂2×300MW机组凝结水精处理系统优化
理 设 备 安 全稳 定 运行 性 能 有 一 定 的 参 考 意 义 。
【 关键词 】 精 处理 ; 树 脂; 优化 【 中图分类号 】 T M6 2 【 文献标识码 】 B
【 文章编号 】 2 0 9 5 — 2 0 6 6 ( 2 0 1 3 ) 2 0 — 0 0 9 1 — 0 2
用 的 柴 油进 入 到 汽 水 系统 . 造成 # 4机 两套 树 脂 被 柴 油 严 重 污
R o h m &H a a s凝 胶 型 树 脂 . 更 换 为 其 公 司 型 号 A MB E R .
J E T 2 8 0 o H 及 AMB ER J E T 9 8 0 0 Cl的 大 孔 型 树 脂 。 混 床 前 无 前 置过滤装置。
染 。后 采 用非 离子 表 面 活 性 剂进 行 清 洗 , 效 果较 好 。
4 系统及运行调整 的优化
3 设 备异常情况简 介( 按时间 先后顺序)
本 着 多年 的 运 行 及 管 理 经 验 。结 合 耒 阳发 电厂 精 处 理 系 ( 1 ) 2 0 0 4年 冬 季 , 精 处 理 碱 液 系统 因碱 液 结 晶 ( 未 设 计 加 统 运 行 情 况 。 本 文 重 点谈 几 个 具 体 方 面 的优 化 工 作 。
1 刖商 Fra bibliotek随 着火电机组 的迅猛发展 , 越 来越 多 的 亚 临界 、 超 临界 、 超 超 临界 机 组 投 入 运 行 . 它 们 对 汽 水 品 质 有 了更 高 的要 求 。 机 组 在 运 行 及 启 停 过 程 中 。不 可 避 免 的 会 有 金 属 产 物 形 成 。 同
L o W C A R B 0 N W0 R L D 2 0 1 3 , l o

凝结水系统与凝结泵节电管理技术措施(120510)

凝结水系统与凝结泵节电管理技术措施(120510)

凝结水系统与凝结泵节电管理技术措施编制:王毅赵志良张喜来薛德仁孙元佳马建军审核:张忠杨邺支国庆批准:袁建华北方联合电力临河热电厂1、机组负荷≤230MW,运行3号凝结泵;机组负荷在220MW,运行一台给水泵(如为电泵运行方式)。

值长合理安排机组负荷,尽可能延长机组单台凝结泵、给水泵运行时间,以降低厂用电率。

2、为了降低凝结水泵的功耗,机组启动阶段,除氧器上水由凝输泵完成,凝结水泵的启动等到汽包上至正常水位准备点火时,汽机需要投人轴封系统,建立真空时启动提供轴封冷却器用水。

3、凝结水系统:170MW及以上,全开凝结水至除氧器旁路门,进一步降低系统阻力。

4、关闭凝结水至1号疏水扩容器减温水阀门。

5、中压缸金属温度降至240℃,低压缸排汽温度降至50℃时,确证至凝汽器汽侧各路汽水阀门关闭,并且无凝结水用户后停止凝结泵运行,严密监视排汽缸温度。

开启凝结器汽侧放水门,关闭凝结器补水手动门,严密监视凝结器水位。

6、机组运行、启动初期、停运后,如凝结水压力满足要求,可控制凝结水泵转速在最低限900r/min。

7、当锅炉熄火汽包上至高值水位200mm后,立即停运电动给水泵、开式水泵。

锅炉需补水时,间隙启动开式水泵及电动给水泵,每次补水汽包水位均上至高值水位200mm。

在此期间,除氧器通过除盐水泵或凝补水泵上水。

8、为了节省凝结水泵的功耗,在除盐水母管(机组间凝结水系统联络管道)上接出1路水源作为汽动给水泵前置泵机械密封水进水,避免了起动凝结水泵,能够满足机械密封水压力的要求。

9、机组启动初期、停运后,如凝结水泵可停运,则除氧器通过除盐水泵或凝补水泵上水。

10、凝结泵变频退出运行时的经济运行调整方式10.1调整主阀开度在60-80%保持一个开度,然后利用再循环进行微调保持除氧器水位,如凝结水压力高可适当开大主阀,调整再循环时注意给水与凝结水流量偏差。

10.2观察:单泵工频只能满足210MW负荷,单凝结泵变频运行能满足230MW负荷,因此双机运行要根据凝结泵的出力调配两机的负荷,以避免不必要的浪费。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凝结水系统调整方式优化方案
一、凝结水泵主要参数:
二、当前运行方式:
凝结水泵运行方式为一运一备,可通过调节凝结水泵变频百分数、母管调节阀开度及凝结水再循环调节阀开度控制凝结水流量,以保持凝汽器水位正常。

当前自动控制方式为凝结水母管调节阀、再循环调节阀同时投入自动,自动跟踪凝汽器水位进行调节,自动调节过程中凝结水母管调节阀开度+再循环调节阀开度=100%。

三、当前自动控制存在问题:
1、经济性差。

当凝汽器水位降低时,再循环调节阀开大,母管调节阀关小,部分凝结水通过再循环回流至凝汽器,造成凝结水泵出力增加,能耗增大,厂用电率升高。

2、存在安全隐患。

当水位升高时,母管调节阀开大,再循环调节阀关小,如凝结水泵变频开度不够,或负荷增加过快,运行人员增加变频开度不及时,凝结水泵出水量小于凝汽器凝结水量,会使凝汽器水位快速上升,甚至造成凝汽器满水、真空下降等。

当水位降低过快时,母管调节阀关小,再循环调节阀开大,如凝结水泵变频开度过大或调整不及时,使大量凝结水通过再循环回流至凝汽器,凝结水母管流量迅速减小,因低加进汽量不变,导致低加水
侧局部管束超温,影响低加使用寿命;且会因进除氧器凝结水量过小,造成除氧器超压、振动。

四、优化建议:
1、对当前自动控制逻辑进行优化,使调节阀在自动调整中平滑过渡,避免大开大关。

2、增加“凝结水泵变频开度——凝结水母管压力”自动调节,保持凝结水母管压力稳定,形成以“凝结水泵变频调整为主、母管调节阀为辅、再循环调节阀为后备调节”的自动调节方式。

3、运行人员加强监视,在运行中遇到设备系统故障或负荷突变等突发情况,可改为手动调整,并秉持“少量多次”的调整原则,系统稳定后再投入自动调整。

相关文档
最新文档